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Abstract

A theorem of Maurer-Cartan type for Lie algebroids is presented. Suppose that any vector subbundle of a Lie
algebroid is called interior differential system (/DS) for that Lie algebroid. A theorem of Frobenius type is
obtained. Extending the classical notion of exterior diffential system (£DS) to Lie algebroids, a theorem of

Cartan type is obtained.
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1. Introduction

Using the exterior differential calculus for Lie algebroids
(See [1,2]) the structure equations of Maurer-Cartan type
are established. Using the Cartan’s moving frame
method, there exists the following

Theorem (E. Cartan) If’ N e |Mann is a Riemannian

manifold and X, :X;F’ ael,n is n ortonormal
X

moving frame, then there exists a collection of 1-forms
QF, a,pel,n uniquely defined by the requirements

a _ B
Q) =-Q,

and
dre“ :Q‘;/\(Dﬁ,a eln

where {@“,a € l,n} is the coframe. (see [3], p. 151)

We know that an r-dimensional distribution on a
manifold N is a mapping D defined on N, which
assignees to each point x of N an r-dimensional
linear subspace D, of T'N . A vector field X be-
longs to D if we have X eD_ for each xeN .
When this happens we write X eI'(D).

The distribution D on a manifold N is said to be
differentiable if for any xe N there exists r differen-
tiable linearly independent vector fields
X,,---,X, €T (D) in a neighborhood of x. The distri-
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bution D is said to be involutive if for all vector fields
X,YeI'(D) wehave [X,Y]eD(D).

In the classical theory we have the following

Theorem (Frobenius) The distribution D is involut-
ive if and only if for each xe€ N there exists a neigh-
borhood U and n—-r linearly independent 1-forms
@*,-...,@" on U which vanish on D and satisfy the
condition

dfe” = Z Q; AO®F aer+l,n

Per+ln

for suitable 1-forms QF, «,f €l,n .(see [4], p. 58)

Extending the notion of distribution we obtain the
definition of an /DS of a Lie algebroid. A characteriza-
tion of the ivolutivity of an /DS in a result of Frobenius
type is presented in Theorem 4.7.

This paper studies the intersection between the ge-
ometry of Lie algebroids and some aspects of EDS. In
the classical sense, an EDS is a pair (M v ) consisting
of a smooth manifold M and a homogeneous, differen-
tially closed ideal / in the algebra of smooth differen-
tial forms on M . (see [5,6]) Using the notion of EDS of
an arbitrary Lie algebroid ((F,V, N),[,]F ,(p, 1d, )) we
obtained a new result of Cartan type in the Theorem 5.1.
In the particular case of standard Lie algebroid
((TM,TM,M),[,]TM (1dy, . 1d,, )) there are obtained
similar results those for distributions.

We know that a submanifold S of N is said to be
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integral manifold for the distribution D if for every
point xe N, D, coincides with 7S . The distribution
D is said to be integrable if for each point xe N
there exists an integral manifold of D containing x.
As a distribution D is involutive if and only if it is
integrable, then the study of the integral manifolds of an
IDS or EDS is a new direction by research.

2. Preliminaries

In general, if C is a category, then we denote |C| the
class of objects and for any A4,Be |C| we denote
C(4,B) the set of morphisms of 4 source and B
target. Let Liedlg, Mod, and B" be the category of
Lie algebras, modules and vector bundles respectively.
We know that if (E,n,M)e|B’|,
F(E,n,M):{u eMan(M,E :uonzIdM} and
F(M)=Man(M,R), then (T(E,m,M),+) isa
F (M )-module.
We know that a Lie algebroid is a vector bundle
(F,v,N)e |B”| so that there exists

(p.Id)e B ((F,v,N),(IN,7,.N))
and also an operation

T(F,v,N)xI'(F,v,N) —Hr
(u,v) >

T(F,v,N)
[w.v],

with the following properties:
L4, . the equality holds good

[, f -], = f[uv], +T(p.1dy ) (u) f-v

forall u,vel'(F,v,N) and feF(N),

LA, . the 4-tuple (F(F,V,N),+,~,[,]F) is a Lie
F(N) -algebra,

L4, . the Mod -morphism F( p,1d N) is a Liedlg
-morphism of (F(F,V,N),+,~, ,]F) source and
(F(TN,TN,N),+,~,[,]TN target.

Let ((F,V,N),[,]F (p.1d, )) be a Lie algebroid.

