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Abstract 
This review is focused on using computer image analysis as a means of objective and 
quantitative characterizing optical images of the macroscopic (e.g. microbial colo-
nies) and the microscopic (e.g. single cell) objects in the microbiological research. 
This is the way of making many visual inspection assays more objective and less time 
and labor consuming. Also, it can provide new visually inaccessible information on 
relation between some optical parameters and various biological features of the mi-
crobial cultures. Of special interest is application of image analysis in fluorescence 
microscopy as it opens new ways of using fluorescence based methodology for single 
microbial cell studies. Examples of using image analysis in the studies of both the 
macroscopic and the microscopic microbiological objects obtained by various imag-
ing techniques are presented and discussed. 
 

Keywords 
Computer Image Analysis, Microorganisms, Viability, Yeast; Bacteria, Fungi,  
Colony Counter, Microbial Identification, Multispectral Imaging,  
Hyperspectral Imaging, Diffraction Pattern Imaging, Scatter Pattern Imaging,  
Multifractal Analysis, Support Vector Machines, Principal Component Analysis,  
Linear Discriminant Analysi, ImageJ, Matlab, Fluorescence Microscopy,  
Microfluorimetry, Green Fluorescent Protein (GFP) 

 

1. Introduction 

The part of the electromagnetic spectrum, which is sensed by our eyes, is called optical, 
thereby the visible objects are called optical images. Human visual analyzer was the first 
“instrument” that enabled to discover the world of microorganisms. As is well known, 
it was Antonie van Leeuwenhoek who observed single microbial cells at the end of the 
XVII century by improving vision by simple but ingenious device with a lens, which is 
called “the Leeuwenhoek microscope”. In 1877, Julius Richard Petri, working in Robert 
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Koch’s laboratory, invented a unique technique to study microorganisms by naked eye. 
It was microbial cell cultivation in cylindrical plates (now known as Petri dishes) on the 
surface or within of a gel-like nutrient medium up to visible microbial colonies. Appli-
cation of photography significantly facilitated the work with microbiological optical 
images and many mysteries of the microbial world were deciphered by visual observa-
tions. Up to now, characterization of microorganisms as optical objects play substantial 
role in both basic and applied microbiological research. However, all the methods based 
on the visual examinations are inevitably subjective, in most cases, they are qualitative, 
and some quantitative approaches are relatively high time and labor consuming. 
Moreover, it is impossible to “extract” completely and quantitatively all the diverse in-
formation, which an optical image contains, by only vision. This information comprises 
such features as color (or, physically correctly, the spectral properties) and its spatial 
distribution; size and shape of individual pieces, their mutual position and number; in 
some cases, it is glowing (e.g. fluorescence), its intensity and spectral characteristics; 
dynamics of the features. In the second half of the XX century, fundamentally new ap-
proach for dealing with these types of information has been developed. It was computer 
digital image analysis (CDIA).  

CDIA is one of the operations of more general procedure called computer digital 
image processing (CDIP) [1] [2] [3] [4]. CDIP deals with the images (e.g. photographs) 
obtained in or converted into the digital form. A digitized image is a set of small ele-
ments in 2D space called pixels (in 3D space they are called voxels). Each pixel (voxel) 
contains the digitally coded information on its X − Y − (Z) location in a Cartesian 
coordinate system and optical features at this point of space. The optical information 
depends on the imaging system employed. For a monochrome digital cameras, the in-
formation obtained consists of the data in gray scale units (often 8 bit 256 gray levels). 
The digital images from conventional three-channel color cameras and other fil-
ter-based imaging systems (color imaging) can be a set of pixels with the optical infor-
mation encoded in one of the four color spaces RGB, HSV, CIE-Lab, and YCrCb (RGB 
is the most popular as 24 bit combinations of red, green and blue values with 8-bits for 
each color). Multispectral imaging systems capture images with information on tens 
spectral regions (bands) in each pixel. Images from hyperspectral imaging systems pro-
vide information on space distribution of many contiguous spectral band close to the 
continuous spectrum. Multispectral and hyperspectral imaging can visualize the visible 
light as well as near-infrared to infrared. Finally, the raw digital data of the images are 
treated by a computer as variables of a huge mathematical model, constructed of vari-
ous algorithms. The outcome of this treatment can be manipulation of the images for 
improving their quality and “more expressive” visual appearance of some components 
and/or extraction of some quantitative digitally coded information and its analysis, i.e. 
CDIA.  

For decades of the development in this field of the Computer Science, a large number 
of CDIP and CDIA software along with various approaches of their application 
emerged. Biomedical research was one of the first “users” of these “tools” (e.g. [5]) and, 
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up to now, it remains among their most interested customers. Currently, there are nu-
merous biomedical research oriented CDIP and CDIA programs available both com-
mercially (e.g. MCID™ Core and MCID™ Analysis, http://www.mcid.co.uk/) and free via 
Internet [6]. There is software tailored for specific applications (e.g. Image Analyst 
MKII, Image Analyst Software, Novato, CA, https://www.imageanalyst.net/; CMEIAS, 
http://cme.msu.edu/cmeias/intro.shtml, [7]). Also, many research instruments such as 
densitometers for scanning electrophoresis gels (e.g. a GS800 Calibrated Densitometer, 
BioRad, UK, http://www.bio-rad.com/ru-ru/product/gs-800-calibrated-densitometer/), 
optical microscopes (e.g. Nikon, http://www.nikon.com/; Olympus,  
http://www.olympus-ims.com/; Leica, http://www.leica-microsystems.com/), and 
computer colony counters (see below) are equipped with the instrument-adapted CDIP 
and CDIA. 

Optical images of the microbiological objects recorded in the form of the digital 
photographs can be quantitatively processed by using CDIP and CDIA. The objective of 
this paper is to review recent applications of this approach in the microbiological re-
search and practice. The reviews of the studies in this field before 1998 can be found in 
the comprehensive book [8] and the paper [9]. In the following text, for convenience, 
the optical images of the microbiological objects are divided into two categories, ma-
croscopic, which can be observed with the naked eye, and microscopic, which can be 
seen only with a microscope. 

