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Abstract 
The classical Poisson risk model in ruin theory assumed that the interarrival times 
between two successive claims are mutually independent, and the claim sizes and 
claim intervals are also mutually independent. In this paper, we modify the classical 
Poisson risk model to describe the surplus process of an insurance portfolio. We 
consider a jump-diffusion risk process compounded by a geometric Brownian mo-
tion, and assume that the claim sizes and claim intervals are dependent. Using the 
properties of conditional expectation, we establish integro-differential equations for 
the Gerber-Shiu function and the ultimate ruin probability. 
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1. Introduction 

Various papers in ruin theory modify the classical Poisson risk model to describe the 
surplus process of an insurance portfolio. An extension of the classical model is that the 
risk process perturbed by a diffusion was first introduced by Gerber [1] and has been 
further studied by many authors during the last few years, e.g. Dufresne and Gerber [2], 
Gerber and Landry [3], Wang and Wu [4], Tsai and Willmot [5] [6], Chiu and Yin [7], 
and the references therein. 

In the risk process that is perturbed by diffusion, the surplus process ( )U t  of an 
insurance portfolio is given by 
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( )
( )

( )1 1
1

, 0,
N t

i
i

U t u ct X B t tσ
=

= + − + ≥∑                   (1) 

where 0u ≥  is the initial surplus, 0c >  is the positive constant premium income  

rate, ( )
( )

1

N t

i
i

S t X
=

= ∑  is the aggregate claims process, in which 

( ) { }1 2sup : kN t k T T T t= + + + ≤  

is the claim number process (denoting the number of claims up to time t), and the in-
terarrival times { } 1i i

T ∞

=
 is a sequence of positive random variables. { }, 1iX i ≥  is a se-

quence of nonnegative independent identically distributed (i.i.d.) random variables with 
distribution function ( ) ( )1F x F x= −  and density function ( )E Xµ = , ( ){ }1 , 0B t t ≥  
is a standard Brownian motion that is independent of the aggregate claims process 
( )S t , 1σ  is a positive constant. 
It is explicitly assumed in these papers that the interarrival times { } 1i i

T ∞

=  and the 
claim sizes { }, 1iX i ≥  are mutually independent. However, this assumption is often 
too restrictive in practice, and there is a need for more general models where the inde-
pendence assumptions can be relaxed. Recently, various results have been obtained 
concerning the asymptotic behavior of the probability of ruin for dependent claims, see 
[8]-[14], as well as the references therein. Zhao [14] assumed that the distribution of 
the time between two claim occurrences depends on the previous claim size. Motivated 
by the results of Zhao [14], the main aim of this paper is to modify the risk model (Eq-
uation (1)), and establish integro-differential equations for the Gerber-Shiu function 
and the ultimate ruin probability in the new risk model. 

2. Improved Risk Model 

In this paper, it is assumed that the claim occurrence process to be of the following type: 
If a claim iX  is larger than a random variable iY , then the time until the next claim 

1iT +  is exponentially distributed with rate 1 0λ > , otherwise it is exponentially distri-
buted with rate 2 0λ > . The quantities iY  are assumed to be i.i.d. random variables 
with distribution function ( )G x . Assuming that 

( ) ( )
1 2

P X Y P X Y
cµ

λ λ
> ≤ 

< + 
 

, 

which is the net profit condition. 
In the daily operation of insurance company, in addition to the premium income and 

claim to the operation of spending has a great influence on the outside, and there is also 
a factor that interest rates should not be neglected. As in [15], this paper assume that 
the risk model Equation (1) is invested in a stochastic interest process which is assumed 
to be a geometric Brownian motion ( ){ }2 2e ert B tt σ+∆ = , where r and σ2 are positive con-
stants, and ( ){ }2 , 0B t t ≥  is a standard Brownian motion independent of ( ){ }, 0U t t ≥ . 
Let ( )X t  denote the surplus of the insurer at time t under this investment assump-
tion. Thus, 
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( ) ( )( ) ( )
0

e e d , 0, 0 .
tt sX t u U s t X u∆ −∆= + ≥ =∫                (2) 

Denote T to be the ruin time (the first time that the surplus becomes negative), i.e., 

( ) ( ){ }inf : 0 0 ,T t X t X u= ≤ =  

and T = ∞  if ( ) 0, 0X t t> ∀ ≥ . 
This article is interested in the expected discounted penalty (Gerber-Shiu) function: 

( ) ( ) ( ) ( ) ( ){ }e , 0Tm u E w X T X T I T X uδ
δ

−  = − < ∞ =  ,         (3) 

where ( )I ⋅  is the indicator function, 0δ >  is the force of interest and ( ),w x y  is a 
nonnegative function of 0, 0x y> >  and satisfies ( )0,0 1w = . 

