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Abstract 
The problem of solving the linear diffusion equation by a method related to the Re-
strictive Pade Approximation (RPA) is considered. The advantage is that it has the 
exact value at certain r. This method will exhibit several advantages for example 
highly accurate, fast and with good results, etc. The absolutely error is still very small. 
The obtained results are compared with the exact solution and the other methods. 
The numerical results are in agreement with the exact solution. 
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1. Introduction 

In this paper, we apply a new implicit method of high accuracy and the number of li-
near systems which to be solved are smaller than that for many famous known implicit 
methods of small step length. Therefore, our required machine time is less than that for 
the other implicit methods. 

Restrictive Pade Approximation (RPA) for parabolic Partial Differential Equation 
(PDE) and Partial Difference Equations is a new technique done by İsmail and Elbar-
bary [1]. In addition, they studied numerical solution of the Convection Diffusion Equ-
ation [2]. RPA for hyperbolic PDE is done by İsmail and Younes [3] [4] [5]. Restrictive 
Taylor approximation solution for the parabolic PDE is studied by İsmail and Elbarbary 
[6]. Schrodinger and Singularly perturbed parabolic PDE studied by İsmail and Elbee-
tar [7] [8]. G. Gurarslan [9] studied numerical modelling of linear and nonlinear diffu-
sion equations by compact finite difference method. 

In this work, we consider the following one dimensional diffusion equation; 

( ) , 0t xxu u f u x L= + < <                        (1) 
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( )( ) , 0t x x
u D u u x L= < <                         (2) 

Subject to the initial condition 

( ) ( ),0 , 0u x f x x L= < <                         (3) 

and boundary conditions 

( ) ( )00, , 0u t g x t= >                           (4) 

( ) ( )11, , 0u t g x t= >                           (5) 

The functions ( )f u  are linear source functions. The function “ ( )D u ” is the diffu-
sion term that plays a crucial role in a wide range of applications in diffusion process. 
[10] [11] [12] The diffusion term ( )D u  appears in several forms. Some of the well 
known diffusion proses are the fast and the slow diffusion process where the diffusion 
term is of the form ( ) nD u u=  where 0n <  and 0n >  respectively. 

2. Method 
2.1. Restrictive Pade Approximation (RPA) 

The Restrictive Pade Approximation (RPA) of function ( )f x  is a particular type of 
rational functions, it can be written in the form [13] [14]; 
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where the positive integer α doesn’t exceed the degree of the numerator N, ( )0 1 Nα = , 

( ) [ ] ( ) ( ) ( )10 .M N
f xf x RPA M N x xα + +− + =                 (7) 

Let ( )f x  have a Maclaurin Series; 
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From Equations (6)-(8) we get, [1] 
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The varishing of the first ( )1M N+ +  power of x on the left hand side of (9) implies 
a system of ( )1M N+ +  equations. 
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Hence we can determine the coefficient, ia  and ib  as a function of ( ), 0 1i iε α= , 
where the parameters iε  are to be determined, such that [15]; 

( ) [ ] ( ) ( ) ( ), 1 1i if xf x RPA M N x iα α= + =              (11) 

Note: ( )0, 1 1i iε α= =  gives the classical Pade Approximation (RPA) of the form; 
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The local truncation error form the RPA can be summarized by the following theo-
rem. 

THEOREM: If the function ( )f x  has an ( )1 hn ++  derivative, then for every ar-
gument x there exist a number η  in the smallest interval I containing the set of points 
{ }0 1 2, , , , ,x x x x xα

, such that; 

( ) ( ) [ ] ( )
( )

( ) ( )( )( )11
, , , ,1 !M N M Nf x

x
R x f x RPA M N R

αα
α α

π
α η

α
++= − + =

+
     (13) 

where ( ) ( ) ( )1 1 2x x x x x x xα α+∏ = − − −
 and , ,M NR α  is the local truncation error 

for the RPA [1]. 