Locally, for any «,f eﬁ, we set [ta,tﬂJ =1t

a/? v
We easily obtain that L), =-L,, forany a,fB,y€l,p.

o>
The real local functions L ;,a,f,y €l,p are called
the structure functions.

We assume that (F,v,N) is a vector bundle with
type fibre the real vector space (R”,+,-) and structure
group a Lie subgroup of (GL p,R),- . We denote
(xi,z“) the canonical local coordinates on (F,v,N),
where iel,n and ael, p.

Consider (xi,z“)a(xi',z“') a change of coordi-
nates on (F,v,N). Then the coordinates z“ change to

a'

z according to the rule:

= AZ'Z“ (2.1)
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If z%, el (F,v,N) is arbitrary, then

[rpa )z 0) 7)) =( i L)) e

forany feF(N) and xeN. _
The coefficients p!, change to p,. according to the

rule:
i a iaxi,
ph=ALpL 23)
Ox
where JA“ =A% -
The following equahtles hold good:
;0 : 0
()=t 2 oo er () 24
ox ox
and
oy  ops
Ly Pl =P =Ph o 2.5)

3. Interior Differential Systems

Let ((F,V,N),[,]F ,(p,[dN)) be a Lie algebroid.
Definition 3.1 Any vector subbundle (E,n,M ) of
the vector bundle (F,v,N) will be called interior dif-
ferential system (IDS) of the Lie algebroid
((Fv.N) L, -(p.1d, ).
Remark 3.1 If (E,n,N) is an IDS of the Lie alge-
broid ((F’V’N)’L’]F ,(p,IdN)) then we obtain a vector
subbundle (E O n’, N ) of the dual vector bundle

(I;,;,Nj so that
T(E%,n°,N)
:{Q EF(I;,;,NJ:Q(S):QVS eF(E,n,N)}.

The vector subbundle (E°,n°, N ) will be called the
annihilator vector subbundle of the IDS (E,n,M) .

Proposition 3.1 If (E,n,N) is an IDS of the Lie al-
gebroid ((F,V,N),[,]F,(p,IdN)) so that F(E T, N
<Sp"‘»S

r

), then it exists @, ... ®peF(Fv ]

linearly independent so that
r(E°n,N)= @’“,---,@?

Definition 3.2 The IDS (E,n,N) of the Lie alge-
broid ((F,v,N).[.],.(p.1dy)) will be called involut-
iveif [S,T], eT(E,n,N), forany S,Tel(E,xN).

Proposition 3.2 If (E,n,N) is an IDS of the Lie al-
gebroid ((F,V,N),[,]F,(p,ld,v)) and {Sl,---,S,,}, is
a base of the F(N) -submodule (F(E,n,N),+,-),
then (E, T, N) is involutive if and only if o

[Sa,Sb]F € F(E,n,N), forany abel,r.
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4. Exterior Differential Calculus

Let ((F,V,N),[,]F ,(p,IdN)) be a Lie algebroid. We
denote A’(F,v,N) the set of differential forms of de-
gree q.1f A(F,v,N)=@® A’(F,v,N), then we obtain
the exterior differential aldebra (A(F VN 4,0 /\) )

Definition 4.1 For any zeI'(F,v,N) the applica-
tion

A(F.v,N) —5— A(F.,v.N),
defined by
L(N)-[M(pid)2]r)

forany feF(N) and

Lo(z,wz,)=[T(p1dy)2) (22,

_Zw(zl,...,[zjzl_]F’...’Zq),

i=1

for any weA’(F,v,N) and z,--,z, eT(F,v,N),is
called the covariant Lie derivative with respect to the
section z .

Theorem 4.1 If ze[(F,v,N), weA’(F,v,N)
and @e N (F,v,N), then

L(on0)=LonrO0+onL0. 4.1)

Definition 4.2 If ze['(F,v,N), then the application

A(F,v,N) —5
we A (Fv.N)

A(F.v.N)
iwe AN (F,v,N)

defined by i, (f)=0,forany feF(N) and
iza)<zz,---,zq):a)(z,ZQ,---,Zq),

for any z,,---,z, €e[(F,v,N), is called the interior
product associated to the section z.

