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Abstract

This paper is devoted to the long time behavior of the solution to the initial boun-
dary value problems for a class of the Kirchhoff wave equations with nonlinear

strongly damped terms: u, —&,Au, +afu " u + A ul U —¢(||VU||2 )Au = f (). Fir-

stly, in order to prove the smoothing effect of the solution, we make efficient use of
the analytic property of the semigroup generated by the principal operator of the eq-
uation in the phase space. Then we obtain the regularity of the global attractor and
construct the approximate inertial manifold of the equation. Finally, we prove that
arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood
of the approximate inertial manifold after large time.
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1. Introduction

It is well known that we are studying the long time behavior of the infinite dimensional
dynamical systems of the nonlinear partial differential equations, and the concept of the
inertial manifold plays an important role in this field. In 1985, G. Foias, G. R. Sell and
R. Teman [1] first put forward the concept of the inertial manifold; it is an invariant fi-
nite dimensional Lipschitz manifold; it is exponentially attracting trajectory and con-
tains the global attractor. But to ensure that existing conditions are very harsh for iner-
tial manifolds (For instance, spectral interval condition), the existence of a large num-

ber of important partial differential equations is still not solved. Therefore, people na-
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turally think of using an approximate, smooth and easy to solve the manifolds to ap-
proximate the global attractor and inertial manifolds, which is the approximate inertial
manifold.

Approximate inertial manifolds are finite dimensional smooth manifolds, and each
solution of the equation is in a finite time to its narrow field. In particular, the global
attractor is also included in its neighbourhood. The existence of approximate inertial
manifolds of a large number of dissipative partial differential equations has been stu-
died [2]-[7].

In this paper, we are concerned a class of the Kirchhoff wave equations with nonli-

near strongly damped terms referred to as follows:

Uy —&,AU, +a|u, " U, + Blu T u —¢(||Vu||2)Au =f(x) inQxR", (1.1)
u(x,0)=uy(x);u, (x,0)=u,(x), xe, (1.2)
u(x,t)|aQ =O,Au(x,t)|aQ =0, xeQ. (1.3)

where Q is a bounded domain in R" with smooth boundary 0Q, and ¢g,a,f are
positive constants, and the assumptions on ¢(||Vu||2) will be specified later.

In [8], G. Kirchhoff firstly proposed the so called Kirchhoff string model in the study
nonlinear vibration of an elastic string. Kirchhoff type wave equations have been stu-
died by many scholars (see [9] [10] [11]). In reference [12], the long time behavior of
solutions for the initial value problems (1.1) - (1.3), the existence of global attractor
corresponding to the semigroup operator S(t) and the dimension estimation of glo-
bal attractor, have been researched.

In [13], Dai Zhengde, Guo Boling, Lin Guoguang studied the fractal structure of at-
tractor for the generalized Kuramoto-Sivashinsky equations:

U+ QU + Uy + Uy + T (U), +0(u) =g(u)+h(x),t>0,xeR, (1.4)
u(x,0)=uq(x), (1.5)
u(x-D,t)=u(x+D,t),t>0,xeR. (1.6)

where ¢>0,y>0,D>0.
In [14], Li Yongsheng, Zhang Weiguo studied regularity and approximate of the at-

tractor for the strongly damped wave equation:

Uy — Uy — Uy +h(u)u + f(u)=g(x),t>0,xe(0,1), (1.7)
u(0,t)=u(Lt)=0,t>0, (1.8)
u(x,0)=uy(x),u, (x,0)=u,(x),xe(0,1). (1.9)

where «,f are positive constants.
Luo Hong, Pu Zhilin and Chen Guanggan [15] studied regularity of the attractor and

approximate inertial manifold for strongly damped nonlinear wave equation:
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Uy — Uy —o(u, ), + f (u)=g(x),xe(0,1),t [0,0), (1.10)
u(0)=uy,u, (0)=u,, (1.11)
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u(0,t)=u(Lt)=0. (1.12)

where « isa positive constant.
Wang Lei, Dang Jinbao and Lin Guoguang [16] also studied the approximate inertial
manifolds of the fractional nonlinear Schrédinger equation:

iut+(—A)“u+ﬂ|u|pu+i5u= f(x),xeQt>0, (1.13)
u(x,0)=uy(x),xeQ, (1.14)
u(x+Le,t)=u(xt),xeQt>0. (1.15)

where Q=(0, L)n . =(0,---,0,1,0,-+-,0),(i=1,2,---,n) is a standard orthogonal base,

i is the imaginary unit. « >2,,B >0,0>0,6>0.
Recently, Sufang Zhang, Jianwen Zhang [17] studied approximate inertial manifold

of strongly damped wave equation:

Uy —AU—Au, —aAu, + f (u)=g(x,t)e QxR", (1.16)
u(x,0)=uy,u,(x,0)=u,xeQ, (1.17)
u(xt)=0,(x,t)e 6QxR". (1.18)

where Q is a bounded domain in R" with smooth boundary 4Q, a >0 isa con-
stant, the function g e L*(Q).

