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Abstract 
An identification problem is considered as inaccurate measurements of dynamics on 
a time interval are given. The model has the form of ordinary differential equations 
which are linear with respect to unknown parameters. A new approach is presented 
to solve the identification problem in the framework of the optimal control theory. A 
numerical algorithm based on the dynamic programming method is suggested to 
identify the unknown parameters. Results of simulations are exposed.  
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1. Introduction 

Mathematical models described by ordinary differential equations are considered. The 
equations are linear with respect to unknown constant parameters. Inaccurate mea-
surements of the basic trajectory of the model are given with known restrictions on 
admissible small errors. 

The history of study of identification problems is rich and wide. See, for example, [1] 
[2]. Nevertheless, the problems stay to be actual. 

In the paper a new approach is suggested to solve them. The identification problems 
are reduced to auxiliary optimal control problems where unknown parameters take the 
place of controls. The integral discrepancy cost functionals with a small regularization 
parameter are implemented. It is obtained that applications of dynamic programming 
to the optimal control problems provide approximations of the solution of the identifi-
cation problem. 

See [3] [4] to compare different close approaches to the considered problems. 
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2. Statement 

We consider a mathematical model of the form 

* 0
( ) ( ) ( , ( )) , [ , ],dx t F t G t x t k t t T

dt
= + ∈                   (1) 

where nx R∈  is the state vector, *
mk R∈ , m n≥  is the vector of unknown para- 

meters satisfying the restrictions  

*| | , = 1, , .iK k K i m≤ ≤                         (2) 

Let the symbol || ||k  denote the Euclidean norm of the vector 1= ( , , )mk k k . 
It is assumed that a measurement 0( ) : [ , ] ny t T Rδ ⋅ →  of a realized (basic) solution 

*( ), [0, ]x t t T∈  of Equation (1) is known, and  

*|| ( ) ( ) || , [0, ].y t x t t Tδ− ≤ ∀ ∈                      (3) 

We consider the problem assuming that the elements ( , ), = 1, , , = 1, , ,ijg t x i n j m   
of the n m×  matrix ( , )G t x  are twice continuously differentiable functions in 1nR + . 
The coordinates ( ), = 1, , ,iy i nδ ⋅   of the measurement ( )yδ ⋅  are twice continuously 
differentiable functions in [0, ]T , too. The coordinates ( ), = 1, ,if t i n  of the vector- 
function ( )F t  are continuous functions on the interval [0, ]T . 

We assume also that the following conditions are satisfied 
.1A  There exists such constants > 0Y  and 0 > 0δ  that for all 0δ δ≤  the 

inequalities 
2

02
( ) ( )| ( ) | , , , = 1, , , [ , ]i i

i
dy t d y ty t Y Y Y i n t t T

dt dt

δ δ
δ ≤ ≤ ≤ ∀ ∈      (4) 

are true. 
.2A  There exist such constant 02r δ>  ( 0δ  from .1A ) and such compact set 
[0, ] nT RΩ∈ ×  that for any 00 < δ δ≤  the following conditions are held 

{( , ) : || ( ) || , [0, ]}t y y y t r t Tδ− ≤ ∈ ∈Ω ; 

( , ) > 0, || ||> 0, ( , )s Q t x s as s t xΤ ∈Ω . 

Here ( , ) = ( , ) ( , ) = ( ( , )), = 1, , , = 1, ,ijQ t x G t x G t x q t x i n j mΤ
  . 

The identification problem is to create parameters kδ  such, that  

* *
[0, ]

|| ( ) ( ) || = || ( ) ( ) || 0, 0,maxC
t T

x x x t x t asδ δ δ
∈

⋅ − ⋅ − → →            (5) 

where ( )xδ ⋅  is the solution of Equation (1), as = .k kδ  

3. Solution 
3.1. An Auxiliary Optimal Control Problem 

Let us introduce the following auxiliarly optimal control problem for the system  

0
( ) = ( ) ( , ( )) , [ , ],dx t F t G t x t u t t T

dt
+ ∈                  (6) 

where mu R∈  is a control papameter satisfying the restrictions  
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= { :| | , = 1, , }m
iu U u R u K i m∈ ∈ ≤                   (7) 

for a large constant > 0K . 
Admissible controls are all measurable functions ( )u ⋅ . For any initial state 

0 0( , ) [0, ] nt x T R∈ × , the goal of the optimal control problem is to reach the state ( , ( ))T y T  
and minimize the integtal discrepancy cost functional  

0 0
0

2 2
2

,
|| ( ) ( ) ||( ( )) = [ || ( ) || ] .

