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Abstract 
The basic aim of this paper is to introduce and describe an efficient numerical 
scheme based on spectral approach coupled with Chebyshev wavelets for the ap-
proximate solutions of Klein-Gordon and Sine-Gordon equations. The main charac-
teristic is that, it converts the given problem into a system of algebraic equations that 
can be solved easily with any of the usual methods. To show the accuracy and the ef-
ficiency of the method, several benchmark problems are implemented and the com-
parisons are given with other methods existing in the recent literature. The results of 
numerical tests confirm that the proposed method is superior to other existing ones 
and is highly accurate. 
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1. Introduction 

Many physical phenomena encountered in science and engineering are governed by 
ordinary as well as partial differential equations. Some disciplines that use partial 
differential equations to describe the phenomena of interest are fluid mechanics, solid 
mechanics, quantum mechanic, propagation of acoustic and electromagnetic waves and 
problems in heat and mass transfer. Many linear and nonlinear phenomena appear in 
several areas of scientific fields like physics, chemistry and biology can be modeled by 
different type of partial differential equation such as evolution equation, reaction diffu- 
sion equation, Schrodinger type wave equations, Vander Poll’s equation, Telegraph 
equation, Lyapunov equation etc. A broad class of analytical methods and numerical 
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methods available in the literature are used to handle these problems. In this present 
work we are dealing with two partial differential equation named as Klein-Gordon and 
Sine-Gordon equations. The Klein-Gordon equation is as follows: 

( ) ( ) ( ), , , , 0tt xx yyu u u g u f x y x y tα β− − + = ∈Ω ≥                (1) 

where ( ),u u x t=  represents the wave displacement at position x and time t, α  and 
β  are known constant, ( )g u  is the given nonlinear force and f is the known 
function. If we assign the nonlinear force ( ) sing u u=  in (1) then it is known as Sine- 
Gordon equation. The Klein-Gordon equation plays an important role in mathematical 
physics [1] [2] [3] and attracted more attention from scientists and engineering in 
different matter like investigation of the interaction of solutions in a collisionless 
plasma, the recurrence of initial states and examination of the nonlinear wave equ- 
ations, studying the solutions and condensed matter physics and relativistic physics as a 
model of dispersive phenomena. On the other hand, Sine-Gordon equations appeared 
in many physical problems like applications in relativistic field theory, Josephson junc- 
tions or mechanical transmission lines [4] [5] [6] [7]. Numerical solution of partial 
differential equations is far more demanding than the ordinary ones. Several analytical 
or numerical methods such as decomposition method [8], variational iteration method 
[9], He’s variational iteration method [10], collocation and radial basis functions [11], 
auxiliary equation method [12], spectral method [13] [14] [15], wavelet method [16] 
[17] [18] and the references therein have been proposed for the numerical solution of 
these types of equations. Among all these method mentioned above, spectral and wave- 
let method has got more attention of researcher from the last two decades. 

Wavelet analysis had made a lot of successes in different fields of science and engi-
neering due to its beautiful properties such as orthogonality, multi-resolution analysis 
and computational efficiency. Wavelet permits the accurate representation of a variety 
of functions and operators. Wavelet analysis and wavelet transform are recently devel-
oped mathematical tool for solving the linear and non-linear ordinary differential equa-
tions, partial differential equations and integral equation. Wavelets also applied in nu-
merous disciplines such as image compression, data compression and deionising data. 
Most commonly wavelets are Haar, Legendre, Chebyshev are used to find the numeri-
cal solution of partial differential equations. In addition wavelet approach can make a 
connection with some fast and reliable numerical methods. The spectral method has 
the advantage of exponential convergence property when orthogonal basis functions 
are involved. As a result, it plays a vital role in solving partial differential equation. It is 
important to choose the basis function for possible coupling with spectral method. The 
wavelet basis can combine the advantages of both infinitely differentiable and small 
compact support which is far better than the spectral and finite element basis. 