Furthermore, let 1T  be the time when the first claim occurs, and random variable 

1iT  being exponentially distributed with rate 0iλ > . Assuming that 

( ) ( )11P T T P X Y= = > , ( ) ( )12P T T P X Y= = ≤ . 

For 1, 2i = , define 

( ) ( ) ( ) ( ) ( ) ( ){ }1e , 0 ,T
iim u E w X T X T I T X u T Tδ

δ
−  = − < ∞ = =  ,      (4) 

such that 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2m u m u P X Y m u P X Yδ δ δ= > + ≤ ,             (5) 

then, ( ) ( ) ( ) ( ) ( )1 20 0 0 1m m mδ δ δ= = = . 

3. Integro-Differential Equations for ( ) ( )im uδ  

In this section, a system of integro-differential equations with initial value conditions 
satisfied by the Gerber-Shiu function ( ) ( )im uδ  is derived. 

Define 
2
2

2
a r σ
= + , and 

( )( )1 10 0
e e d e d .

t tt s s
tY u c s B sσ∆ −∆ −∆= + +∫ ∫                  (6) 

Lemma 3.1 Let 
[ ]

{ }
0,

sup 0t t
s t

A Y
∈

= ∨  for 0t > . For 0ε >  define the hitting time

{ }inf 0, t tT t Y Aε ε= > − = − . Then, for 0α > , it can be concluded that 

( )( ) ( )e , 0 1 , 0.TE T X uεα
ε ο ε ε− < ∞ = = + →                 (7) 

Proof :t t tV Y A= −  is a reflecting diffusion with generator 

( ) ( ) ( ) ( ) ( )2
2 2 2
1 2 2

d d1
2 dd

f x f x
Lf x x c ax

xx
σ σ= + + + , 

acting on functions satisfying the reflecting boundary condition ( )0 0f ′ = . 
If 

( ) ( ),
, 0, 0, 0,

f x t
Lf x t x t

t
∂

+ = < >
∂
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and 
( )

0

,
0

x

f x t
x

=

∂
=

∂
 for t > 0, then, according to Itô’s formula ( ),tf V t  is a local mar-  

tingale. Using the separation variable technique, we find that 

( ) ( ) ( ), e tf x t g x z xα−=  

is a solution, where 

( ) 2 2 2
1 2

exp d
o

x

c avg x v
vσ σ

 +
=  + 

∫ , 

( )z x  is a solution of 

( ) ( ) ( ) 0z x r x z x′′ + = . 

Here 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
2 2 2
1 2

2 2 2
1 2

2 2g x x c ax g x g x
r x

g x x

σ σ α

σ σ

′′ ′+ + + −
=

+
. 

Using the initial condition 
( )

0

,
0

x

f x t
x

=

∂
=

∂
 for 0t > , we get ( )

( ) 2
1

0
0

z c
z σ
′

= , conse-

quently 

( )
( ) ( )2

1

0
1

z c
z

ε ο ε
ε σ

= + + . 

Applying the Optional Stopping Theorem, it follows that 

( ) ( ) ( ) ( )( )0 e , 0Tz E g z T X uεα
εε ε−= − − < ∞ = , 

and thus 

( )( ) ( )
( ) ( ) ( )0

e , 0 1 , 0T z
E T X u

g z
εα

ε ο ε ε
ε ε

− < ∞ = = = + →
− −

. 