2. Macroscopic Objects 
2.1. Colony Counting 

Quantitative assessment of the live microbial cell concentration/content in various spe-
cimens by their growth in Petri dishes up to the visible colonies is one of the most pop-
ular assays in microbiology. However, visual/manual colony counting is very tedious 
and subjective. Hence, interest in automating the colony counting procedure arose long 
ago. The first apparatus for automated colony counting was described in 1957. It 
worked by scanning the Petri dish image on a CRT screen by a photomultiplier and 
processing of the digitized image by a computer [10]. This device has not been widely 
distributed and used. In the 1970s, colony counters based on the CDIA were designed. 
The principal parts of this type of colony counters are trans- and epi-illumination sys-
tem, a CCD camera to capture digital images of the Petri dishes and a computer with an 
appropriate software (schematically presented in [11]). Several CDIA based computer 
colony counters (CCC) are presently available on the market (reviewed in [12]) includ-
ing CCC specially designed for counting mammalian cell colonies (GelCount™, Oxford 
Optronix Ltd., UK, http://www.oxford-optronix.com/). Also, a number of “home- 
made” CDIA based systems for automated colony counting have been reported from 
several laboratories [13]-[18]. 

CCC can count colonies in the digital images both automatically and manually (vi-
sually). In the automatic mode of operation, they can count colonies independently of 
their number with the rate of less than 1 s per plate. However, strictly speaking, they 

http://www.mcid.co.uk/
https://www.imageanalyst.net/
http://cme.msu.edu/cmeias/intro.shtml
http://www.bio-rad.com/ru-ru/product/gs-800-calibrated-densitometer/
http://www.nikon.com/products/microscope-solutions/support/download/software/index.htm
http://www.olympus-ims.com/ru/microscope/software/
http://www.leica-microsystems.com/
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enumerate the number of elements with a definite set of properties, rather than the 
number of colonies. Therefore, the choice of criteria to distinguish the elements for 
counting (segmentation algorithms) is vital to obtain adequate results. Most frequently, 
the optical density and/or the size of elements (colonies) are used as such criteria for 
Petri dish examination in transmitted light. These criteria may also include the color 
and/or shape of colonies or their various combinations. In many CCC, some typical 
criteria, for example, colony optical density and size, are introduced by default. How-
ever, it is quite evident that, without “tuning” of the equipment in each particular case, 
there is a risk of inadequate data acquisition.  

The major problem of using the automatic mode is the presence of confluent colo-
nies. Although many commercial [12] and “home-made” [19] [20] CCC provide an op-
tion to discriminate between individual colonies within a conglomerate, this is actually 
realized only in case of rather small conglomerates. Anyhow, automatic colony count-
ing of the samples with the confluent colonies is prone to an error. Manual (visual) co-
lony counting in digital images by marking the colonies with virtual (computer) mark-
ers largely resolves the confluence problem and is more accurate than automatic 
counting. The principles, advantages and problems of computer colony counting in the 
automatic and visual detection modes are described in detail in [12] [21] [22].  

One more point should be stressed. When interpreting the results of colony count 
(colony forming units, CFU) in Petri dishes, it should be kept in mind that the CFU do 
not necessarily directly correspond to the number of seeded viable cells and their con-
centration/content in the specimens. This may be true only for microbial species which 
grow as individual cells and do not form any aggregates in natural conditions. Howev-
er, even in such cultures, partial aggregation may be induced by certain laboratory ma-
nipulations, for instance, during the sample preparation. In any case, to reveal the ag-
gregates, the samples are to be analyzed by microscopy before inoculation into Petri 
dishes. Principal problems of viable cell content determination by colony forming abil-
ity arise with the specimens containing microorganisms growing as inseparable con-
glomerates, cell consortia of different species, and populations of a single species con-
taining damaged or so called viable but nonculturable forms [23]. 

2.2. Identification  

External appearance of the colonies is one of the essential phenotypic characteristics in 
microbial identification. The major visual parameters of a colony used for identification 
are coloring, texture (mucous, dry, pastelike, loose, dense, or other), shape (convex, flat, 
conical, or other), surface characteristics (smooth, wrinkled, rugulose, or other), and 
edge type (smooth, villous, or other) [24]. The differences in colony appearance may be 
distinctive features for differentiating microorganisms at the level of various taxonomic 
groups, including strains of a single species. Importantly, all these characteristics de-
pend upon cultivation conditions, primarily, on medium composition, temperature, 
and growth time [25]. Although colony appearance cannot be the sole parameter used 
for identification, under standardized culturing conditions, it may be used as a pre-
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sumptive indicator in a number of practical applications, when culture express diag-
nostics is required. Screening for a culture with certain characteristics, checking purity 
of isolated cultures, disease diagnostics, sanitary and epidemiological expertise are the 
situations of this kind. Computer image analysis may be helpful in such cases. Exam-
ples of application of this approach are presented below.  

One obvious case to start with is a description of a colony color by words used in 
many microbiological papers on identification. It is always subjective and often rather 
vague. For instance, among the distinctive features of the eight isolated strains of the 
fungus Metarhizium presented in [26] was their colony color described as “Lumiere 
Green”, “Pale Olivine”, “Dark Yellowish Green” etc. Using CDIA, the color description 
can be made quantitative and thereby objective. One simple way to do it, for instance, is 
by “RGB profiling” procedure of the ImageJ software (available free from  
https://imagej.nih.gov/ij/). RGB profile across the colony centre provides an objective 
quantitative characterization of color, thickness and diameter of the microbial colony 
[27]. 

A general platform for quantitative colony morphology presentation and analysis by 
CDIA have been developed using 16 yeast strains as model organisms [28]. 8 features 
space has been used for visualizing changes in colony morphology and for supervised 
classification of colony phenotypes. The developed software was suggested to enable the 
automated analysis of colony types even at scales not possible using manual scoring 
(i.e., extremely large numbers of images). Also, a web application has been built for 
easy and rapid sharing of results. This integrative environment for data exploration can 
be extended to other large-scale image analysis projects and to other colony forming 
microorganisms.  

Numerous studies have been conducted aiming at automated microbial identification 
and quantification using CDIA of colony images obtained by different imaging tech-
niques. Two CDIA systems using color imaging and the Luv color space were pro-
posed to support diagnostics in urinary tract infections (UTI). The first one has been 
designed as a modular processing chain specialized to the detection and identification 
of the colonies of the main UTI pathogens growing on a diagnostic chromogenic me-
dium CHROMagarTM [29]. The main modules were denoising, segmentation and colo-
ny identification via segments filtering, isolated colony detection and colony classifica-
tion. Support Vector Machines (SVMs) with Radial Basis Function kernels [30] were 
adopted for classifying colonies. The system has been tested on the most clinically rele-
vant bacterial species: Enterococcus faecalis, Escherichia coli, Klebsiella, Proteus mira-
bilis, Staphylococcus aureus, Streptococcus agalactiae. In conclusion, it was stated that 
the system offers satisfactory classification performances although some overfitting was 
observed which could be addressed in prospect by collecting more samples. The second 
system called Automatic Infection Detector (AID) was developed and tested on the 
same bacteria plus several species of Enterobacter, Serratia, Pseudomonas, Proteus, and 
fungus Candida grown on a chromogenic medium UriSelect 4 [31]. The pipeline of the 
AID comprised of a suitable pre-processing phase, involving spatial clustering, for iso-

https://imagej.nih.gov/ij/
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lating colonies from the culture medium, and classification of the detected colonies 
based on both artificial neural networks and SVMs. Finally, besides the infection identi-
fication and classification, the AID system also performed the bacterial count, giving an 
estimate of the number of microorganisms per milliliter of urine. 

