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Abstract 
This paper presents a study of fractional order quadrature oscillators based on cur-
rent-controlled current follower transconductance amplifiers (CCCFTA). The design 
realisation and performance of the fractional order quadrature oscillators have been 
presented. The quadrature oscillators are constructed using three fractional capaci-
tors of orders α = 0.5. The fractional capacitor is not available on the market or in the 
PSPICE program. Fortunately, the fractional capacitor can be realised by using the 
approximate method for the RC ladder network approximation. The oscillation fre-
quency and oscillation condition can be electronically/orthogonally controlled via 
input bias currents. Due to high-output impedances, the proposed circuit enables 
easy cascading in current-mode (CM). The PSPICE simulation results are depicted, 
and the given results agree well with the anticipated theoretical outcomes. 
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1. Introduction 

Fractional calculus, the branch of mathematics that addresses non-integer order diffe-
rentiation and integration, is a field that is over 300 years old. Fractional calculus 
gained considerable attention in the late sixties because it provides a more accurate de-
scription of real objects, and many structures found in nature can be modelled by frac-
tals [1]. Fractional calculus addresses the generalization of differentiation and integra-
tion of non-integer orders. The rapid growth of the application of fractional calculus to 
the fields of science and engineering is noteworthy. The integer-order models have 
been used for a long time, not because they were more accurate or better, but because of 
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their ability to solve fractional differential equations [2]. This issue has changed over 
the past few years as several methods of fractional derivative and integral approxima-
tion have been developed [3] [4] [5]; therefore, fractional calculus can be used to easily 
model a wide area of applications. Fractional calculus plays a major role in physics [6] 
[7], control systems [8] [9] [10], signal processing [11], and electrical engineering [12]- 
[17]. 

Traditional differentiation takes the form ( ) ( )d dn nt f t , where n is an integer; 
however, using fractional calculus, the value of n can be a non-integer order, such as 
1.1, 2  or any other real or imaginary order. The Riemann-Liouville definition [18] 
[19] [20] of a fractional derivative, where 1n nα− < < , is defined as: 
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and the definition of a fractional integral, where 0 1α< < , is given as: 
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where ( ).Γ  is the gamma function. One of the most frequently used definitions for 
the general fractional derivatives is the Caputo definition, which can be expressed as 
follows [21]: 
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where m is an integer, such that ( )1m mα− < < . The Laplace transform is a very use-
ful tool in the design and analysis of electronic circuits, transforming the circuit from 
the time domain to the frequency domain. This transformation is particularly useful 
because it allows for the analysis of circuits using algebraic rather than differential equ-
ations. The Laplace transform of (3) under zero initial conditions is given by [16]: 

( ){ } ( )0D f t s F sα α= .                        (4) 

where sα  is the fractional Laplacian operator. The use of the fractional Laplacian op-
erator allows for the design and analysis of systems using concepts from fractional cal-
culus without having to solve the difficult time domain representations. 

During the past decades, the current-mode (CM) approach has become more popu-
lar in analogue integrated circuit design due to its advantages of providing a larger dy-
namic range, wider bandwidth, and lower power consumption over its voltage-mode 
counterparts [22]. Several active CM blocks are proposed for active filters, oscillators 
and immittance circuit design. The CM realization of oscillators and filters using the 
first generation of current conveyor (CCI), the second generation of current conveyor 
(CCII), and many other active blocks has been reported [23]-[28]. However, a large 
number of passive resistors are inevitably used in these circuits (except for the resistors 
that support linear capacitors), which are not suitable for monolithic integration [29]. 
In 2009, Herencsar et al. [30] introduced a modification of the CFTA, called the cur-
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rent-controlled current follower transconductance amplifier (CCCFTA), in which the 
parasitic resistance at the input terminal is electronically tuned. The CCCFTA can be 
used as an active block in an analogue circuit design with a minimum number of resis-
tors. 

Sinusoidal oscillators are widely used in various applications, such as communica-
tion, instrumentation, measurement and signal processing. Particularly in communica-
tion systems, the sinusoidal oscillator is frequently used to generate the carrier signal 
for the modulation system [31] [32] [33] [34], such as AM, FM, and ASK. With the use 
of the fractional elements, the design equations of the well-known oscillators could be 
generalized from the tight integer order domain to the general fractional order domain. 

In this paper, a study of a generalized fractional order CCCFTA-based oscillator cir-
cuit is introduced. The general CO and FO for this oscillator are derived with the use of 
the RC ladder network. 