In recent year, spectral method [19] [20] using Legendre polynomials and Legendre 
wavelets as basic functions are considered to solve the Klein-Gordon and Sine-Gordon 
equations. By inspiring the work done in [19] [20], we use the Chebyshev wavelet as 
basis function coupled with spectral method for solving nonlinear Klein-Gordon and 
Sine-Gordon equations. Therefore, spectral collocation methods based on Chebyshev 
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wavelet basis can obtain good spatial and spectral resolution while still keeping high ef-
ficiency. 

The rest of the paper is as follows: In Section 2, Chebyshev wavelet and its properties 
are discussed. Operational matrix of derivative required for our subsequent develop-
ment is presented in Section 3. Section 4 is devoted to present the Chebyshev wavelets 
spectral collocation method for solving Klein-Gordon and Sine-Gordon equations then 
approximate the unknown function. Section 5 deals with the illustrative examples and 
their solutions by the proposed approach compared with exact as well as with existing 
literature. Finally, concluding remarks are made in Section 6. 

2. Wavelets and Chebyshev Wavelets 

In the past decades, wavelets [21] [22] [23] shows their interest in different fields of 
science and technology due to its beautiful properties. Wavelets constitute the family of 
functions constructed from the dilation and translation of a single function known as 
the Mother wavelet. When the dilation parameter a and translation parameter b vary 
continuously we have the following family of continuous wavelets [23] 

( )

1
2

, ;    ,  , 0.a b t
t ba a b a

a
ψ ψ− − = ∈ ≠ 

 
                     (2) 

If we choose 0
ka a−=  and 0

kb nb a−=  where 0 01, 0a b> >  and ,n k +∈  then we 
get the following family of discrete wavelets: 

( ) ( )2, 0 0 0 .
k

k
k n t a a t nbψ ψ−= −                              (3) 

These family of functions are a wavelet basis for ( )2L   and makes an orthonormal 
basis for the special case 0 2a =  and 0 1b = . 

Chebyshev wavelets ( ) ( ), , , ,n m t k m n tψ ψ=  have four arguments, 0,1, 2, ,k =   
1, 2, , 2kn =  , m is the degree of Chebyshev polynomial of first kind and t denotes the 

normalized time. They are defined on the interval [ )0,1  by 

( ) ( )
2

1

,

2 12 2 1 ,     
2 2π

0,                                      otherwise

k
km

m k k
n m

n nT t n t
t

α
ψ

+ −
− + ≤ ≤= 




            (4) 

where 

2, 0
2, 1, 2,m

m
m

α
 == 

= 

 

( )mT t  in (4) are well known Chebyshev polynomial of order m, which is orthogonal  

with respect to the weight function ( )
2

1
1

t
t

ω =
−

 and satisfy the following recursive 

formula: 

( )0 1T t =  

( )1T t t=  
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( ) ( ) ( )1 12 , 1, 2,3, .m m mT t tT t T t m+ −= − =   

Moreover, the set of Chebyshev wavelet are an orthogonal set with respect to the 
weight function ( ) ( )12 2 1k

n t t nω ω += − + . 
Any function ( ) [ ]2 0,1f t L∈  may be expanded in terms of Chebyshev wavelet as 

( ) ( )
1 0

,nm nm
n m

f t c tψ
∞ ∞

= =

= ∑∑                            (5) 

where the wavelet coefficients of the series representation in (5) become 

( ) ( ) ( )
, .

n
nm nm w t

c f t tψ=                          (6) 

If the infinite series in (5) is truncated then Equation (5) can be written as 

( ) ( ) ( )
12 1

T

1 0
,

k M

nm nm
n m

f t c t C tψ
− −

= =

≅ = Ψ∑∑                      (7) 

where C and ( )tΨ  are 12 1k M− ×  matrices given by: 

1 1

T

1,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 1
, , , , , , , , , , , ,k kM M M

C c c c c c c c c− −− − −
 =                 (8) 

( ) 1 1

T

1,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 , 1
, , , , , , , , , , , .k kM M M

t ψ ψ ψ ψ ψ ψ ψ ψ− −− − −
 Ψ =          (9) 

3. Chebyshev Wavelets Operational Matrix of Derivative 

In this section, we first derive the operational matrix D of derivative which plays a great 
role in order to reducing the given problem into solving the system of algebraic 
equation. For this, we concern with some Theorem and Corollary as follows. 