An automated method has been developed for direct identification of the fungal spe-
cies of the genus Penicillium by means of the CDIA of their colonies [32]. The method 
is based on the extraction of the colony texture information from the digital color im-
ages. To this end, 27 features quantitatively assessed in the RGB color space were used. 
The texture measurements of colonies of the nine species were analyzed by supervised 
and unsupervised data classifiers. A clustering of the data into the correct species was 
confirmed. The obtained CDIA species classifier was tested on 151 colonies incubated 
on yeast extract sucrose agar. This resulted in a correct classification rate of 100% when 
used on the training set and 96% using cross-validation. The same methods applied to 
194 colonies incubated on Czapek yeast extract agar resulted in a correct classification 
rate of 98% on the training set and 71% using cross-validation.  

The same approach was applied for clone identification of Penicillium commune 
isolates [33]. A total of 77 P. commune isolates were classified into groups containing 
the same genotype determined by DNA fingerprinting and different colony colors. The 
CDIA data were used for cluster analysis. The Jeffreys-Matusitas distance between the 
feature distributions was adopted to express the similarity between regions in two colo-
nies, and to evaluate the overall similarity. The nearest neighbor classification rule was 
used. On a dataset from 137 isolates, a “leave-one-out” cross-validation identification 
rate of approximately 93-98% compared with the result of DNA fingerprinting was ob-
tained. 

Multispectral imaging combined with CDIA as a means of objective identification 
of the species of the genus Penicillium was demonstrated [34]. This technique was used 
to address the problem of choosing the subset of growth media for identification. Mul-
tispectral analysis was expected to provide additional information about the chemistry 
of the fungal colonies. In this study 18 spectral bands were used: 10 in the visual region 
and 8 in the near infrared region. Cultures were grown on three media [Czapek yeast 
extract agar (CYA), oatmeal agar (OAT), and yeast extract sucrose agar (YES)]. Statis-
tical tests indicated that YES combined with CYA is the best choice of media in this 
case. However, for the objective identification one medium was shown to be sufficient 
to discriminate between the species. Statistical tests proved that there were significant 
differences between the species on all individual media, and that these differences were 
the largest on YES. The species have been classified using only 3-4 spectral bands with a 
100% correct classification rate using both “leave-one-out” cross-validation and test set 
validation. 

Hyperspectral imaging, a comparatively new tool in biomedical research [35] [36], 
was used as a primary source of information for the identification of several microbial 
species by the CDIA of their colonies. Although this imaging requires rather sophisti-
cated and expensive equipment, it provides better spectral discrimination of the colored 
colonies in comparison with the color and multispectral imaging.  
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Some general principles of using hyperspectral imaging of colonies for identifying 
bacteria were considered by performing experiments on several strains of lactic acid 
bacteria, enterobacteria and Staphilococcus aureus grown on various media [37]. Two 
alternative data processing pipelines, so called radiometrically corrected and physics- 
based vision, were examined. The data on hyperspectral reflectance were treated by mi-
nima/maxima/average analysis and Principal Component Analysis (PCA). The results 
obtained have shown that satisfactory growth media specific bacterial classification 
could be done using PCA of the hyperspectral reflectance data by both pipelines. It was 
also shown that the colonies can be counted making use of classical segmentation and 
classification algorithms.  

A new screening technique using hyperspectral imaging of colonies was developed to 
detect a foodborne pathogenic bacteria Campylobacter in the presence of non-Cam- 
pylobacter bacterial species [38] [39]. A reflectance spectral library of the colonies of 11 
Campylobacter and 6 non-Campylobacter species in the region from 400 to 900 nm was 
constructed. Colony classification algorithms, including single-band thresholding, 
band-ratio thresholding and spectral feature fitting were developed. With a band ratio 
algorithm using two bands at 426 and 458 nm chosen from continuum-removed spec-
tra of the colonies, bacterial identification accuracy achieved 97% - 99%. It was concluded 
that the developed hyperspectral reflectance imaging protocol is applicable for early 
detection of Campylobacter and could be used in other pathogen detection studies. 

Visible and near-infrared hyperspectral imaging and chemometrics were used to 
detect and classify non-O157 serogroups (O26, O45, O103, O111, O121 and O145) of 
shiga toxin-producing Escherichia coli (STEC) grown on chromogenic selective me-
dium [40] [41]. To this end, spectral libraries for each pure culture serogroup colony 
were built. The prediction model was based on supervised linear classification of factor 
scores obtained by PCA. Classification was carried out by Linear Discriminant Analysis 
(LDA) and SVMs. Chemometric preprocessing methods and other operating parame-
ters, such as scatter correction, first derivative, moving average, sample size and num-
ber of principal components (PCA), were compared with a classification and regression 
tree (CART) method, configured as a classification tree and followed by brute-force 
searching from candidates selected by the CART. Cross-validation (CV), such as hold 
out and k-fold CV, was used to validate the prediction performance of candidate mod-
els. Serogroups O111 and O121 showed consistently over 99% classification accuracy 
regardless of the classification algorithms. However, the classification accuracies of se-
rogroups O26, O45, O103 and O145 showed varying results from 84% up to 100%, de-
pending on which preprocessing treatment and prediction model were adopted. In the 
later study [42], the 428 nm band was determined as the optimal wavelength for non- 
O157 STEC colony segmentation for automated target colony counting. The accuracy 
of the developed colony segmentation and counting algorithm was over 99 %. The av-
erage of the colony classification algorithm using automated colony segments was 
92.5 %. The authors also noted that further studies are needed for automating quantita-
tive assessment of the target bacteria in the presence of background microflora.  
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Development of a visible and near-infrared hyperspectral imaging technique for au-
tomated screening of the two foodborne pathogens Salmonella enteritidis (SE) and 
Salmonella typhimurium (ST) was described [43]. SE and ST were grown on brilliant 
green sulfa (BGS) and/or xylose lysine tergitol 4 (XLT4) agar plates in the presence of 
Acinetobacter baumannii, Enterobacter cloacae, Pseudomonas putida, Citrobacter ko-
seri, Staphylococcus aureus, Aeromonas salmonicida, Klebsiella oxytoca, and Escheri-
chia coli. Five different machine-learning algorithms, including Mahalanobis distance, 
k-nearest neighbor, LDA, Quadratic Discriminant Analysis (QDA), and SVMs in addi-
tion to PCA, were applied for Salmonella detection and classification. When trained on 
the data from pure cultures of Salmonella and known background microflora, the clas-
sification accuracy of each classification algorithm in detecting Salmonella on BGS agar 
was about 98% on average, although it was difficult to differentiate between SE and ST. 
The classification accuracy in detecting Salmonella colonies on XLT4 agar was about 
88% on average while the detection accuracy for ST colonies were over 99%. The vali-
dation of the classification algorithms with independent test samples of chicken carcass 
rinses spiked with SE and ST showed that the best performance was achieved by QDA 
with the prediction accuracy of about 99% (Kappa coefficient = 0.97). 