This ends the proof of Lemma 3.1. 
Similarly, the following lemma can also be obtained. 
Lemma 3.2 Let 

[ ]
{ }

0,
sup 0t t
s t

B Y
∈

= ∧  for 0t > . For 0ε >  define the hitting time 

{ }inf 0, t tT t Y Aε ε= > − = . Then, for 0α > , it can be concluded that 

( )( ) ( )e , 0 1 , 0.TE T X uεα
ε ο ε ε− < ∞ = = + →                 (8) 

Theorem 3.1 Assuming that ( ) ( )im uδ  is second order continuously differentiable 
functions in u, then ( ) ( )im uδ  satisfies the following integro-differential equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 11 1 1

1 1 20

1

1
2

d

, d 0

u

u

u m u c au m u m u

P Y y m u y P Y y m u y F y

w u y u F y

δ δ δ

δ δ

σ σ λ δ

λ

λ
+∞

′′ ′+ + + − +

 + ≤ − + > − 

+ − =

∫

∫

,        (9) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 22 2 2

2 1 20

2

1
2

d

, d 0

u

u

u m u c au m u m u

P Y y m u y P Y y m u y F y

w u y u F y

δ δ δ

δ δ

σ σ λ δ

λ

λ
+∞

′′ ′+ + + − +

 + ≤ − + > − 

+ − =

∫

∫

,       (10) 

with the initial value conditions 

( ) ( ) ( ) ( )1 20 0 1m mδ δ= = , ( ) ( ) ( ) ( )1 20 0 0m mδ δ′ ′= = . 

Proof Let 11T  be the time when the first claim occurs which exponentially distri-
buted with rate 1 0λ > . Consider the risk process ( ){ }: 0X t t ≥  defined by Equation 
(2) in an infinitesimal time interval ( )0, t . There are three possible cases in ( )0, t  as 
follows. 

1) There are no claims in ( )0, t  with probability 11 tλ− , thus ( ) ( )X t Y t= ; 
2) There is exactly one claim in ( )0, t  with probability 1tλ . According to different 

of the claim amount, there are three possible cases in this case as follows. 
a) The amount of the claim ( )y Y t< , i.e., ruin does not occur, and thus 
( ) ( )X t Y t y= − ; 
b) The amount of the claim ( )y Y t> , i.e., ruin occurs due to the claim; 
c) The amount of the claim ( )y Y t= , i.e., ruin occurs due to oscillation (observe 

that the probability that this case occurs is zero). 
3) There is more than one claim in ( )0, t  with probability ( )tο . 
Thus, considering the three cases above and noting that ( ){ }: 0X t t ≥  is a strong 

Markov process, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )) ( )

( ) ( ) ( )

1 11 1 10

2

1 d

e 1 e

                d

                e , d

t

t

Yt t
t t

t

t
t tY

m u t E m Y tE P Y y m Y y

P Y y m Y y F y

t w Y y Y F y t

δ δ
δ δ δ

δ

δ

λ λ

λ ο

− −

+∞−

 = − + ≤ −  
+ > − 

+ − +

∫

∫

   (11) 

By Taylor expansion, we have ( )e 1t t tδ δ ο− = − + , thus Equation (11) becomes 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )) ( )

( ) ( ) ( )

1 1

11 1 10

2

1 d

e

 d

 e , d

t

t

t

Yt
t t

t

t
t tY

tE m Y

E m Y m u tE P Y y m Y y

P Y y m Y y F y

t w Y y Y F y t

δ

δ
δ δ δ

δ

δ

λ δ

λ

λ ο

−

+∞−

 +  
 = − + ≤ −  

+ > − 

+ − +

∫

∫

       (12) 

Then, by Itô’s formula we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2

1 21 20

1lim
2

t

t

E m Y m u
c au m u u m u

t
δ δ

δ δσ σ
→

  −  ′ ′′= + + + .   (13) 

Therefore, by dividing t on both sides of Equation (12), letting 0t → , using Equa-
tion (13), we obtain Equation (9), and similarly we can obtain Equation (10). 