Theorem 4.2 If zeDl(F,v,N), then for any
we A (F,V,N) and 0e Ar(F,v,N) we obtain the
equality

i(0n)=ior0+(-1) onrib. 4.2)

Theorem 4.3 For any z,veF(F,v,N) we obtain
L ooi —i oLl =i . 4.3)
v o'z z z [V"]F

Theorem 4.4 The application

AY(Fv,N) —2 A™(F,v,N)
) > d"w

defined by
d"f(2)=L.(f),
forany zel'(F,v,N) and
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dFa)(zo,zl,~~-,zq):
2(—l)i [F(p,IdN)zl}(a)(zo,zl,"-,ﬁi,'--,zq))
+Z(_1)i+/‘ CO([Z,-’Z]-]Fszovzl""’éi"'"éj"“’zq)

i<j
Jor any zy,z,-,z, eF(F,V,N), is unique having the
following property:

L =d"oi,—i od" ,Nzel'(F,v,N). 4.4)

This application is called the exterior differentiation
operator of the exterior differential algebra of the Lie
algebroid ((F,V,N),[,]F,(p,IdN)).

Theorem 4.5 The exterior differentiation operator
d" given by the previous theorem has the following
properties:

1) For any weA’(F,v,N) and 0eA (F,v,N)
we obtain

d"(on0)=d"on0+(-1)" ond"0. (4.5)
2) Forany zeD(F,v,N) we obtain
Lod =d"oL. (4.6)

3) d"od" =0.

Theorem 4.6 (of Maurer-Cartan type) If
((F,V,N),[,]F ,(p,IdN )) is a Lie algebroid and d”r
is the exterior differentiation operator of the exterior
differential F(N) -algebra (A(F,V,N),+,~,/\) , then
we obtain the structure equations of Maurer-Cartan type

d"t = —%L‘;ﬂ A ,aelp (MC))

and

dix' = pitiel,n. MG,)

where {t“,a € l,p} is the coframe of the vector bundle
(F,v,N).

These equations will be called the structure equations
of Maurer-Cartan type associated to the Lie algebroid

(£, N).L]o(p:0dy ).
Proof- Let a €1, p be arbitrary. Since

Fa a
d’t (tﬂ,t7)=—Lﬂy, VB, yel,p
it results that

drt” =—ﬂZL‘;ytﬁ/\t’. 1))
<y

Since_foﬂ:_yﬂa and P At' =—t' AP, for any
B,7 €1, p, it results that

a l a I
ZLﬂytﬂ/\ﬂ =5Lﬂ7tﬁ/\t’,ael,p. 2)
B<y
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Using the equalities (1) and (2) it results the structure
equation (MC,)).
Let iel,n be arbitrary. Since

dei(ta):p;,VaeG

it results the structure equation (M(C,). g.e.d.
Remark 4.1 In the particular case of the standard Lie
algebroid ((TN, >N )]y » (M 1y )) we obtain

da™ izdx',iel,n, MG,

where {dxi,i el,_n} is the coframe of the vector bundle
(TN Ty N ) .

AS dTN OdTN
we obtain

=0. and L, =0, for all i,j,keln

dF(dxi):Oz—%Li,kdxj Adxtjieln.  (MC)

These equations are the structure equations of
Maurer-Cartan type associated to the standard Lie al-
gebroid ((TN, TN,N),[,]TN (Id,y,1d, ))

Theorem 4.7 (of Frobenius type) Let (E,n,N) be an
IDS of the Lie algebroid ((F,V,N),[,]F,(p,IdN)). If
O ... 0" isabase ofF(N)—submodule
F(EO,nO,N ,+,~), then the IDS (E,n,N) is involut-
ive if and only if it exists Q) € A (F,V,N) ,
a,fer+l,p sothat

d'e* = Y QA0 aer+l,p.

Per+l,p

Proof. Let {S,---,S,} is a base of the
F(N)-submodule (T'(E,m,N),+,

Let {S,,.-+.8,} ST(F.v,N) so that

S8, 8 -8 1 is a base of the F(N)-module
T(F,v,N),+:).

ISR
5,0 } (;7 li Nj so that
|

——|

p

Let {G)1
{®1 .0, ®r+1 ., @F
ule ( F v, N J

For any a,bel,r and a,fer+1,p we have the
equalities:

is a base of the F(N)-mod-

@' (5,)=57 ©°(S,)=0,
0°(S,)=0, ©*(S,)=0;.

We remark that the set of the 2-forms
{0100 70’07 10",0" 10",
a.belrna,fer+lp)

is a base of the F'(N)-module (AZ(F,V,N),+,-).

Therefore, we have
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d'O =3 410" AO° + ZB“ (CIUNCY
b<c
+y Cp 07 nE,
B<y

(M

where, 4;,B;, and Cj , a,b,c el,_r,
a,p,yer+l,p are real local functions so that
Ay =45 and Cp =-C,.