Theorem 1 [24]. Let ( )tΨ  be the Chebyshev wavelets vector defined in (9), then we 
have 

( ) ( )d
,

d
t

D t
t

Ψ
= Ψ                             (10) 

where D is ( )2 1k M +  operational matrix of derivative as follows: 

,

F O O
O F O

D

O O F

… 
 … =
 
 

… 

   

                         (11) 

in which O is an ( ) ( )1 1M M− × +  zero matrix, F is an ( ) ( )1 1M M+ +  matrix and 
its ( ),i j th  element is defined as follows: 

( ) ( ) ( ) ( )1

,
2 2 1 2 1 ,     2, , 1 , 1, , 1 and  is odd

0,                                      otherwise.

k

i j
r s i M j i i j

F
+ − − = + = − += 



    (12) 

Corollary 1. By using Equation (10), the operational matrix for nth derivative can be 
derived as 

( ) ( )d
,

d

n
n

n

t
D t

t
Ψ

= Ψ  
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where nD  is the nth power of matrix D. 

4. Chebyshev Wavelets Spectral Collocation Method 

In different type of numerical methods, spectral methods are one of the most popular 
methods of discretization for the numerical solution of partial differential equations 
and integral equations. The main advantage of this method lies in their accuracy for a 
given number of unknowns. For smooth problems in simple geometries, they offer ex-
ponential rates of convergence or spectral accuracy. In the recent literature, Galerkin, 
collocation, and Tau methods are the three most widely used spectral versions, in which 
collocation methods have become increasingly popular for solving differential equa-
tions, also they are very useful in providing highly accurate solutions to nonlinear dif-
ferential equations. Now, we focus on the solution nature of this method as follows: 

Let us consider the equation in the form: 

( ) ( ) [ ], , , , 0,tt xx L Ru u g u f x t x x x tα− + = ∈ ≥               (13) 

with the initial conditions 

( ) ( ) ( ) ( )1 2,0 , ,0 , , 0u x g x u x g x x t
t
∂

= = ∈Ω ≥
∂

             (14) 

or boundary conditions 

( ) ( ), , , , 0.u x t h x t x t= ∈∂Ω >                            (15) 

In order to transform the arbitrary domain L Rx x x≤ ≤  into the domain defined for 
Chebyshev wavelet basis 0 1x≤ ≤ , on can use the translation 

[ ] [ ] ( ): , 0,1 , L
L R

R L

x xx x x X x
x x
−

→ =
−

 

By employing θ-weight scheme [20], discreting the Equation (13), we can get 

( )
( ) ( )

1 1 2 1 2

2 2 2

2 1 , 0 1,
n n n n n

n nu u u u u g u f
x xt

θ α θ α θ
+ − +   − + ∂ ∂

= − − + = < ≤   ∂ ∂∆    
   (16) 

where t∆  is the time step size with the expression ( ) ( ), , .n
n nu x u t x t n t= = ×∆  

Now Equation (16) becomes 

( )

( )( ) ( ) ( ) ( )

2 1
21

2

2
2 2 2 1

22 1 .

n
n

n
n n n n

uu t
x

uu t t g u t f u
x

θ α

θ

+
+

−

 ∂
− ∆  ∂ 

 ∂
= + − ∆ − ∆ + ∆ − 

∂ 

           (17) 

In the light of Equation (7),the term nu  can be expanded by Chebyshev wavelet as 

( ) ( )T .n
nu x C x= Ψ                           (18) 

Submitting Equation (18) into Equation (17), we have 

( ) ( ) ( ) ( ) ( )( ) ( )2 2T T T T
1 1 ,n

n L n R n nC H x C H C x t g C x t fψ ψ ψ+ −= − − ∆ + ∆       (19) 

in which ( )2 2
LH I t Dαθ= − ∆  and ( )( )2 22 1RH I t Dα θ= + − ∆ , where D is the deri- 
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vative matrix taken from Equation (10) 
Also, by using the boundary conditions given in Equation (15), one can get 