The potential of hyperspectral imaging in the region of 400 - 900 nm of colonies for 
identifying microbial cultures of 19 bacterial strains of 10 genera was evaluated [44]. 
Microbial colonies were subcategorized in 6 chromogenic classes after growth on a 
chromogenic culture medium (chromID® CPS Elite, bioMérieux, France). Hyperspec-
tral imaging was used in a linescan configuration. Interclass classification accuracies of 
100% were achieved by applying algorithms relying on Linear Spectral Unmixing, and 
using Diffuse Reflectance Spectra as input data. In order to simplify the technique, the 
performance of using only the most discriminant 14 spectral channels (a model for a 
multispectral approach) or 3 channels (a model of an RGB image) was evaluated. The 
overall classification performance remained unchanged only for multispectral model. 
With the same intention to simplify and make the screening (classifying) of non-O157 
STEC serogroups more cost-effective, a spectral reconstruction technique for predicting 
hyperspectral images from RGB color images was developed [45]. In this work, the al-
ready developed hyperspectral image classification algorithm(s) [38] [39] [40] were 
used. Reconstruction of the hyperspectral images from the RGB color images was made 
by polynomial multivariate least-squares regression analysis. The accuracy of the 
hyperspectral image classification algorithm based on k-nearest neighbors algorithm of 
PCA was validated to be 99% with the original hyperspectral images and 92% with the 
test set. It was suggested that color-based hyperspectral imaging would be feasible with 
prediction accuracy compared to true hyperspectral imaging. 

In this context, by the way, it is worth mentioning an application of near infrared 
hyperspectral imaging for indirect assessment of spoilage bacteria loads in meat [46]. It 
was established that bacterial spoilage of meat leads to the chemical changes which can 
be detected by infrared spectroscopy. Relevant changes in the spectra can be used for 
correlating with actual bacterial loads using chemometric methods. Hyperspectral 
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reflectance images in the region of 910 - 1700 nm of raw chicken breast fillets were ac-
quired and were transformed into hypercubes in absorbance and Kubelka–Munck 
(K–M) units. Full wavelength partial least regression models were established to corre-
late the three spectral profiles with measured bacterial counts, and the best calibration 
model was based on absorbance spectra, where the correlation coefficients (R) were 
0.97 and 0.93, and the root mean squared errors (RMSEs) were 0.37 and 0.57 log10 co-
lony forming units (CFU) per gram for calibration and cross validation, respectively. 
To simplify the models, several wavelengths were selected by stepwise regression. More 
robustness was found in the resulting simplified models and the model based on K–M 
spectra was found to be excellent with an indicative high ratio of performance to devia-
tion value of 3.02. The correlation coefficients and RMSEs for this model were 0.96 and 
0.40 log10 CFU per gram as well as 0.94 and 0.50 log10 CFU per gram for calibration 
and cross validation, respectively. Visualization maps produced by applying the devel-
oped models to the images could be an alternative to test the adaptability of a calibra-
tion model. Moreover, multi-spectral imaging systems were suggested to be developed 
for online applications. 

Colony diffraction pattern imaging with subsequent CDIA was studied as a means 
of bacterial identification [47] [48]. For this purpose, an optical system with converging 
spherical wave illumination of colonies for Fresnel patterns recording as digital images 
was devised. Colonies of Salmonella enteritidis, Salmonella typhimurium, Staphylo-
coccus aureus, Staphylococcus intermedius, Escherichia coli, Proteus mirabilis, Pseu-
domonas aeruginosa and Citrobacter freundii were analyzed. CDIA comprised image 
processing by ImageJ software and subsequent data treatment by three classification 
algorithms, LDA, QDA and SVMs, with classifier performance assessment by 
cross-validation. Single factor one way ANOVA and Fisher divergence were used to 
find the most discriminative one of 20 chosen features. The study have shown that the 
proposed method had very high identification accuracy of over 98% [47], and after op-
timization [48] it was demonstrated to have high sensitivity and specificity with very 
small identification error of 1.34%. 

An automated CDIA-based system BARDOT (the abbreviation from Bacterial Rapid 
Detection using Optical scattering Technology) for bacteria identification was designed 
[49] [50]. It captures 635-nm laser beam forward-scatter unique digital images (scat-
tergrams) of individual bacterial colonies. For further analysis, a number of features are 
extracted from the digital scatter patterns. Rotation-invariant features are characterized 
using magnitudes of Zernike moments. Texture features are calculated using Haralick 
gray-level co-occurrence matrices. Bacteria identification is performed using classifica-
tion by SVMs algorithm and a scatter classification signature library. The technique has 
been demonstrated to differentiate Escherichia, Listeria, Salmonella, Staphylococcus, 
and Vibrio at the genus level with 90 to 99% accuracy [49]. It was also successful in dif-
ferentiating Listeria species [51]. An improved pattern-analysis and image-processing 
algorithm was used to extract features from the scatter images to identify and differen-
tiate various Vibrio species, especially, V. cholerae, V. parahaemolyticus and V. vulni-
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ficus from other vibrios [52]. It was shown that BARDOT can detect most of the Sal-
monella serovars tested in the set of the 20 most prevalent serovars [positive predictive 
value (PPV) of classification precision level reaching 86%] and all serovars in the top 8 
group (PPVs ranging from 68% to 93%). Furthermore, it can detect Salmonella in food 
samples in the presence of background microflora [50].  