Using the formula

d"e” (Sh’Sc):r(pvldN)(Sb)((aa (Sc)) @)
—F(p,IdN)(SC)((B“ (Sb))_e)a ([Sb’Sc]F)
we obtain that
45 =-0%([5,.5.],), (3)

for any b,cel,_r and aer+Lp.
We admit that (E,n,N) is an involutive /DS of the

Lie algebroid ((F,V,N),[,]F,(p,ld,v)).As
[S,.S.], €eT(£.,m,N), for any b,cel,r, it results that
@“([Sb,SC]F):O forany b,cel,r and aer+l,p.

Therefore, for any b,ce I,_r and aer+l,p, we
obtain 4, =0 and

d"0" =) B;O" AO’ +%ng®ﬂ ~O’
by
a 1 a
= (B,WG)[’ +Ecﬂ,®ﬂ j INCY

1
As Q7 =B0" +EC;’7®ﬁ e\ (F,v,N), for any

B,y er+1, p itresults the first implication.
Conversely, we admit that it exists Q% e A'(F,v,N),
a,fer+l,p sothat
d"e“= 3% QA0 4)

Per+l,p

foranya e r+1, p.

Using the affirmations (1), (2) and (4) we obtain that
Ay =0,forany b,cel,r and aer+lp.

Using the affirmation (3), we obtain
®“<[S,,,S | )—0 forany b,cel,r and aer+l,p.
Therefore, we have [S,,S,], e[ (E,n,N), for any
bcel,r. Using the Proposition 3.2, we obtain the sec-
ond implication. g.e.d.

5. Exterior Differential Systems
Let ((F,v, N[, (. 1dy )) be a Lie algebroid.

Definition 5.1 Any ideal (/,+,") of the exterior dif-
ferential algebra of the Lie algebroid
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((F R ANN - p.1d, )) closed under differentiation
operator d’ , namely d"Ic 1, is called differential
ideal of the Lie algebroid ((F,V, N),[,]F ,(p, Id, )) .

Definition 5.2 Let (/,+,-) be a differential ideal of
the Lie algebroid ((F,V,N),[,]F,(p,ldN)). If it exists
anIDS (E,mn,N) so thatforall ke N" and
welNA*(F,v,N) wehave w(u,-,u,)=0, for any
-, u, €T(E,m,N), then we will say that (7,+,-) is
an exterior differential system (EDS) of the Lie algebroid
(F.v.N).[], . (pu1dy).

Theorem 5.1 (of Cartan type) The IDS (E,n,N) of
the Lie algebroid ((F,V,N),[,]F,(p,IdN )) is involut-
ive, if and only if the ideal generated by the
F(N) -submodule (F(EO,RO,N),+,‘3 is an EDS of the
Lie algebroid ((F,v, N),[,]F ,(p, Id, ))

Proof. Let (E,n,N) be an involutive IDS of the Lie
algebroid ((F,V,N),[,]F ,(p,IdN)). Let {@”1,...,®p}

be a base of the F'(N) -submodule (F(EO,TIO,N),-l-,') )
We know that

(r(e.)
= U {Qa /\@a;{QM’...,QF} c A (F,V,N)} .

geN

Let ge N and {QM,---,Qp} cA’(F,v,N) be ar-
bitrary.
Using the Theorems 4.5 and 4.7 we obtain

d"(Q, n0")=d"Q, A0 +(-1)' Q, Ad" "
~(a"Q, +(-1)" 0, 0L ) 0",

As d"Q, +(-1)" Q, AQ e AT (F,v,N) it te-
sults that

" (@, A@“)GI(F(EO,HO,N)).
Therefore, dFI(F(EO,no,N) cl F(EO,KO,N)).
Conversely, let (E,n,N) be an IDS of the Lie alge-
broid ((F,V,N),[,]F,(p,ldN)) so that the F(N)
-submodule (1(F(E°,n°,N)),+,~) is an EDS of the Lie

algebroid ((F,v, N[, - (p.1dy )) )
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Let {©,:-,0"} be a base of the F(N)-submod-
ule (T(E%7",N),+:).

As d"I(0(E%x",N)) < 1(D(E%x",N)) it results
that it exists Q% € A'(F,v,N), a,fer+Lp sothat

d"0" = Y 50 el(r(E 2, N)).

Per+l,p

Using the Theorem 4.7 there results that (E,m,N) is
an involutive IDS. g.e.d.
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