( ) ( ) ( ) ( )T T
1 1 1 10 0,  and 1 1, .n n n nC h t C h t+ + + +Ψ = Ψ =                (20) 

Collocating Equation (19) in 12 2k M− −  Gauss-Chebyshev points { }
12 1

2

k M
i i

x
− −

=
, we 

have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2T T T T
1 1 , .n

n L i n R n i n i i nC H x C H C x t g C x t f x t+ −Ψ = − Ψ − ∆ Ψ + ∆   (21) 

Equation (20) and (21) can be written as matrix form 

1 ,nAC B+ =                                  (22) 

where A and B are 1 12 2k kM M− −×  and 12 1k M− ×  matrices, respectively. 
Again using the first and second initial conditions given in Equation (14), we have 

( ) ( )T
0 ,iC x g x xΨ = ∈Ω                            (23) 

and 

( )
1 1

2 ,
2

u u g t x
t

−−
= ∈Ω

∆
                           (24) 

Equation (24) can be written as 

( ) ( ) ( )T T
1 1 22C x C x tg x− Ψ = Ψ − ∆  

Equation (22) using Equation (23) gives a linear system of equations with 12k M−  
unknown and equations, which can be solved to find 1nC +  in each step 0,1,2,n =   
so the unknown function ( ), nu x t  in any time nt t=  can be found. Moreover, we 
defined the error bound for 

2Le  and Le
∞

 as 

( )
2

2

1
, max ,

M

j jL L jj
e e e e

∞
=

= =∑  

where ( ) ( )j exact approxj j
e u u= −  and exact approxe u u= − . 

5. Numerical Results and Discussions 

In this section, we use Chebyshev wavelets spectral collocation method described in 
section 4 to solve nonlinear type of Klein-Gordon and Sine-Gordon equations. The 
proposed method provides a reliable technique which is computer oriented if compared 
with traditional techniques. To give the clear overview of this method we consider three 
examples of Klein-Gordon equation and Sine-Gordon equation. All the results are 
calculated by using the symbolic calculus software MATLAB 2013a and Mathematica. 

Example 1 [25] We consider the nonlinear Klein-Gordon Equation (13) with 1α = , 
( ) 2g u u=  and ( ) 2 2, cos cosf x t x t x t= − +  in the interval [ ]1,1−  with the initial 

conditions 
( ) ( ),0 , ,0 0, 1 1tu x x u x x= = − ≤ ≤  

and the Dirichlet boundary condition 

( ) ( ), , , , 0.u x t h x t x t= ∈∂Ω >  
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The analytical solution is given by 

( ), cos .f x t x t= −  

The obtained 2L  and L∞  errors of Example 1 at step size 0.0001 is presented in 
comparison with the existing method in Table 1 and Table 2 for 2, 3k M= =  and 

2, 4k M= =  and graphically shown in Figure 1 for 2, 4k M= = . It is evident from 
Table 1, Table 2 and Figure 1 that the solutions obtain by using CWSCM are in good 
agreement and are better than the results obtained by existing method presented in [25]. 
However, the errors may be reduced significantly if we increase level of resolution. 
 

Table 1. 2L  and L∞  error of Example 1 at 2, 3k M= =  and compared with [25]. 

 ( )2 3L M =  ( )3L M∞ =  

t CWSCM MFDCM [25] CM [25] CWSCM MFDCM [25] CM [25] 