Fractal and multifractal geometries are useful tools for quantitative morphology de-
scription in the 1D, 2D or 3D images. They found numerous applications in biomedical 
research dealing with pattern recognition, texture analysis and segmentation [53]. 
CDIA was used for quantitative description of colony morphology images of the fungus 
Metarrhizium anisopliae by multifractal analysis [54]. It was done for steroid bio-
transformation activity strain screening by colony recognition and classification. Three 
features of 14 were selected on the multifractal spectrum of each morphological image 
in two-dimensional feature vector spaces. A feature augmented vector was generated 
and used for a classifier design. A statistical least mean square error algorithm was ap-
plied to design a piecewise-linear classifier. Representative colony samples were used as 
training and test sample sets, which were previously classified into a high biotransfor-
mation-activity class and another class by a trained person. After passing the training 
phase, the piecewise-linear classifier could be used for automated classification of un-
known colony samples. The developed method provided fast classification and identi-
fication of the colonies of individual strains having different steroid biotransformation 
activity. A correct recognition rate of 96% was achieved.  

2.3. Physiology, Biochemistry and Molecular Biology 

Parameters of the colony growth under different conditions on/within the solid nu-
trient media hold valuable information on physiology, biochemistry and molecular bi-
ology of microbial cells. However, manual extraction and analysis of these parameters is 
practically impossible mostly because of their huge amount. CDIA is the tool of choice 
in this area of research. 

An example of one of the first applications of this approach was the study with the 
goal to understand the role of mammalian hormones as growth promoting signals in 
the opportunistic yeast Candida albicans development [55]. In this work, the size of 
colonies growing on agar media supplemented with beta estradiol was compared to 
those growing without the estrogen supplement. Colony area measurements were con-
ducted by the original “Image tool” CDIA software (University of Texas Health Science 
Center at San Antonio) using series of digital video images. It was found that growth of 
the yeast strains under study were not uniformly stimulated by estradiol. Growth of one 
estrogen-responsive strain was evaluated in a chemically defined medium in the pres-
ence of 17-alpha and 17-beta isomers of estradiol. The beta isomer promoted more 
rapid growth of the test organism and resulted in greater biomass production than the 
alpha isomer. It was suggested that sterols could be involved in the regulation of fungal 
metabolism, at least in some strains, and played a role in the virulence development.  

The lag phase, characterizing the physiological transition of bacteria before the ex-
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ponential growth, is an essential parameter of the bacterial population development. Its 
assessment is of importance, for example, in case of investigating bacterial contamina-
tions occurring in foods. The lag distributions of Listeria monocytogenes cells subjected 
to situations reproducing conditions encountered during the contamination of cheese, 
were studied by automated CDIA of the macroscopically visible bacterial colony growth 
[56]. The kinetics of the bacterial colony growth on agar was measured with an auto-
matic image acquisition system that included a WASP2 spiral plater, a circular moto-
rized platform and a digital camera allowing the simultaneous study of four plates. Im-
age processing and analysis were conducted using Matlab. The results obtained on co-
lonies were compared with lag distributions assessed by the conventional turbidity 
measurements in broth. An original method to retrieve lag in broth and agar without 
any knowledge of the growth rate was also proposed. Means and standard deviations of 
lag distributions for the two different stresses were found to be similar in broth and on 
agar.  

A high throughput Phenotypic Array Analysis (PAA) system was developed for 
global, quantitative analysis of gene interactions using large microbial mutant collec-
tions [57] [58]. The system allowed the colony early phase kinetic growth rates mea-
surements which could further be used for quantifying cell proliferation phenotypes. 
The whole approach is based on time-lapse imaging of agar spotted cell arrays and their 
CDIA by specially designed YeastXtract software. The PAA system was experimentally 
tested on yeast cells of Saccharomyces cerevisiae. The accuracy and precision for image 
analysis of agar culture arrays was comparable to optical density measurements of liq-
uid cultures. It was shown that cell proliferation could be measured over about seven 
generations, including four to five generations of relatively constant exponential phase 
growth. A growth model, based on the logistic function, increased precision and accu-
racy of maximum specific rate measurements, compared to empirical methods. The lo-
gistic function model was also more robust against data sparseness, meaning that less 
data was required to obtain accurate, precise, quantitative growth phenotypes. 

Some of yeast functional genomics approaches are based on growth differences un-
der different conditions. A computerized image analysis system called Growth Detector 
(GD) have been developed to automatically acquire quantitative and comparative in-
formation for yeast colony growth to study the biology of a cell on a model organism, 
Saccharomyces cerevisiae [59]. The set of non-essential gene deletion strains has been 
used. The array of the strains was replicated by pinning method using a 384-floating 
pin replicator. Images were captured with a Hewlett-Packard PhotoSmart 735 camera. 
The GD software was written in Matlab. It provided image processing and some 
post-processing calculations. Using GD, a genetic linkage between the molecular activ-
ity of the plant-derived antifungal compound berberine and gene expression compo-
nents was detected. A novel association for the yeast mek1 gene with DNA damage re-
pair was also identified by GD and confirmed by a plasmid repair assay.  

A collection of image analysis algorithms, called Colonyzer, for automatic quantifica-
tion of the size, granularity, color and location of microbial colonies grown on solid 
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agar was developed using the open source packages: Python, RPy and the Python Im-
aging Library [60]. It can quantitatively analyze images of the colonies of the cultures 
growing in any rectangular array format, seeded by either pinning or spotting. Colo-
nyzer's particular strength is its sensitivity in detecting cultures with low density. It is 
suitable for high-throughput screening by comparing growth rates of distinct microbial 
cultures on solid agar and may be useful for rapid quantifying genetic interactions. Co-
lonyzer is an open-source free software accessible via Internt  
(http://research.ncl.ac.uk/colonyzer/), allowing users to assess it, adapt it to particular 
research requirements and to contribute to its development. Application of this pack-
age was demonstrated in Quantitative Fitness Analysis (QFA) [61]. This experimental 
and computational workflow produces growth rate estimates of microbial cultures 
spotted and grown on solid agar plates. It can be used for comparing fitnesses of mi-
crobial cultures derived from the growth rates for genome-wide genetic interaction or 
drug screens investigating up to thousands of independent cultures. The main QFA 
procedures include the inoculation of independent dilute liquid microbial cultures onto 
solid agar plates which are incubated and regularly photographed. Photographs from 
each time-point are analyzed by the Colonyzer, producing quantitative cell density es-
timates, which are used to construct growth curves. Fitnesses of 384 strains of the yeast 
Saccharomyces cerevisiae were analyzed using QFA with robotic inoculation tech-
niques and it was shown that fitness estimates were comparatively precise and well re-
producible.  