There have many researches on approximate inertial manifolds for nonlinear wave
equations (see [18]-[24]). In order to construct the approximate inertial manifolds for
the initial boundary value problems, in the references [14] to [15], the regularity of the
global attractor is studied, and then the approximate inertial manifold is constructed. In
[18], Tian Lixin, Lin Yurui construct approximate inertial manifolds under spline
wavelet basis in weakly damped forced KdV equation. In infinite-dimensional dynami-
cal systems, Kirchhoff type wave equation is a class of very important equation. How-
ever, the approximate inertial manifold and inertial manifold of the Kirchhoff wave
equation with nonlinear strong damping term are rarely studied. Based on the current
research situation of Kirchhoff wave equations, in this paper, we first study the regular-
ity of the global attractor for a class of the Kirchhoff wave equations with nonlinear
strongly damped terms, and then construct its approximate inertial manifold.

The paper is arranged as follows. In Section 2, we state some assumptions, notations
and the main results are stated. In Section 3, through the estimation of solution smooth-
ness of higher order, then we obtain the regularity of the global attractor. In Section 4,
by constructing a smooth manifold, namely the approximate inertial manifold, we ap-

proximate the global attractor for the problems (1.1) - (1.3).

2. Statement of Some Assumptions, Notations and Main Results
For convenience, we denote the norm and scalar product in L2 (Q) by |||| and ( ) i
f=f(x), L'=L"(Q), H' =H"(Q), Hy =Hg(Q), [|=]lz> I, =] -

Let E=L2 (Q) , where QcR" isabounded domain, where the norm is defined
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as |||| A=-A isan unbounded positive definite self adjoint operator. Let
D(A)=H?(Q)NHg (), From reference [25], A™ is compact, D(A) is dense in
so E =span{o, }:J:l , where Eis space by {@,,®,,-, @, -~} asbase generated.
Aw, = A o, where A , @, arethe eigenvaluesand eigenvectors of A4,
O<A <AL << 4 >, k=1,2,3,---. Then @, consists of a set of standard or-
thogonal basis space E.

We present some assumptions and notations needed in the proof of our results as
follows:

(G,) From reference [12], we set some constants: & >0, >0,y >0,7, >0,K >0,

N

(G,) Let ¢(s)eC*([0,+)),and ¢(0)=0,sup|¢’(s)|<r,, Vse[0,+x).

Theorem 2.1 From reference [12], due to (G,), (G,) hold,

(i) Let f(x)eL?(Q), then for each u, e H*(Q)NH;(Q), u, € L*(Q), the prob-
lems (1.1)-(1.3) exist solution u, ueC, ([0,+oo); D(A)) ;
u, €C, ([0,+%);E)nL*(0,T;H3(Q)), VT >0.

(ii) Let f(X) € Hé(Q) , S(t) is the semigroup operator for the problems (1.1) -
(1.3), then the semigroup S(t) exists a compact global attractor .A;. So we can find a

such that K-2£2>0, glg£¢("Vu”2)£K712 [l_K—de—(K—Zs)tj.
-2

compact connected invariant set B to absorb all the bounded sets on D(A)xE.

3. The Regularity of Global Attractor

In order to obtain the regularity of global attractor, we need to give a higher order uni-
form a priori estimates for the solution.

Let v=u,, then the problem (1.1) can be reduced to the following form:
u, =V, (3.1)

Vi —gAv+al v Blul T u —¢(||Vu||2)Au = f(x). (3.2)

Let

oL Sl o tar o

where F, (u,v)=f(x)-aM" v-gul"u.
Further, we rewrite the problems (1.1) - (1.3):

d_U+AU:F(U),U(0):UO:£u°j. (3.4)
dt u,

From references [26] [27], A isalinear dense closed operator on D(A) x E , which
is a sector operator and has a bounded inverse. A generates an analytic semigroup on
D(A)xE.

Lemma 3.1 From references [14] [15], due to (G,), (G,) hold, let
fel? (Q),u(x,t)aQ =0, then

Each (u,,u;) e D(A)xE, the solution to the problems (1.1) - (1.3) meet the follow-
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ing conditions:

u,u, € C?((0,+); D(A)),u, eC’((0,+%);E),V 8&(0,1). (3.5)

And there exist 7, >0,K, >0 such that the following inequalities are established:
u, (t)"D(A) <Ko [Jug ()| < R, v E= K. (3.6)

where D(A)=H?(Q)nHg(Q), K, isindependent of the initial value U, .

Proof. By the first conclusion (i) of theorem 2.1, when u, € D(A),u, € E, the solu-
tion umeet: UeC, ([0,+oo); D(A)), u eC, ([0,+oo); L2 (Q)),
vT>0,u e L2 (O,T; Hé (Q)) By the second conclusion (ii) of theorem 2.1, there exist
7>0,R, >0, when t>r,

"u"D(A) < R01||U1 " <R,. (3.7)
Meanwhile, Au is uniformly bounded in £, te [0, +oo).