2. Fractional Capacitor 

A realization using Carlson’s method [15] was selected to model the fractional capaci-
tors. The approximation of the fractional capacitors (1/s)1/n was conducted using a reg-
ular Newton process. The order of these approximations increases as the number of 
iterations in the Newton process increases. The function used in the regular Newton 
process for these approximations is: 

( ) ( ) ( ) ( )
( ) ( ) ( )
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1 1 1

n

n

n x n s
F x x
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.                     (5) 

where x is the previous iteration. Using this process to approximate a fractional capaci-
tor when n = 2 or α = 0.5, the initial assumption x0 = 1 yields: 
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as the first iteration approximating 1 s . The second iteration approximating 1 s  
is: 
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The magnitude response of this approximation is provided in Figure 1, which 
creates an approximation of the fractional capacitor centred around the angular fre-
quency 1 rad/s. Using the approximation of (7), the fractional Laplacian operator can 
be physically realized using the RC ladder network shown in Figure 2. The impedance 
of this RC ladder network is: 

31 2 4
1

2 1 3 2 4 3 5 4

11 1 1
1 1 1 1in

CC C CZ R
s s s s

R C R C R C R C

= + + + +
+ + + +

.            (8) 

The resistor and capacitor values for the RC ladder shown in Figure 2 can be deter-
mined by equating the terms of (7) after a CFE of (8), which, after the CFE, becomes 
[35] [36] [37]: 
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Figure 1. Magnitude response of the approximated fractional capacitor compared to the ideal 
fractional capacitor of impedance Z(s) = 1/s0.5. 
 

 
Figure 2. Approximated model for the fractional capacitor. 
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              (9) 

Then an approximate CFE with any desired capacitance (C), which is centred around 
any angular frequency ( cω ), by applying magnitude and frequency scaling factors to the 
component values in the ladder realization. The resistor and capacitor values become: 

s mR Rk= .                            (10) 

s
f m

CC
k k

= .                           (11) 

where sR  and sC  are the scaled resistor and capacitor values, respectively; R and C 
are the unscaled resistor and capacitor values, respectively; and 11 n

m ck Cω=  is the 
frequency scaling factor. 

The values of the resistors and capacitors used in the PSPICE simulations of the frac-
tional order quadrature oscillators with the approximated fractional capacitors are pro-
vided in Table 1. The phase and magnitude response of the fabricated two-terminal FO 
capacitors are compared with the conventional capacitor, which is simulated using 
PSPICE and is shown in Figure 3. These values realize the approximated fractional ca-
pacitor of 40 pF with α = 0.5 centred around a frequency of 1 MHz. 
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3. Description of the CCCFTA 

The schematic symbol and the equivalent circuit of the current-controlled current fol-
lower transconductance amplifier (CCCFTA) [30] are shown in Figure 4. The properties  

 
Table 1. Component values to realize approximated fractional capacitor of 40 pF using RC ladder. 

Component Values 

R1 1.107 MΩ 

R2 8.864 MΩ 

R3 73.499 MΩ 

R4 2.509 MΩ 

R5 3.77 MΩ 

C1 0.054 pF 

C2 0.069 pF 

C3 0.008 pF 

C4 0.029 pF 

 

 
Figure 3. Phase and magnitude of the fractional capacitors compared with the conventional capacitor. 

 

 
Figure 4. CCCFTA (a) schematic symbol and (b) equivalent circuit. 
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of the CCCFTA are similar to the conventional CFTA except that the input voltage of 
CCCFTA is not zero, and the CCCFTA has a finite input parasitic resistance Rf at the f 
input terminal, which can be controlled by the bias current Io as shown below. The cha-
racteristics of the ideal CCCFTA are represented by the following hybrid matrix. 
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The CMOS 0.18 µm implementation based on the second generation current con-
trolled conveyor (CCCII) with a grounded y terminal and a balanced output operation-
al transconductance amplifier (BOTA) [38] is shown in Figure 5. The dimensions of 
the transistors are shown in Table 2. The DC power supply voltages are equal to ±0.8 
V. All transistors operate in the saturation region. For CMOS CCCFTA, the Rf and gmmi 
are written as: 

( )0
2 4

1 , 2f mmi O OX i
mm mm

R g I C W L
g g

µ= =
+

,              (13) 

where gmmi (i = 2, 4) are the transconductances of transistors M2 and M4, forming the 
f stage. In (13), the current IO is used to adjust the Rf; µ0 is the free electron mobility  
 

 
Figure 5. CMOS internal structure of CCCFTA. 
 
Table 2. Scaling of MOS transistor dimensions. 