2.2. Restrictive Pade Approximation of the Exponential Matrix 

The exponential matrix exp(rA) can be formally defined by the convergent power 
series, 

( )
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where A is ( ) ( )1 1N N− × −  matrix. 
In the case of Restrictive Pade Approximation of single function the term iε  in Eq-

uation (4) can be reduced to the square matrix iε  in the case of Restrictive Pade ap-
proximation of the exponential matrix, where 
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for example, 
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3. Method of Solution 

We consider the diffussion for ( )f u u= −  [16]. Thus, we use the equation; 

t xxU U U= −                            (16) 

Subject to the initial condition; 

( ), 0 sin , 0 1U x x x= < <                       (17) 

and boundary conditions; 

( )
( )
0, 0, 0

1, 0, 0

U t t

U t t

= >

= >
                         (18) 
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The exact solution of the Equation (16) is given by: 

( ) 2, e sintU x t x−=                          (19) 

Condiser the diffusion Equation (16) with the initial and boundary condition. The open 
rectangular domain is covered by a rectangular grid with spacing h and k in the x and t 
directions respectively. The grid point ( ),x t  denoted by ( ),ih jk  and ( ) ,, i jU ih jk U=  
where ( )0 1i N=  j is non-negaive integer. 

The exact solution of grid representation of (6) is given by [3]; 

( )( )2
, 1 ,exp 1i j x i jU k D U+ = −                     (20) 

The approximation of the partical derivatives 2
xD  at the grid point ( ),ih jk  will 

take the usual form: 

( ), 1
2

1 , ,2
1 2i j i j i jxD U U U
h + −= − +                   (21) 

and according to central finite difference for mulation 

1 12i i iU U U U+ −= − +                       (22) 

The result of making this approximation is to replace (20) by the following equation 
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+ = =                    (23) 
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We use the 
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Equation to approximate the exponential matrix in Equation (23), then the approx-
imate solution of grid representation of Equation (16) can take the form. 
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The constrat matrix 1ε  must determined by using the only one fact that the exact 
solution is given at first level. First choice of 1 ,i jε ε =    was the tridiagonal form: 

, 1 , , 1i i i i i i iε ε ε ε− += = =  and , 0i jε = . The second choise of 1ε  is the diagonal matrix 
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1 , , ,: , 0i j i i i i jε ε ε ε ε  == =  otherwise. 
Other implicit methods can be derived if we use the possible Restrictive Pade Ap-

proximation RPA [M/N], with non-negative integers M and N. 

4. Findings 

The accuracy of Restrictive Pade Approximation method are compared in tables for 
various values of the time t. Tables give exact value, approximate value for compact fi-
nite difference method, approximate value for Restrictive Taylor Approximation, Re-
strictive Pade Approximation and absolute error for ε = 0.0032408523. Comparison of 
the RPA results with RTA method for k = 0.0001, N = 6, r = 0.0036 given below in 
tables. 

The absolute error (AE) is give by the following formula: 

AE Exact value Approximate value= − . 

We tabulated all AE values at Table 1, Table 2 and Table 3. 
 
Table 1. Absolute error (AE) for RPA at t = 0.01. 

t x Exact RPA RTA AE [Present] 

0.01 

1/6 0.162611 0.162611 0.162611 1.02E−10 

2/6 0.320715 0.320715 0.320715 1.01E−10 

3/6 0.469932 0.469932 0.469932 1.01E−11 

4/6 0.606125 0.606125 0.606125 2.06E−11 

5/6 0.725520 0.725520 0.725520 1.12E−10 

1 0.824808 0.824808 0.824808 1.15E−10 

 
Table 2. Absolute error (AE) for RPA at t = 0.1. 

t x Exact RPA RTA AE [Present] 

0.1 

1/6 0.135824 0.135824 0.135824 1.26E−9 

2/6 0.267884 0.267884 0.267884 1.16E−9 

3/6 0.392520 0.392520 0.392520 2.01E−11 

4/6 0.506278 0.506278 0.506278 1.25E−10 

5/6 0.606005 0.606005 0.606005 1.21E−9 

1 0.688938 0.688938 0.688938 1.66E−9 

 
Table 3. Absolute error (AE) for RPA at t = 1. 

t x Exact RPA RTA AE [Present] 

1.00 

1/6 0.022451 0.022451 0.022451 2.54E−10 

2/6 0.044280 0.044280 0.044280 2.12E−10 

3/6 0.064883 0.064883 0.064883 4.25E−12 

4/6 0.083687 0.083687 0.083687 1.92E−11 

5/6 0.100172 0.100172 0.100172 2.04E−10 

1 0.113880 0.113880 0.113880 2.52E−10 
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5. Discussion & Conclusion 

In this article, a numerical algorithm was applied in the one dimensional diffusion equ-
ation. Computed results were compared with other paper results in Table 1, Table 2 
and Table 3. Especially, we compared it with Restrictive Taylor approximation method, 
because these methods have same properties. But as we have seen from the computa-
tional results, Restrictive Pade approximation method has more efficient results than 
restrictive Taylor approximation method. The proposed method results are quite satis-
factory. 
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