FU =(0,F, (u,v))' =(o, f (x)—oe|v|"’1v—ﬁ|u|‘*’lu)T €C,([0.4+);D(A)XE)  (3.8)

Then F(u,v)eC,([0,T];D(A)xE)—L"(0,T;D(A)xE), p=ﬁ,ae(o,1) .

Based on the reference [27], the analytic properties of the semigroups generated by A
and the Equation (3.4), immediately get V 0 <t; <T, the solution

U()e c’ ([tO,T]' D(A)x E) furthermore, for the non-homogeneous term Fl(u,v)
in the Equation (3.4), F (u,v)e c’ ([t T] D(A)x E) then U(-)e c’ ((tO,T]; D(A)) ,
U, (-),AU(-)eC’((t,,T);D(A)xE),dueto T,t, arearbitrary,
U(-)eC’((0,+%);D(A)), U (-)eC’((0,+x);D(A)xE).

Since U(r)eD(A),U,(r)e D(A)xE, we are now considering 7,U,(7), respec-

tively, as the initial time, initial value. Next, we consider the equation about

v=U=(vv),
p-1 q-1 T
V+AV=F(U), :(0,—a(|v| v) =B u)‘) . (3.9)
then
V, —&AV, —(¢(||Vu||2 )Au)t +a(|v| P v)t +,B(|u|q*1 u)t =0, (3.10)
v(x,7)=u(x,7)e D(A), (3.11)
v (x,7)=uy(x,7)eE, (3.12)
v(xt), =0.Av(xt)  =0xeQt>r. (3.13)
Next, we multiply Vv, +&v with both sides of the equation (3.10) and integrate over
Q to obtain
(Vg V +&v) = ——|| || te— (I V- vdx) gV, || (3.14)
515 d

(~eAV,, v, +ev) = & [V |+ ||Vv|| (3.15)

K2
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(-(e(17lF ) 9

(3.16)
= (_(gﬁ(”Vu"z)Au)I ,vt)+(—(¢5(||Vu||2)Au)t ,gv)
where from the hypothesis (G2),
(_(¢(||w||2 Jau) ,vt)
= 4(IvulF) '[QAuvtdx+%[%¢(||Vu||2)||Vv||2}—%¢(||Vu||2 ) e
- vuff - 24wl + S| So(1vul ol |- 4
(—(¢(||Vu||2)Au)t ,gv)
= o (|Vu[) -(au,v)+ e[Vl ) v (3.18)
2= |vulf - + o6 [V

a ((|v| Pt v)t WV, + gv) =a ((|v| Pt v)t v, ) +ae ((|v| Pt v)t ,v). (3.19)
a ((|V| - v)t v, ) = [V vy dx+ _[Q{(vz )pzlJ w,dx

t

_ -3
= o:J'Q|v|p7:l vlvtdx+aJ'QpTl[(v2) 2 jZWthdx (3.20)
=af M wvdx+a(p-1)[ [v" vvdx

=a pJ.Q|v|p71 vZdx.

ag((|v| Pt v)t ,v) = ag%(_[QM Pt wdx) - agjg|v| P v, dx. (3.21)

1 1
where azf V" wdx < (V7 dx ([ védx )2 = e |V} u ]
By using Gagliardo-Nirenberg’s embedding inequality, Holder’s inequality:
(p-1)n 2p—(p-1)n
2 2

M2 Il

_Glaeluff | v e

VI, Vel < G, [

(3.22)
2 2a¢
Gyl C.b I ¢ o
2 dace das
Similar to the relation (3.20):
ﬁ’((|u|q*1 u)t RV gv) = ﬁqJ'Q|u|‘k1 w,dx + ,qu_[g|u|qfl vidx. (3.23)

By using Holder’s inequality, Young’s inequality and Sobolev’s embedding inequa-
lity:
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i ) O
paf [ wdx < paf Ju" vIw|dx < gaf ul 1[%+%de.

DAL 1ol e < 2] e dx)i (1l o) =29t .
2 Ja t — 2 o ol 2 F1i2(q-1) 7t 4

4(q-1)-n(g-2

_ n(q-2) (a-2)-n(q
ol s = Celaul < fuf

n 4n g Vv, V,
I scatw it s 0B e ),

In reference [12],
_ &, [VV, v,
I W <, (c4,||u||w,||Aunw>[ alud B, ]

So we get:

_ - C
ﬁ((|u|q lu)t WV, +gv)2[ﬁqg—%jj'ﬂ|u|q 1V2dx_¥"Vvt"z
L -
2¢,

, || are bounded by a priori estimates.

p9C.Cs.
From above, we have

®, = ||v I +gjwdx+“"51 [VV* +ae [ V" vidx+— ¢(||w||2)||w||2.