0.1 143.1 10−×  122.2 10−×  41.7 10−×  125.3 10−×  123.5 10−×  42.6 10−×  

0.2 146.4 10−×  128.2 10−×  44.4 10−×  124.8 10−×  111.3 10−×  43.5 10−×  

0.3 124.0 10−×  111.7 10−×  43.6 10−×  126.0 10−×  112.5 10−×  42.3 10−×  

0.4 131.4 10−×  112.7 10−×  44.0 10−×  124.1 10−×  114.1 10−×  43.1 10−×  

0.5 139.6 10−×  113.7 10−×  44.2 10−×  127.5 10−×  115.7 10−×  43.3 10−×  

0.6 133.5 10−×  114.7 10−×  43.5 10−×  128.9 10−×  116.9 10−×  42.6 10−×  

0.7 132.9 10−×  115.5 10−×  43.8 10−×  122.0 10−×  116.8 10−×  42.4 10−×  

0.8 135.7 10−×  116.0 10−×  42.9 10−×  125.4 10−×  118.2 10−×  43.0 10−×  

0.9 133.7 10−×  116.2 10−×  42.7 10−×  127.3 10−×  118.1 10−×  42.5 10−×  

1.0 128.3 10−×  115.9 10−×  42.3 10−×  115.2 10−×  118.1 10−×  42.2 10−×  

 
Table 2. 2L  and L∞  error of Example 1 at 2, 4k M= =  and compared with [25]. 

 ( )2 4L M =  ( )4L M∞ =  

t CWSCM MFDCM [25] CM [25] CWSCM MFDCM [25] CM [25] 

0.1 146.4 10−×  145.6 10−×  54.1 10−×  135.3 10−×  146.7 10−×  56.7 10−×  

0.2 145.5 10−×  139.6 10−×  53.6 10−×  141.3 10−×  124.1 10−×  54.2 10−×  

0.3 135.4 10−×  122.4 10−×  54.9 10−×  139.1 10−×  123.8 10−×  55.6 10−×  

0.4 137.9 10−×  124.7 10−×  55.4 10−×  137.5 10−×  125.9 10−×  57.3 10−×  

0.5 138.1 10−×  124.2 10−×  56.3 10−×  136.9 10−×  125.8 10−×  58.3 10−×  

0.6 134.5 10−×  124.8 10−×  54.5 10−×  131.4 10−×  127.3 10−×  56.6 10−×  

0.7 134.7 10−×  126.3 10−×  55.8 10−×  136.2 10−×  128.2 10−×  57.4 10−×  

0.8 137.3 10−×  127.1 10−×  57.0 10−×  138.9 10−×  128.9 10−×  58.1 10−×  

0.9 139.4 10−×  126.9 10−×  55.2 10−×  139.7 10−×  128.8 10−×  57.9 10−×  

1.0 139.6 10−×  126.4 10−×  55.3 10−×  134.1 10−×  128.7 10−×  57.7 10−×  
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Figure 1. Comparison of exact solution with approximate solution for Example 1 at 2, 4k M= = . 

 
Example 2 [25] We consider the nonlinear Klein-Gordon Equation (13) with 1α = , 
( ) 2g u u=  and ( ) ( )2 2 6 6, 6f x t xt x t x t= − +  in the interval [ ]0,1  with the initial con- 

ditions 

( ) ( ), 0 0, , 0 0, 0 1tu x u x x= = ≤ ≤  

and the Dirichlet boundary condition 

( ) ( ), , , , 0.u x t h x t x t= ∈∂Ω >  

The analytical solution is given by 

( ) 3 3, .f x t x t=  

The 2L  and L∞  errors of Example 2 at step size 0.0001 are presented in com- 
parison with the existing method in Table 3 and Table 4 for 2, 3k M= =  and 2,k =  

4M = . From Table 3, Table 4 and Figure 2, it is clear that CWSCM performs much 
better than existing methods [25] and with the increase in number of collocation points 
the errors decrease for the solution. 
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Table 3. 2L  and L∞  error of Example 2 at 2, 3k M= =  and compared with [25]. 

 ( )2 3L M =  ( )3L M∞ =  

t CWSCM MFDCM [25] CM [25] CWSCM MFDCM [25] CM [25] 