The condition ( ) ( ) ( ) ( )1 20 0 1m mδ δ= =  follows from the oscillating nature of the 
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sample paths of ( ){ }X t . Now, we prove ( ) ( ) ( ) ( )1 20 0 0m mδ δ′ ′= = . 
For all 0ε > , let { }inf 0, t tT t Y A ε= > − = − , 11T Tτ = ∧ . Then, by the strong 

property of ( ){ }X t , it can be concluded that 

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )

1 1

111

11 1 21

0 e 0 0

             e 0 0

                 e 0 0

m E m X X

E m X I T T X

E m X I T T X I I

δτ
δ δ

δτ
δ

δτ
δ

τ

τ

τ

−

−

−

= =

= < =

+ > = ≡ +

 

According to Lemma 3.1, it can be concluded that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1
1 1 10 e , 0 0 0TI m E T X mα λ

δ δε ε ο ε− += − < ∞ = = − + , 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )

1
2 1 10 0

e 0 0 0 0 d dT
sI P T s X E m Y x X s F xα λ

δλ

ο ε

+∞ +∞ − + = > = + − =  
=

∫ ∫  

Thus, ( ) ( ) ( ) ( ) ( )1 10 0m mδ δ ε ο ε= − + , and correspondingly ( ) ( )1 0 0mδ′ − = . Similar 
results can be derived for ( ) ( )2 0mδ′ − . 

And for all 0ε > , let { }inf 0, t tT t Y A ε′ = > − = , 11T Tτ ′ ′= ∧ , according to Lemma 
3.2 we obtain ( ) ( ) ( ) ( )1 20 0 0m mδ δ′ ′+ = + = , thus ( ) ( ) ( ) ( )1 20 0 0m mδ δ′ ′= = . 

This ends the proof of Theorem 3.1. 

4. Differential Equations for ( )i uΦ  

Let 0δ =  and ( ), 1w x y ≡  in Equation (3), correspondingly the expected discounted 
penalty function ( )m uδ  turns into the ultimate ruin probability ( )i uΦ . 

Obviously, 

( ) ( ) ( ) ( ) ( )1 2u u P X Y u P X YΦ = Φ > +Φ ≤ , 

and 

( ) ( ) ( )1 20 0 0 1Φ = Φ = Φ = . 

Suppose that 

( )0P Y p= = , ( ) 1P Y u p q= = −  , 

and iX  is exponentially distributed with rate ( )0β β > . Then, we get the following 
theorem. 

Theorem 4.1 Assuming that ( )i uΦ  is second order continuously differentiable 
functions in u, then ( )i uΦ  satisfies the following integro-differential equation 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2
1 2 1 2 2 1 1

1 1 1 1 1 2

1 1 1
2 2 2

u u u a u c u

au a c u q u q u

σ σ β σ σ βσ

β λ β λ β λ β

  ′′′ ′′+ Φ + − + + + − Φ   
′+ − + − − Φ + Φ = Φ  

    (14) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2 2 2
1 2 2 2 2 1 2

2 2 2 2 2 1

1 1 1
2 2 2

u u u a u c u

au a c u p u p u

σ σ β σ σ βσ

β λ β λ β λ β

  ′′′ ′′+ Φ + − + + + − Φ   
′+ − + − − Φ + Φ = Φ  

    (15) 
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with the initial value conditions 

( ) ( ) ( ) ( )1 2 1 20 0 1, 0 0 0.′ ′Φ = Φ = Φ = Φ =  

Proof According to Equation (9), it can be concluded that 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2
1 2 1 1 1 1

1 1 2 10

1
2

e d e 0
u y u

u u c au u u

p u y q u y yβ β

σ σ λ

λ β λ− −

′′ ′ ′+ Φ + + Φ − Φ

+ Φ − + Φ − + =  ∫
 

By taking the derivative with respect to u on both sides of the above formula, and af-
ter some careful calculations, we obtain Equation (14). And similarly we can prove that 
Equation (15) holds. This ends the proof of Theorem 4.1. 

5. Conclusion 

In this paper, we consider a jump-diffusion risk process compounded by a geometric 
Brownian motion with dependence between claim sizes and claim intervals. We derive 
the integro-differential equations for the Gerber-Shiu functions and the ultimate ruin 
probability by using the martingale measure. Further studies are needed for the numer-
ical solution of Equations (9), (10), (14) and (15). The results derived in this paper can 
be generalized to similar dependence ruin models. 
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