9, =5 [90 el o(10F) [ w2 o[ -Iovf
- g¢(||Vu||2 )I (Au,v)+ g¢(||Vu||2 )||Vv||2 +a p_[Q|v| P vZdx
+ ﬂqgj0|u|q*l Vidx—az] | v, dx + ﬁqJ'Q|u|q*1 w,dx.
Taking x; >0, then

(A |

I’ I I
LR L e o e T Y

&
_07||Vv||2 +5251 ||VV||2 - 4 2

2

BaC;e Bqc K, v,
¢, - L8 oy -y o, - S
_Ké "V"2 Ki&é "VVHZ ki ”VVHZ

2 2(K-2¢)

_ Klagjg v P y2dx —

J- |V|p =l 2dx<(|§2|) ||V||§+pl+1 [(|Q|);J

oMo

+Cyp(Cq,Cy).

At last, we get:

Ctare?y o GG
T”Vn I

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

%%
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r, C

| g2g o _Rf_m&s Comas G K Wy’ (3.34)
2 2 2 2 4 2(K-2¢)

(S lE Soae e o

4 2 2
2. 2.2
Let m—g P g g R Ga'e GAA K K
2 2 2 26, 2 2
m, = gl_r_o_ro_e_lclglg_c okae C, Ky )
2 2 2 2 4 2(K-2¢)

By using Poincaré’s inequality, we get
¥, —x®,; > (A4m —m,) [y [+ (Am, —m,) v - (3.35)
We take proper ¢,¢,,&,,7,,k, 1, ¢, B, such that:

{21r111—m2 >0

Am;—m, >0.

Then
Y, -x®, >-C. (3.36)

From the relation (3.36), we can get

%(Dl(t)+lqcbl(t)£c,t2‘r. (3.37)
By using Gronwall’s inequality, we obtain:
@, (t) <D, (r)e ™) 4 E(1— e )tz (3.38)
K

Taking 7, > 7, such that @, (z)e™(™") <1, then

c1>1(t)sl+£,VtZro. (3.39)
K

where

:—||v [+ ef widx+ 22 ||vV|| vaef V" vdx+ ; ¢(||vU|| )||vV||

_—||v I +gjwdx+8gl |9V + e, |v° 1v2dx+;¢(||Vu|| " (340)

g 2 &5&—C as—g—Cas C
o Bra0 ot e "G ©

Meanwhile, we once again take proper ¢,¢&, 14, , such that:
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1-¢>0
2166 —Cypyas —s—Cyae > 0.
So there are 7, >0, K, >0, which make the following inequalities:

o (t)"D(A) < Ko Jug ()] £ Ko, V t 2 2. (3.41)

where D(A)=H?(Q)nHg(Q), K, isindependent of the initial value U, .
Lemma 3.2 From references [14] [15], due to (G,), (G,) hold, let f (O) =0,
f e D(A)=H?(Q)NH;(Q), then V (uy,u)e D(A)xE, the solution to the prob-

lems (1.1) (1.3) meet the following conditions:

U,u, €C”((0,+0); D(A%)),u, €C”((0,+);D(A)), ¥ 0 (0,1). (3.42)

And there exist 7; >0, K, >0 such that the following inequalities are established:

u (t)||D(A2) <Ky fu, (V)] ) S Ki VE2 7, (3.43)

||D(A2)

Proof. Take proper 7, such that V0<t, <T, U(t,)e D(A), we are now consider-
ing the Equation (3.9), assume (G,), (G,) hold, f eD(A), u,u, eC’ ([tO,T]; D(A)),
U, € Ce([to,T]; E) , the nonlinear term F (U (t))t ecC’ ([tO,T]; D(A)x E). Based on
the reference [27], the solution to the Equation (3.9):

V(). (),AV()ecC’ ([tO,T]; D(A)x E). From (3.4), we get

U()e c? ([tO,T]; D(A2 )) ,dueto T,t, arearbitrary, U(-)e c? ((0,+oo); D(Az)) ,
U(), e c’ ((O,+oo); D(A)) , and then we can get u,u, € C’ ((0 +00); D(A2 )) ,

u, €C?((0,+);D(A)), VOe(0,1).

Similar to lemma (3.1), we are now considering 7,,U, (7, ), respectively, as the ini-
tial time, initial value. Next, and once again, we consider the Equations (3.9) - (3.13),
multiplying —Av, —¢Av with both sides of the equation (3.10) and integrating over Q

to obtain
(Vig, —AV, —AV) = ||Vvt || (jQVv : Vvtdx) -&|vy, ||2 . (3.44)

(~eutv = — ) = 2 [+ S v (3.45)