2 2

T

t x
t

x t y tI u u t dtα−
⋅ − +∫              (8) 

Here ( ) = ( )y t y tδ  is the given measurment; 2α  is a small regularization parameter, 

0 0( )) = ( ; , , ( ))x t x t t x u ⋅  is the trajectoty of the system (6), (7) generated under an 
admissible control ( )u ⋅  out the initial point 0x . The sign minus in the integrand 
allows to get solutions which are stable to perturbations of the input data. 

N o t e 1. A solution , ( )uδ α ⋅  of the optimal control problem (6), (7), (8) allows us to 
construct the averaging value ( , )k δ α   

0

,

0

1( , ) = ( )
T

t

k u t dt
T t

δ αδ α
− ∫                        (9) 

which can be considered as an approximstion of the solution of the identification 
problem (1), (2). 

3.2. Necessary Optimality Conditions: The Hamiltonian 

Recall necessary optimality conditions to problem (6), (7), (8) in terms of the hami- 
ltonian system [5] [6]. 

It is known that the Hamiltonian ( , , )H t x sα  to problem (6), (7), (8) has the form  
2 2

2 || ( ) ||( , , ) = [ ( , ) || || ] ( ),min 2 2u U

x y tH t x s s G t x u u s F tα αΤ Τ

∈

−
+ − +  

where ns R∈  is an ajoint variable, the symbol Τ  denotes the transpose operation. 
It is not difficult to get  

2 2
, , 2 || ( ) ||( , , ) = [ ( , ) || || ] ( ).

2 2
x y tH t x s s G t x u u s F tα α δ α δαΤ Τ−

+ − +  

where , ,= ( ( , , ), = 1, , ) :iu u t x s i mα δ α δ
  

,

, ( , , ) ,
( , , ) = ( , , ), ( , , ) [ , ],

, ( , , ) .

i

i i i

i

K if r t x s K
u t x s r t x s if r t x s K K

K if r t x s K

α

α δ α α

α

 − ≤ −


∈ −
 ≥

 

Here the vector-column ( , , ) = ( ( , , ), = 1, , )ir t x s r t x s i mα α
  has the form  

2
1( , , ) = ( , ) .r t x s G t x sα

α
Τ−                      (10) 

3.3. The Hamiltonian System 

Necessary optimality conditions can be expressed in the hamiltonian form. An optimal 
trajectory 0 ( )x t  generating by an optimal admissible control 0 ( )u t  in problem (6), 
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(7), (8) have to satisfy the hamiltonian system of differential inclusions 

0( , , ), ( , , ), = 1, , , [ , ],i i
s xi i

dx dsH t x s H t x s i n t t T
dt dt

α α∈∂ ∈−∂ ∈        (11) 

and the boundary conditions  
( , ) = ( ), ( , ) = , = 1, , .i i i ix T y T s T i nξ ξ ξ                   (12) 

where symbols ( , , ), ( , , )
i is xH t x s H t x sα α∂ ∂  denote Clarke’s subdifferentials [7] and 

0 ( ) = ( , )x t x t ξ , 0 ,( ) = ( , ( , ), ( , ))u t u t x t s tα δ ξ ξ . 
Parameters iξ  belong to the intervals    = [ , ]i i min i maxS s sδ  where values  i mins  and 

 i maxs  are choosen from the conditions  
( ) ( )| | , 1,..., .i idx T dy T i n

dt dt
δ− ≤ =                     (13) 

We introduce the last important assumption. 
.3A  There exists a constant 00 ( )S S δ< =  such that restrictions on controls in 

problem (6), (7), (8) satisfy the relations  

( , , ) [ , ], 1, , ,ir t x s K K i mα ∈ − =                     (14) 
2 2( , ) , | | 2 , (0,1), 1, , ,jt x s S j nα α∀ ∈Ω ∀ ≤ ∈ =   

where ( , , ), 1, ,ir t x s i mα =   are from (10). 
N o t e 2. Using definition (10) one can check that constant K, satisfying assumtion 
.3A , K  can be taken as 

02 ( )K GQ Y F δ= + + , 

where 



max{ ( ) : [0, ], 1,..., },

max{| ( , ) |: ( , ) , 1,..., , 1,..., } ,

max{| ( , ) |: ( , ) , 1,..., , 1,..., }.

i

ij

ij

F F t t T i n

G g t x t x i n j m

Q q t x t x i n j m

= ∈ =

= ∈Ω = =

= ∈Ω = =

 

Here ( , ), 1,..., , 1,...,ijg t x i n j m= =  are components of matrix ( , )G t x  and  
 ( , ), 1,..., , 1,...,ijq t x i n j m= =  are components of matrix 1( , )Q t x− . 