3. Microscopic Objects 
3.1. Microcolonies and Biofilms  

Light forward-scattering imaging of microcolonies (diameters ranging from 30 to 300 
μm) was used to study the possibility of discriminating different bacterial species at a 
very early stage of growth (6 h of incubation at 37˚C), on thin layers of agar media us-
ing a microscope based instrument [62]. Scatterograms treatment and comparison were 
done using a projection of each scattering pattern along the 120 first Zernike polyno-
mials. The 120-dimension vectors corresponding each to one given scatterogram were 
then classified using 3 different learning algorithms (Bayes Network, Continuous Naive 
Bayes, Sequential Minimal Optimization), so as to compare the confusion matrices and 
select the best performing approach. A recognition (identification) rate of nearly 80% 
was achieved of 7 gram-negative bacteria at species level with a database of more than 
1000 scatterograms. Also, it was shown that four strains of Escherichia coli and two 
species of coagulase-negative staphylococci (S. haemolyticus and S. cohnii) could be 
discriminated with a recognition rate of 82%.  

Facing the needs of directed evolution programs and of exploring metagenomes, a 
new high throughput enzyme screening system was developed [63] [64]. It was based 
on the optical detection by CCD camera of the microcolony array system with a fluo-
rescent chemo-sensor and automated CDIA providing simultaneous time-resolved 
monitoring of enzyme activity of up to 7000 single microcolonies. Microcolony chips in 

http://research.ncl.ac.uk/colonyzer/
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the size of a micro-titer plate were made by spotting robots to get microcolonies grown 
from single cells. Contact of the chip with the fluorescent chemo-sensor produced flu-
orescent response corresponding to the enzymatic activity of a microcolony which was 
recorded by the CCD camera. The obtained images were treated by a CDIA software. 
The method was verified by a model screening using esterase and choline oxidase activ-
ities of Escherichia coli with fluoresceine and pO2-sensitive particles as indicators. It 
was proved to provide reliable enzyme activity measurements within single mi-
cro-colonies allowing the discrimination of activity differences in the range of 10% - 
20%. 

For better understanding the cheese ripening process, a study was undertaken to as-
sess spatial distribution as well as the distance between bacterial microcolonies within 
the cheese matrix [65]. To this end, Lactococcus lactis strain producing green fluores-
cent protein (GFP) was inoculated into a model cheese at various inoculation levels. 
Spatial distribution and microcolony diameters were evaluated using CDIA of the con-
focal microscopy photographs of fluorescent colonies by R software [66]. It was shown 
that bacterial colonies were randomly distributed, fitting Poisson’s model. Also, it was 
found that the lower the inoculation level, the larger the colonies were and the further 
away from each other. It has been suggested that the distribution and the interfacial 
area of colonies can have a significant influence on the cheese-ripening process on a 
microscopic scale (see also a review on this topic [67]).  

A CDIA software called “daime” (the abbreviation from digital image analysis in mi-
crobial ecology) was developed specifically for microbial ecology studies [68]. This 
computer program integrated digital image processing, image analysis and 3D visuali-
zation features. It was tailored to work with digital images acquired by a confocal laser 
scanning microscope (CLSM) to applications of fluorescence in situ hybridization 
(FISH) with rRNA-targeted probes. Together with the program a new method was pre-
sented for quantifying spatial localization patterns of microorganisms in complex sam-
ples. Its utility was demonstrated for identifying environmental biofilm microorgan-
isms involved in mutualistic interactions. This method consists of an image analysis 
algorithm implemented in daime and a protocol to preserve the spatial structures of 
microbial communities during FISH with rRNA-targeted oligonucleotide probes 
(‘3D-FISH’). In addition, the 3D visualization capabilities of daime were illustrated by 
reconstructions of a nitrifying biofilm. Using this stereological technique on activated 
sludge, quantitative evidence was obtained that functionally linked ammonia and nitrite 
oxidizing bacteria cluster together in their habitat.  

In further studies, using daime software (version 2.0) [69], new methods have been 
designed and applied for sequential-FISH analysis of directionally dependent (aniso-
tropic) multispecies biofilms [70]. Upon multiple populations detecting, an automated 
tool for vertical-distribution analysis in anisotropic biofilms was applied. Distinct stra-
tification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I 
and II and the nitrite oxidizer Nitrospira sublineage I in three different types of waste-
water biofilms was found. Based on these findings, niche differentiation between the N. 
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oligotropha subclusters was suggested, which could explain their coexistence in the 
same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggre-
gated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying 
trickling filter (NTF) and a movingbed biofilm reactor, but not in a full-scale NTF, in-
dicating important ecophysiological differences between these phylogenetically closely 
related subclusters.  

3.2. Single Cells 

CDIA of single bacterial cell hyperspectral images was studied as a potential method for 
rapid identification of foodborne pathogens [71]. A microscope equipped with an 
acousto-optic tunable filter was used to acquire dark field light scattering hyperspec-
tral images in the region between 450 and 800 nm of five serotypes of Salmonella 
(Kentucky, Enteritidis, Typhimurium, Infantis, and Heidelberg) and five species of 
Staphylococcus (aureus, haemolyticus, hyicus, simulans, and sciuri) bacterial cells. The 
acquired images were converted to hyperspectral image format with HSiAnalysis soft-
ware (Gooch & Housego, Orlando, Fl.). It was found that there were distinct scattering 
intensity peaks at nine wavelengths for both Salmonella and Staphylococcus cells. For 
the cells of both genera, the scattering intensity of the cell wall was brighter than that of 
the cytoplasmic membrane. Using scattering intensity data from five serotypes of Sal-
monella and five species of Staphylococcus bacterial cells, a classification has been done 
by the SVMs classification algorithm, and identification accuracy obtained was of 
99.9% with a kappa coefficient of 0.9998. It was concluded, however, that the classifica-
tion models need to be validated with bacterial cultures from more food matrices. Fur-
ther research is also needed to validate the method with positively identified colonies 
using confirmatory testing, such as latex agglutination or polymerase chain reaction 
tests.  