(-({fwulFJav) v, o)
_ (—(¢(|IVUI|2 )A”)t ,—Avt)+(—(¢(||Vu||2 ) A“)t ,_SAV)

where from the hypothesis (G2),

(—(;/5(||Vu||2)Au)l ,—Avt)
~((17ulF)) aw v )+ 52 #{1wl Yol |-2{o(IvulF)) vl

I" I'
> = Saulf - Sav [ +Z 2 o{ 1w Yol |- 2 vl

(3.46)
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2

(_(¢(||w|| Jau) ,—gAv)

_ (¢(||w||2 ))t (Au,28v) + g [vulf ) Jav

50 auff B v o7

Similar to lemma 3.1

a((|v|p’lv)t AV, —gAv)
= og((|v|p_lv)t ,—Av, )+o¢((|v|p_lv)t ,—gAv)
=—ap[ V| "y Avdx—a pgjﬂ|v|p7l v, Avdx
,B((|u|‘H u)t ,—AV, —gAv)
= /,’((|u|q'1 u)t ,—Avt)+ﬁ((|u|q_1u)t ,—gAv)

= _ﬁqj'ﬂ|u|qfl VAV, dx —,Bq.9.|'Q|u|q*1 VAVdX.

(3.47)

(3.48)

By using Holder’s inequality, Young’s inequality and Sobolev’s embedding inequality:

a pJ'Q|v|p’l v, Av,dx

1 1
<a p(j Vi |Avt|dx)E (I |av v, [ dx)E

pj VP |Av, | dx+ 2P _[|Av||v| dx

RN T R

ap - ap
= v e+ = e -

ap -
R ]

ap
<2Re (. )l * v
2 2
B,
8 4
p
P v

ap n ap
< Calll vl + v

a|vu[

<G (Coas, p)+ ZP v

ap| V" vAvdx

_nlad’
8

aplav &Vl
2

+C,(Cpa, p.ry)+

+C,(Cy,a,,,p)
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Through similar methods above

a pej V" " v,Avdx

ape ape ape
<P (] o+ ol 2B ol + B
I I[AV Vv §
SM C,(Cs.a,p,&.1y) ||A || 81” t" +Cq(Cqrax,6,6,,p)

,qu' |u|q71vAv dx
<P, i, ool + o+ 2 ], o+
B 4auf 1, (€, .00+ 20+ 1L ”2+c12(cmﬂqro>
qej |u[*" vavdx

<29 (ol ol Ll + 22 (], + 22

r (Vv
S%HAUMZ+cls(clg./a’,q,g)+/}‘2*‘9||Av||2+ I, o)
From above, we have

||th|| ref Vuwy, dx+g€1 Javff += ¢(||vU|| v (3.49)

, = | o + (Ul Jpuavax——g(|vuf’) -JavE
+ o[Vl ) (au,av)+ o |Vl )av]” - pas], Jul™ vavdx (3.50)

= Baf u[" vavdx —a p[ V" viAvdx—ape | [v* v Avdx.

Taking x, >0, then

S L R T R T L

2(K-2¢)
At last, we get:
¥, 5,0, >(gl_r_°_ﬂ_“p]||m|| [ ﬁ+ﬁ+ﬁj||w||2
2 2 4 2 2
r, e poe 3, aps kK& K, 2
4| gl —0 & _PAE T -2 AT (3.51)
Y2 2 2 8 4 2 2(K-2¢)

(24528 pwvf -

I &, K K,&
Let nl—el—g—%—“zp R
n3:gzgl_r_o_l})_g_&_si_apg_’(‘zglg_ szl

2 2 2 8 4 2 2(K-2¢)’

%%
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o= fo Kt
4 2
By using Poincaré’s inequality, we get
¥, —,®, 2 (40 —n,) VY, || (4n,-n,)|M} -c. (3.52)

We take proper &, ¢, 7, k,, &, Iy, a,,such that:

An—-n, >0
An,—n, 20.
Then
Y, -x,®, >2-C. (3.53)

From the relation (3.53), we can get

%q>2(t)+;<2q>2(t)sc,tzfo. (3.54)

By using Gronwall’s inequality, we obtain:

D, (1) <D, (z,)e ) +£(1— e ) t2 1, (3.55)
K.

2

Taking T, > 7, such that @, (T,)e 2™ <1, then

®z(t)£1+£, VT, (3.56)
K.

2

where
:_||th|| +ef wwwy, dx+ggl Javff += ¢(||vU|| )||Av||
2(‘T||w||z+%||m||z (357)

(o)
2

(Lee—¢)

c
[l + v’ s

Meanwhile, we once again take proper &, &, such that:
1-¢>0
Aee—&e>0.
So there are T, >0,R, >0, which make the following inequalities:
1
A?u, (1)

|Au(t)| <R, <R, V2T, (3.58)

where R, isindependent of the initial value U,.
Similar to above discussions, there are T, >T,, R, >0, which make the following

inequalities:

3
A?u, (t)

<R, [ Au ()| <R, V12T, (3.59)

where R, isindependent of the initial value U,.