Transistors W(µm)/L(µm) 

NMOS  

M1, M2 5/2 

M14, M15 1.5/0.4 

M16 - M23 5/0.5 

PMOS  

M3, M4 5/2 

M5 - M8 5/0.18 

M9 - M13, M24 - M29 5/0.5 
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in the channel; COX is the gate oxide capacitance per unit area; and W and L are the 
channel width and length, respectively. Similarly, the transconductances gm of 
CCCFTA can be given by: 

( )0m B OXg I C W Lµ= .                     (14) 

where the current IB is used to control the transconductance gm. 

4. CCCFTA Based Fractional Order Quadrature Oscillators 

The proposed fractional order quadrature oscillator is shown in Figure 6. Because the 
parasitic resistance of the f terminal of CCCFTA is used as an active resistor in this cir-
cuit, this fractional order quadrature oscillator only consists of two CCCFTAs and three 
fractional capacitors. 

Using Equation (12), a routine analysis of the circuit yields the following characteris-
tic equation: 

1 2 3 1 2 2
1 1 2 3 1 2 1 2 1 2 0f F F F F F m F m ms R C C C s C C s g C g gα α α α α α+ + ++ + + = ,        (15) 

From Equation (15), the CO and FO can be expressed as: 

2 2 1 3F m f FC g R C= ,                          (16) 

1

1 1 3

m
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f F F

g
R C C

ω = ,                          (17) 

Moreover, because of the multiple-output CCCFTAs, the circuit can provide two in-
verted output currents, iout2 and iout4. Thus, the relationship of all of the output currents 
can be expressed as: 

1 2

3 4

out out

out out

i i
i i

= −

= −
                             (18) 

The circuit provides four phase quadrature outputs of equal magnitudes. 
 

 
Figure 6. Proposed fractional order quadrature oscillator employing CCCFTAs. 
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5. Simulation Results 

The CCCFTA is realized in Figure 5, and the performance of the proposed circuits is 
verified using PSPICE with a standard chartered 0.18 µm TSMC CMOS process. The 
bias currents of CCCFTA1 and CCCFTA2 are IO1 = IO2 = 300 µA and IB1 = IB2 = 1 mA, 
respectively. Some cases are chosen to be simulated to show the reliability of the pro-
posed design. 

For case 1 (α1 = α2 = α3 = 1), the simulation parameters chosen are CF1 = CF2 = CF3 = 
40 pF. Figure 7 is the simulated quadrature outputs iout1, iout2, iout3 and iout4 at steady 
state. From the simulation results, the oscillation frequency of 3.50 MHz is obtained, 
which agrees well with the theory, as expected. 

For case 2 (α1 = α2 = 1, and α3 = 0.5), the simulation parameters chosen are CF1 = CF2 = 
CF3 = 40 pF, and the frequency of the oscillation equals 35.50 MHz. Figure 8 is the si-
mulated quadrature outputs iout1, iout2, iout3 and iout4 at steady state. 

For case 3 (α1 = α2 = α3 = 0.5), the simulation parameters chosen are CF1 = CF2 = CF3 =  
 

 
Figure 7. iout1, iout2, iout3, and iout4 at steady state. 
 

 
Figure 8. iout1, iout2, iout3, and iout4 at steady state. 
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Figure 9. iout1, iout2, iout3, and iout4 at steady state. 
 
Table 3. The performance comparison table. 

Case Frequency Phase difference 

α1 = α2 = α3 = 1 3.50 MHz 90.00˚ 

α1 = α2 = 1, and α3 = 0.5 35.50 MHz 99.21˚ 

α1 = α2 = α3 = 0.5 1.02 GHz 123.13˚ 

 
40 pF, and the frequency of the oscillation equals 1.02 GHz. Figure 9 is the simulated 
quadrature outputs iout1, iout2, iout3 and iout4 at steady state. 

In each case, the experimental result is compared with the simulated results obtained 
through PSPICE. In the latter case, the fractional orders capacitors are approximated 
using the RC ladder networks as shown in Figure 2. The parameters of the fractional 
order quadrature oscillator for the simulation are divided into three cases in Table 3. 
Table 3 shows that the phase also increases with an increase in the order. It also shows 
the relationship between the frequency and the phase, which is an advantage that the 
fractional order can provide, such as a design for a specific phase. 

6. Conclusion 

This study presented the design of a fractional order CCCFTA-based four-phase sinu-
soidal oscillator. The proposed circuit consists of two CCCFTAs and three fractional 
order capacitors. The oscillation frequency and oscillation condition can be electroni-
cally/orthogonally controlled via input bias currents. The fractional order parameter 
gives extra degree of freedom to the design, and it increases the flexibility of the design 
and adds more fundamentals. PSPICE simulations are included to verify the theoretical 
analysis. Simulated and theoretical results are in close agreement. 
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