To characterize morphological diversity in growing microbial communities revealed 
by phase-contrast microscopy, the system, called CMEIAS (the abbreviation from 
Center for Microbial Ecology Image Analysis System) have been developed [7]. It is a 
free downloadable CDIA interactive system which consists of several custom plug-ins 
for UTHSCSA ImageTool [72]. By measuring various morphological features of indi-
vidual cells, CMEIAS classifies them into one of 11 predominant bacterial morpho-
types, including cocci, spirals, curved rods, U-shaped rods, regular straight rods, un-
branched filaments, ellipsoids, clubs, rods with extended prostheca, rudimentary 
branched rods, and branched filaments. 1937 phase-contrast grayscale digital images of 
various diverse microbial communities were used for training and testing the shape 
classifier. It was shown to have an accuracy of 96.0% on a training set of 1471 cells and 
97.0% on a test set of 4270 cells representing all 11 bacterial morphotype classes. A nu-
trient shift-up perturbation in two continuously fed anaerobic bioreactors with mor-
phologically distinct start communities was presented as an example of CMEIAS appli-
cation for characterizing microbial population dynamics in ecological systems. To date, 
three upgraded versions of CMEIAS were published with options of color segmentation 
[73], quadrate maker [74] and fractal analysis [75]. 
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Morphological segmentation was used in a method developed for determining the 
time to first division of individual bacterial cells growing on agar media [76]. Digital 
images of bacterial cells of Escherichia coli, Listeria monocytogenes and Pseudomonas 
aeruginosa were acquired by phase-contrast microscopy at intervals. CDIA was con-
ducted by Image Pro v.4.5 (Media Cybernetics, Maryland, USA) and data were then 
analyzed by in-house written Visual Basic programs. The time to first division was es-
timated by calculating the area of the smallest rectangle that can be drawn around an 
object, divided by the area of the object itself. This parameter was found to increase 
suddenly during growth at a time that correlated with cell division as estimated by vis-
ual inspection of the digital images. This method was used successfully to generate lag 
time distributions for populations of the gram-negative rods, but did not work with the 
coccoid organism Staphylococcus aureus. This method provides an objective measure 
of the time to first cell division, whilst automation of the data processing allows a large 
number of cells to be examined per experiment. 

Two single cell morphometry CDIA algorithms were designed for budding yeast stu-
dies by light microscopy imaging. The first was used in a robotic method to automat-
ically obtain quantitative morphology features of Saccharomyces cerevisiae yeast cells 
of four deletant strains: YLR371w, YDR349c, YLR192c, and YDR414c [77]. It was 
demonstrated that the method provided an efficient means of getting statistically sig-
nificant morphological differences between strains, and that these differences varied 
with growth stage. The second algorithm was designed for identification of cell cycle 
phases based on cell bud size [78]. It automatically extracted from the light microscopy 
images the cell geometrical features including compactness, axis ratio, and bud size. 
The features were then used for classification by the linear SVMs, distance-based classi-
fication, and k-nearest-neighbor algorithm. The algorithm was shown to be effective in 
automatic classification of the cells at different stages of the cell cycle after it was pro-
vided with labeled training data. 

Multicolor staining, in particular, combined with fluorescence microscopy observa-
tion is a very popular approach in microbiology. A number of studies were conducted 
for developing CDIA based methods to make this procedure more objective and less 
labor intensive. Color segmentation was the main principle in all these methods.  

Using programming language C, a CDIA system named BACS capable of the auto-
matic enumeration of actively respiring bacteria in river water was developed [79]. The 
epifluorescence microscopy images were acquired after double-staining of bacteria by 
4'-6'-diamidino-2-phenylindole (DAPI) (all cells fluoresce blue) and 5-cyano-2,3-ditolyl 
tetrazolium chloride (CTC) (respiring cells fluoresce orange). The automatic enumera-
tion was conducted after color segmentation. The regression coefficients of DAPI and 
CTC-stained bacteria in river water between microscopic visual counts and digital im-
age analysis exceeded 0.96 and 0.93, respectively. An improved version of BACS was 
used to simultaneously identify Escherichia coli O157:H7 in milk samples and assess 
their respiratory activity [80]. In this case, bacterial cells were triple stained by CTC, 
DAPI and FITC-labelled fluorescent antibody (green-yellow fluorescence). A good 
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correlation was found between the counts of actively respiring (r = 0.93) and total (r = 
0.94) Escherichia coli O157:H7 measured by CDIA and visual observation.  

A vital double-staining of the yeast Saccharomyces cerevisiae cells by ethidium bro-
mide (EB) and DAPI was used to assess a fraction of damaged cells in the population. 
EB-stainable damaged cells fluorescing red and DAPI-stainable all cells fluorescing blue 
could be revealed simultaneously in the same sample by fluorescence microscopy. A 
CDIA procedure based on the color segmentation was developed for the automatic de-
termination of the relative number of damaged cells using ImageJ software [81]. A good 
correlation has been found between the viability rates determined by the plate count 
method and the relative numbers of intact cells assessed by the developed procedure in 
the dry preparation of a commercial ethanol-producing yeast strain after rehydration 
under various conditions [82]. Similar approach with ImageJ color segmentation was 
applied in a viability assay for unicellular cyanobacteria, in which red chlorophyll fluo-
rescence and an unspecific green autofluorescence was used for the differentiation of 
viable and non-viable cells [83]. Both autofluorescence signals could be observed si-
multaneously allowing a direct classification of viable and non-viable cells. The assay 
was validated for the model organism Synechocystis sp. PCC 6803 by plating/colony 
count, absorption spectra and chlorophyll measurements.  

Color segmentation option of the CMEIAS (see above) was used to quantify the in 
situ spatial scale of N-acylhomoserine lactone (AHL)-mediated cell-to-cell communica-
tion of Pseudomonas putida colonized on tomato and wheat root surfaces [84] (more 
on the microbial cell-to-cell communication see the review [85]). In this study, spatial 
distribution of two strains of Pseudomonas putida was investigated by confocal mi-
croscopy. The first strain served as an “AHL-source” strain. It constitutively expressed 
red fluorescent protein. The second strain was an “AHL-sensor” containing AHL-in- 
ducible reporter plasmid with a green fluorescent protein-encoding sensor cassette. The 
results of the work indicated that the effective “calling distance” on root surfaces was 
very long-range in proportion to the size of individual bacteria. It was concluded that 
AHL-mediated cell-to-cell communication occurs not only within dense populations 
(so called “quorum sensing”), but also in very small groups and over long ranges be-
tween individual bacteria. The authors proposed that this cell-to-cell communication is 
governed more by the in situ spatial proximity of cells within AHL-gradients than the 
requirement for a quorum group of high population density. 