Using the original Equation (1.1), we obtain
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1

A2y

A 1~
&u +¢[ Ju (3:60)

= f(x)-u, —au| " u = B[ u e C, ([T, +2); D(A))

Next, using the elliptic property of the operator A, we get:

&U + ¢{

s"Af (x)||+||Aun||+

1

A2y

u
J D(A%) (3.61)

Alalul" u)] +|A(Ru)| <Ry v =T,

where R; isindependent of the initial value U,.

So thereare 7, >>T,, K, >0, which make the following inequalities:

u (t)||D(A2) <Ky, |u, (t)||D(A2) <K, Vi1, (3.62)

where K, isindependent of the initial value U,.

According to Lemmas 3.1, 3.2, we can get the following theorem :

Theorem 3.1 From reference [14], let S(t) is the semigroup operator for the pro-
blems (1.1) - (1.3), then the semigroup S (t) exists a compact global attractor A, in
D(Az), and A =A,.

The proof of theorem 3.1 see ref. [14], is omitted here.

4. The Approximate Inertial Manifold for the Global Attractor

In this section, we first construct a smooth manifold M, =graph(y, ), and then prove
that M, is an approximate inertial manifold of the semigroup S(t), namely, the ar-
bitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of
the approximate inertial manifold after large time.

Let E, :span{a)k}szl,
subspace spanned by E = Span{a)k}szl, Qn =1-P,, so that uis decomposed as the

Py is an orthogonal projection from the space E to the

sum U= p+q.

For the solution u of the problems (1.1) - (1.3),let p=Pyu, p, =R, q=Quu,
G =QuU- Then &=(p,p)"> ¢=(a.9) g(u)=|u|qflu , h(ul)=|ut|pflul. We use
Py and Q, to actthe problem (1.1) respectively.

1

2
p“+glApl+¢{ AZu JAp+PN(/;’g(p+q)+ah(pt+ql)):PNf(x), xeQ, (4.63)

1

2
qn+glAqt+¢[ A2y JAq+QN(ﬁg(p+q)+ah(p[+ql)):QNf(x), XxeQ. (4.64)

~ (B, O — (Q, O
Let P, = , Qy = . Then the problems (4.63) - (4.64) can be
NlooR Lo

written as:

E+AE=PF(E+0), (4.65)

K2
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L +AL =QuF (£+9). (4.66)
From above, we have VU, e D(A)xE, there exist 7;, K, >0, is independent of
the initial value U, and then U (-)eC ([Tl,+oo), D(A)x E),
||u(t)||D ) < l,||u "D %) <K, Vt>7. Sofor q=QuU, ¢, =Q,U,, we obtain
"ﬂ<K%whm<K%ﬂNt>q (4.67)

Theorem 4.1 From references [14] [15] [16], according to lemmas 3.1, 3.2 and the
theorem 3.1, let M, =P, (D(A)xE) is the N dimensional linear subspace of
D(A)xE, there exists 7, >0, 7, is sufficiently large. When t> 7, , arbitrary trajec-
tory arising from the U, for the Kirchhoff wave equations, which track into a K A",
sphere in M,. Namely, dist;, . (S(t)Ug, My ) <K, AL, . Meanwhile, the M, is
called a N dimensional flat approximate inertial manifold of the semigroup S(t).

Remark 4.1. For the problem (4.66), if we do not consider ¢, and ¢ contained in
the nonlinear terms, for & e(E, )2 , we define mapping w,: &>y, (E). & =y, (&)
is the solution of the Equation (4.68):

ALy =QuF (£). (4.68)

Then y,: (Ey)° —(QuE)” isasmooth map, its image is
M, =graph(y,) = {§ +y, ()& e(Ey )2} , which is a approximate inertial manifold of
the semigroup S(t).

Theorem 4.2 From references [14] [15] [16], according to lemmas 3.1, 3.2 and the
theorems 3.1, 4.1, then YU, € D(A)xE, there exists t, >0, when t>1,, arbitrary
trajectory arising from the U, for the Kirchhoff wave equations, which track into a
K, AL, neighborhood in M,. Namely, disty ). (S(t)Uq, M) < K AL, - Meanwhile,
the M, is a approximate inertial manifold of the semigroup S(t). Furthermore,
VU, e D(A)xE, there exists t, >0, t, is sufficiently large, n>1. When t>1,,
arbitrary trajectory arising from the U, for the Kirchhoff wave equations, which track
into a K A", neighborhood in M, . Namely, disty, ¢ (S (t)UO,/\/ln) <C K A", .
The M, isa very precise approximate inertial manifold of the semigroup S(t).

Proof. Firstly, let U (t)=S(t)U,, then &(t)=(p(t), p, (t))T =PU(t),
¢(t)=(a(t).q, (t))T =Q.U (t) are the solutions of the problems (4.65) - (4.66), and

thenlet &, (t)=(ay (1)t (1)) =1, (£(1)). W (t)=(w(t).a(1)) .

From the relation (4.68), we can obtain:
¢[
1

Then from the hypothesis (G,), g¢ < ¢[ A?