If ( , )t x ∈Ω  and 2 2| | 2 , (0,1), 1, ,js S j nα α≤ ∈ =   the Hamiltonian has the 
simple form  

2

2
1 || ( ) ||( , , ) = [ ( , ) ( , ) ] ( )

22
x y tH t x s s G t x G t x s s F tα

α
Τ Τ Τ−

− − +  

and the differential inclusions (11) transform into the ODEs.  

0
( , , ) ( , , )= , = , = 1, , , [ , ],i i

i i

dx dsH t x s H t x s i n t t T
dt s dt x

α α∂ ∂
− ∈

∂ ∂
      (15) 

Let us introduce the discrepancies ( ) = ( ) ( )z t x t y t− , and obtain from (15) the 
following equations 

2

2

1( ) = ( ) ( , ( )) ( ) ( ),

( , ( )1( ) = ( ) ( )( ) ( ), = 1, , ,ij
i i

i

z t F t Q t x t s t y t

q t x t
s t z t s t s t i n

x

α

α
Τ

− −

∂
+

∂






              (16) 
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and the boundary conditions  

( ) = 0, ( ) = , = 1, , ,i i iz T s T i nξ                       (17) 

where ξ  saisfy (13). 

3.4. Main Result: Dynamic Programming 

Using skims of proof for similar results in papers [8] [9] [10] we have provided the 
following assertion. 

Theorem 1 Let assumptions .1 .3A A−  be satisfied and the concordance of para- 
meters ,α δ : 2

0, 0
/ = 0lim

δ α
δ α

→ →
 takes place, then solutions of problem (11), (12), (13) 

, ,( , ), ( , )x t s tδ α δ αξ ξ  are extendable and unique on [0, ]T  for any iξ  saisfying (13) 
and 

,
*

0, 0
|| ( , ) ( ) || = 0.lim Cx t x tδ α

δ α
ξ

→ →
−                       (18) 

It follows from theorem 1, that the average values ( , )k δ α  (9) obtained with the 
help of dynamic programmig satisfy the desired relation  

*( , ) , 0, 0.k k asδ α δ α→ → →                     (19) 

4. Numerical Example 

A series of numerical experiments, realizing suggested method, has been carried out. As 
an example a simple mechanical model has been taken into consideration. 

This simplified model describes a vertical rocket launch after engines depletion. The 
dynamics are described as  

( ) = ( ) , [0, 4],x t kx t g t− − ∈                         (20) 

where ( )x ⋅  is a vertical coordinate of the rocket, k  is an unknown windage 
coefficient and g  =9.8 is a free fall acceleration. 

A function ( )y tδ  is known and satisfies assumption .1A . This function was 
obtained by random perturbing of the basic solution *( )x t  for *k  =0.3. 

The suggested method is applied to solve the identification problem for *k  = 0.3. 
We introduce new variables 1 2 1( ) = ( ), ( ) = ( ) = ( )x t x t x t x t x t   and transform Equation 

(20) into  

1 2 1 2 2 1( ) = ( ) ( ), ( ) = ( ) ( ) , [0, 4],x t x t u t x t u t x t g t− − ∈              (21) 

where 2 ( ) ( )u t k t=  and 1( )u t  is a fictitious control, which was introduced in order to 
get m n×  matrix ( , ( ))G t x t  in (1) satisfying dimentions restriction m n≥ . 

We put 2 1( ) = ( )y t y t . 
The corresponding hamiltonian system (16) for problem (21),(8) has the form  

2 2 2 2
1 1 2 2 2 1

2 2 2 2
1 2 1 1 1 2 1 2 2 2

( ) = ( ) ( ) / , ( ) = ( ) ( ) / ,

( ) = ( ) ( ) / ( ( ) ( )), ( ) = ( ) ( ) / ( ( ) ( ))

x t s t x t x t s t x t g

s t s t x t x t y t s t s t x t x t y t

α α

α α

− − −

+ − + −

 

 

  (22) 

with initial conditions  
2 2

1 1 2 2 1 2 2 1( ) = ( ), ( ) = ( ), ( ) = 0, ( ) = ( ( ) ) / ( ).x T y T x T y T s T s T y T g y Tα− +      (23) 

The solutions were obtained numerically. On the Figure 1 and Figure 2 the graphs  
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Figure 1. k(t) graph for δ = 5; k(α, δ) = 0.375. 

 

 
Figure 2. k(t) graph for δ = 2; k(α, δ) = 0.325. 

 
of functions 2 ( ) ( )u t k t=  are exposed. The graphs illustrate convergence of the 
suggested method. The calculated corresponding average values (9) are exposed as well. 
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