CDIA of fluorescent microscopic images of triple-stained Saccharomyces cerevisiae 
yeast cells was shown to make it possible getting and treating single cell morphological 
features as quantitative data [86]. For this purpose, mannoprotein (as a cell wall com-
ponent marker), the actin cytoskeleton, and nuclear DNA were specifically stained si-
multaneously by rhodamine–phalloidin, fluorescein isothiocyanate–conjugated conca-
navalin and DAPI, respectively. The developed CDIA was employed for high-dimen- 
sional and quantitative phenotyping of yeast mutants [87] presented in the Saccharo-
myces cerevisiae Morphological Database (SCMD) [88]. This data-mining approach 
revealed that deletion of nearly half of the yeast genes not essential for growth affects 
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some morphological traits. Similar morphological phenotypes may be caused by dele-
tions of functionally related genes, enabling a functional assignment of a locus to a spe-
cific cellular pathway. The approach was upgraded for investigating fission yeast [89] 
and, in addition to the originally developed 501 parameters for cell wall morphology, 
nuclear DNA, and actin, 610 parameters for the morphology of some other subcellular 
components, were proposed [90]. Also, it was demonstrated to be useful for studies of 
antifungal drugs [91] [92]. 

Computer image processing algorithms of the ImageJ software have been tailored for 
subcellular microfluorimetry of the single live (not fixed) Saccharomyces cerevisiae 
yeast cells. The algorithms were used for quantitative processing of the color digital 
fluorescence microscopy images aiming to evaluate intravacuolar viscosity and to in-
vestigate the intracellular distribution of anthracycline anticancer drug doxorubicin 
[93].  

Movement of insoluble polyphosphate complexes (IPCs) stained by DAPI in the va-
cuoles of the cells was studied [94]. As the first step, this movement was demonstrated 
to be Brownian motion. By fluorescence measurements, on fluorescein isothiocya-
nate-labelled latex microspheres, a methodology was developed for measuring a fluo-
rescing particle’s two-dimensional (2D) displacements and its size. Using this metho-
dology, in four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. 
Apparent viscosity values in the vacuoles of the cells, computed by the Einstein- 
Smoluchowski equation using the obtained data, were found to be 2.16 ± 0.60, 2.52 ± 
0.63, 3.32 ± 0.9 and 11.3 ± 1.7 cP. (More on intracellular viscosity see the review [95]). 

Since the method presented above was too time and labor-consuming for intravacu-
olar viscosity studies on population level, one more method for intravacuolar viscosity 
assessment in yeast cells was developed [96]. By visual observations, fluorescent dye 
quinacrine was shown to be specifically accumulated within the vacuoles of the cells. 
There was no detectable binding of the dye within the vacuoles as it freely and com-
pletely flowed out of the vacuoles upon ATP depletion of the cells. The fluorescence 
anisotropy of quinacrine was measured by CDIA microfluorimetry in the vacuoles of 
39 cells using images acquired in a fluorescence microscope equipped with polarizers. 
From cell to cell, this parameter changed in the range 0.032 - 0.086. Using the Perrin 
plot as a calibration curve, apparent viscosity values of the vacuolar milieu were calcu-
lated for each cell. The population of the cells studied was heterogeneous with regard to 
vacuolar viscosity, which was in the range 3.5 ± 0.4 - 14.06 ± 0.64 cP. There was a cha-
racteristic distribution of the frequencies of cells with apparent viscosities within cer-
tain limits, and cells with viscosity values in the range 5 - 6 cP were the most frequent. 

A study was undertaken to test if intact yeast cells of S. cerevisiae can be used as a 
model for locating intracellular sites/targets of the DNA-directed drugs. With this goal 
in mind, intracellular distribution of anthracycline anticancer drug doxorubicin (DR), 
as an example, was investigated along with fluorescent DNA markers DAPI and ethi-
dium (E) [97] [98]. Application of DAPI in combination with DR or E visualized intra-
cellular location of the nuclei and the mitochondria. Red, green and blue components 
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of the fluorescence intensity were quantitatively assessed by the ImageJ “Analyze” plu-
gin in the selected subcellular regions of interest. The obtained data were called “pseu-
dospectra” as they roughly corresponded to the real spectra of the dyes. Using analysis 
of these data, called “pseudospectral analysis”, it was established that all three dyes were 
located in the nuclei and in the mitochondria. In contrast to DAPI, which interacts only 
with DNA, an appreciable fraction of DR and E probably associated with the mito-
chondrial membranes. When added combined, DAPI competed with DR and E for 
binding sites on DNA. It was concluded that this approach may be applied to designing 
new DNA-targeted drugs at the stage of preliminary assessment of their interaction 
with eukaryotic cells with the yeast Saccharomyces cerevisiae as a model.  

Green fluorescent protein (GFP) tagging technology combined with fluorescence 
microscopy imaging is a method to study intracellular location/function of proteins in 
living cells including microbial ones. In this method, CDIA is a platform for extracting 
quantitative information from the images and to automate data acquisition and treat-
ment (on general aspects of this issue see the review [99]). By this method, the subcel-
lular localization and movement of three proteins, GFP-tagged Lac Repressor protein 
(LacR) inserted into a gene cluster, named Chr1, mCherry-labeled Cut11 protein of the 
nuclear membrane (NM) and the Spindle Pole body (SPB) compound Sid4 fused to Red 
Fluorescent Protein (Sid4-mRFP) in fission yeast Schizosaccharomyces pombe was stu-
died [100]. The distances between the proteins were assessed on the fluorescence mi-
croscopy images of the cells by the measurement tools of Zeiss Zen Lite and ImageJ 
programs (both are free Internet-accessible) before and after depletion of the nitrogen 
source. It was shown, in particular, that there was a statistically significant shift in the 
localization of the gene cluster Chr1 moving away from the NM towards the SBP.  

One more example of this methodology implementation is the development of com-
putational methods to automatically analyze the images created by the UCSF yeast GFP 
fusion localization project [101] [102]. The system was trained to recognize the same 
location categories that were obtained visually. Testing the system have shown that 
when the highest confidence assignments were considered, 94.7% agreement was ob-
served. It was concluded that the automated method provides an objective, quantitative 
and repeatable assignment of protein locations that can be applied to new collections of 
yeast images (e.g. for different strains or the same strain under different conditions).  

4. Conclusion 

To summarize briefly the presented survey of literature published for the last 15 years, 
it can be concluded that the use of CDIA of optical images in microbiology is a prom-
ising way to a higher level of many traditional microbiological techniques by making 
them more objective and suitable for statistical analysis and automation. Also, this me-
thodology made a remarkable improvement of the basic research toolbox, especially for 
studies of single microbial cells. Nevertheless, it is just a tool, and the success of its use 
in future will entirely depend on how skillfully it will be implemented for the investiga-
tion and the exploration of the microbial world. Anyway, it should be kept in mind that 
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CDIA, as any advanced tool, does not substitute for a qualified researcher, but assists 
him! 
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