1

AZu

]Aqo:QN(f—ﬁg(p)—ah(pt)) (4.69)
o =0. (4.70)
;ZJNQN (f-Bg(p)-ah(p,))

(% )_ ;
g‘)_[qmj ¢[

AZu (4.71)

0
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W (1) = ((t), (1) =U (1)=(£(t)+& (1) = £ (1)=& (1)- (4.72)
disty . (S (1)U, M) < W (V)] - (4.73)
We put W (t) into the relation (4.68), the following relations can be obtained im-
mediately,
1|2 1|2 1|2
gz{ A2y Jm:;ﬁ[ A2y JAq—y{ A2y }Aqo
(4.74)
:QN [(ﬂg(p)+ah(pl))—(ﬂg(p+q)+ah(pt +ql)>:|_qll _glAql
@ =q,. (4.75)
Therefore
1 2
4{ R ]||A2w||s||AQN [pa(p)-Fa(p+)]
+ ||AQN [ah(p,)-ah(p, +q, )}” +||Agy [+ & ||A2qt || (4.76)
<C, (8,a,ﬂ,gl) K,t>7,.
|Ad] < Ky, t =7, (4.77)
Then
Ao < CK AL, @] < KA t =1, (4.78)

So, we obtain

disty ay.e (S (t)Uo M) <[ A0 +]|@] < (C, +1) K, AL, = CK AL, t21,. (4.79)

A similar method in reference [14], we immediately get the semigroup S(t) existsa
compact global attractor A, in D(An ) ,and A=A =---=A,,and then
VU, e D(A)xE, there exists 7, >0, 7, is sufficiently large, n>1. When t>7_,
arbitrary trajectory arising from the U, for the Kirchhoff wave equations, which track
intoa K A", neighborhoodin M, .

disty . (S (t)Ug, M, ) < C K Al (4.80)

where the M, is a smooth manifold that we construct, which is very precise, to ap-
proximate inertial manifold of the semigroup S(t).

Remark 4.2. This article is based on the references [14] [15] [16], by estimating the
higher regularity of the global attractor, then we construct its approximate inertial ma-
nifold. Approximate inertial manifold, which is a kind of nonlinear, finite dimensional
and has certain smoothness. It is of great significance to study the long time behavior of
the dissipative equations and the structure of the attractors. On the basis of this article,
then we are likely to consider the inertial manifold of the global attractor for the prob-
lems (1.1) - (1.3).

Acknowledgements

The authors express their sincere thanks to the anonymous reviewer for his/her careful

232

K
0:52: Scientific Research Publishing



C.F.Aietal.

reading of the paper, giving valuable comments and suggestions. These contributions

greatly improved the paper. This work is supported by the Nature Science Foundation
of China (No. 11561076).

References

(1]

(2]

(3]

(6]
(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Foias, G., Sell, G.R. and Teman, R. (1985) Varities Inertilles des Equations Differentielles
Dissipatives. Comptes Rendus de I Académie des Sciences, 301, 139-142.

Margolin, L.G. and Jones, D.A. (1992) An Approximate Inertial Manifold for Computing
Burgers’ Equation. Physica D, 60, 175-184. https://doi.org/10.1016/0167-2789(92)90234-E

Chueshov, I.D. (1996) On a Construction of Approximate Inertial Manifolds for Second
Order in Time Evolution Equations. Nonlinear Analysis, Theory, Methods and Applica-
tions, 26, 1007-1021. https://doi.org/10.1016/0362-546X(94)00191-4

Jolly, M.S., Kevrekidis, I.G. and Titi, E.S. (1990) Approximate Inertial Manifolds for the
Kuramoto-Sivashinsky Equation: Analysis and Computations. Physica D, 44, 38-60.
https://doi.org/10.1016/0167-2789(90)90046-R

Babin, A.V. and Vishik, M.L. (1992) Attractors of Evolution Equations. Studies in Mathe-
matics and Its Applications, 25, North-Holland, New York.

Lin, G.G. (2011) Nonlinear Evolution Equation. Yunnan University Press, Kunming.

Dai, Z.D. and Guo, B.L. (2000) Inertial Manifold and Approximate Inertial Manifold. Sci-
ence Press.

Kirchhoff, G. (1883) Vorlesungen Uber Mechanik. Teubner, Leipzig.

Nakao, M. (2009) An Attractor for a Nonlinear Dissipative Wave Equation of Kirchhoff
Type. Journal of Mathematical Analysis and Applications, 353, 652-659.
https://doi.org/10.1016/j.jmaa.2008.09.010

Yang, Z.J., Ding, P.Y. and Liu, Z.M. (2014) Global Attractor for the Kirchhoff Type Equa-
tions with Strong Nonlinear Damping and Supercritical Nonlinearity. Applied Mathematics
Letters, 33, 12-17. https://doi.org/10.1016/j.am].2014.02.014

Hirosawa, F. (2015) A Class of Non-Analytic Functions for the Global Solvability of Kir-
chhoff Equation. Nonlinear Analysis, 116, 37-63. https://doi.org/10.1016/j.na.2014.12.016

Ai, C.F., Zhu, H.X. and Lin, G.G. (2015) The Global Attractors and Dimensions Estimation
for the Kirchhoff Type Wave Equations with Nonlinear Strongly Damped Terms. Journal of
Advances in Mathematics, 12, 6087-6102.

Dai, Z.D., Guo, B.L. and Lin, G.G. (1998) The Fractal Structure of Attractor for the Genera-
lized Kuramoto-Sivashinsky Equations. Applied Mathematics and Mechanics, 19, 243-256.

Li, Y.S. and Zhang, W.G. (2000) Regularity and Approximate of the Attractor for the
Strongly Damped Wave Equation. Acta Mathematica Scientia, 20, 342-350.

Luo, H., Pu, Z.L. and Chen, G.G. (2002) Regularity of the Attractor and Approximate Iner-
tial Manifold for Strongly Damped Nonlinear Wave Equations. Journal of Sichuan Normal
University (Natural Science), 25, 459-463.

Wang, L., Dang, J. and Lin, G. (2009) The Approximate Inertial Manifolds of the Fractional
Nonlinear Schrodinger Equation. Journal of Yunnan University, 31, 373-377.

Zhang, S. and Zhang, J. (2015) Approximate Inertial Manifold of Strongly Damped Wave
Equation. Pure Mathematics, 5, 278-283. https://doi.org/10.12677/PM.2015.56040

Tian, L. and Lin, Y. (1999) Approximate Inertial Manifolds by Spline Wavelet Basis in
Weakly Damped Forced KdV Equation. Acta Mathematica Scientia, 19, 379-386.

KD
+%%, Scientific Research Publishing

233


https://doi.org/10.1016/0167-2789(92)90234-E
https://doi.org/10.1016/0362-546X(94)00191-4
https://doi.org/10.1016/0167-2789(90)90046-R
https://doi.org/10.1016/j.jmaa.2008.09.010
https://doi.org/10.1016/j.aml.2014.02.014
https://doi.org/10.1016/j.na.2014.12.016
https://doi.org/10.12677/PM.2015.56040

C.F.Aietal.

[19] Shang, Y. and Guo, B. (1999) Approximate Inertial Manifolds for the Nonlinear Sobo-
lev-Galpern Equations. Acta Mathematica Scientia, 24, 105-115.

[20] Debussche, A. and Marion, M. (1992) On the Construction of Families of Approximate In-
ertial Manifolds. Journal of Differentital Equations, 100, 173-201.
https://doi.org/10.1016/0022-0396(92)90131-6

[21] Li, Y., Wang, B. and Yang, B. (1997) Regularity and Approximate Inertial Manifolds for a
Class of Evolutionary Equations. Journal of Lanzhou University, 33, 10-16.

[22] Showwalter, R.E. (1976) Regularization and Approximation of Second Order Evolution
Equations. SIAM Journal on Mathematical Analysis, 7, 461-472.
https://doi.org/10.1137/0507037

[23] Li, H., Pu, Z. and Chen, G. (2008) Approximate Inertial Manifolds for the Suspension
Bridge Equations. Journal of Sichuan Normal University, 31, 25-30.

[24] Guo, B. and Lin, G. (1999) Approximate Inertial Manifolds of Non-Newtonian Viscous In-
compressible Fluids. Journal of Mathematical Study, 32, 328-340.

[25] Teman, R. (1998) Infinite Dimensional Dynamics Systems in Mechanics and Physics.
Springer, New York.

[26] Massat, P. (1983) Limiting Behavior for Strongly Damped Nonlinear Wave Equations.
Journal of Difterentital Equations, 48, 334-349.
https://doi.org/10.1016/0022-0396(83)90098-0

[27] Pazy, A. (1983) Semigroup of Linear Operators and Applications to Partial Differential Eq-
uations. Springer, Berlin. https://doi.org/10.1007/978-1-4612-5561-1

0‘0
<

0% Scientific Research Publishing

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ijmnta@scirp.org

234

K
0:52: Scientific Research Publishing


https://doi.org/10.1016/0022-0396(92)90131-6
https://doi.org/10.1137/0507037
https://doi.org/10.1016/0022-0396(83)90098-0
https://doi.org/10.1007/978-1-4612-5561-1
http://papersubmission.scirp.org/
mailto:ijmnta@scirp.org

	Approximate Inertial Manifold for a Class of the Kirchhoff Wave Equations with Nonlinear Strongly Damped Terms
	Abstract
	Keywords
	1. Introduction
	2. Statement of Some Assumptions, Notations and Main Results
	3. The Regularity of Global Attractor
	4. The Approximate Inertial Manifold for the Global Attractor
	Acknowledgements
	References