0.1 114.5 10−×  93.9 10−×  41.5 10−×  121.5 10−×  96.0 10−×  43.1 10−×  

0.2 116.5 10−×  86.3 10−×  41.7 10−×  127.3 10−×  89.2 10−×  43.5 10−×  

0.3 103.4 10−×  73.0 10−×  49.7 10−×  127.2 10−×  74.7 10−×  41.8 10−×  

0.4 105.9 10−×  79.1 10−×  41.8 10−×  126.4 10−×  61.4 10−×  43.7 10−×  

0.5 119.3 10−×  61.2 10−×  49.7 10−×  121.9 10−×  63.0 10−×  42.5 10−×  

0.6 102.6 10−×  64.2 10−×  41.7 10−×  121.4 10−×  65.8 10−×  43.7 10−×  

0.7 101.7 10−×  63.2 10−×  41.6 10−×  122.8 10−×  65.9 10−×  43.6 10−×  

0.8 103.6 10−×  66.1 10−×  41.1 10−×  127.3 10−×  67.3 10−×  42.2 10−×  

0.9 105.4 10−×  65.7 10−×  42.0 10−×  129.4 10−×  66.8 10−×  44.5 10−×  

1.0 101.4 10−×  65.5 10−×  48.7 10−×  116.1 10−×  67.5 10−×  42.4 10−×  

 
Table 4. 2L  and L∞  error of Example 2 at 2, 4k M= =  and compared with [25]. 

 ( )2 4L M =  ( )4L M∞ =  

t CWSCM MFDCM [25] CM [25] CWSCM MFDCM [25] CM [25] 

0.1 111.9 10−×  104.4 10−×  53.6 10−×  113.2 10−×  105.3 10−×  55.3 10−×  

0.2 104.3 10−×  97.8 10−×  53.9 10−×  115.1 10−×  99.4 10−×  55.7 10−×  

0.3 97.1 10−×  84.5 10−×  52.7 10−×  119.0 10−×  85.5 10−×  54.1 10−×  

0.4 99.4 10−×  71.7 10−×  53.8 10−×  101.3 10−×  73.8 10−×  55.6 10−×  

0.5 96.0 10−×  73.1 10−×  53.2 10−×  92.8 10−×  75.6 10−×  54.5 10−×  

0.6 95.3 10−×  75.6 10−×  53.4 10−×  97.9 10−×  77.1 10−×  55.9 10−×  

0.7 99.1 10−×  75.4 10−×  53.5 10−×  96.5 10−×  77.0 10−×  55.9 10−×  

0.8 96.4 10−×  76.8 10−×  53.1 10−×  95.2 10−×  78.6 10−×  54.5 10−×  

0.9 97.1 10−×  77.2 10−×  53.8 10−×  98.4 10−×  77.9 10−×  56.3 10−×  

1.0 94.6 10−×  76.0 10−×  53.3 10−×  91.0 10−×  78.2 10−×  54.6 10−×  

 
Example 3 [20] Consider the following nonlinear Sine-Gordon equation 

2 2

2 2 sin 0, 10 10, 0u u u x t
t x

∂ ∂
− + = − ≤ ≤ >

∂ ∂
 

where ( ), 0f x t = , and the initial conditions 

( ) ( ) ( ),0 0, ,0 4sech , 0 1tu x u x x x= = ≤ ≤  

and the Dirchlet boundary conditions 

( ) ( ), , , , 0.u x t h x t x t= ∈∂Ω ≥  

The exact solution is given by 

( ) ( )( )1, 4 tan sechu x t x t−=  
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Figure 2. Comparison of exact solution with approximate solution for Example 2 at 2, 4k M= = . 

 
The numerical solution of Sine-Gordon equation has presented in Table 5 which 

shows the comparison of the errors of the present method with the exact solution. It is 
obvious from the table that the present method is more accurate, simple and fast. 
Comparison between an exact and approximate solution is shown in Figure 3. 

6. Concluding Remarks 

In this article, we have proposed an efficient and accurate method based on Chebyshev 
wavelets to solve both Klein-Gordon and Sine-Gordon equations arising in different 
field of sciences, engineering and technology. The main advantage of this method is 
that it transforms the problem into algebraic equation so that the computation is 
effective and simple. To appraise the performance and efficiency of the method, three 
benchmark problems are included and discussed. The numerical results are compared 
with a few existing methods reported recently in the literature. The numerical experi- 
ments confirm that the spectral method coupled with Chebyshev wavelets is superior to 
other existing ones. 
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Table 5. 2L  and L∞  error of Example 3 at 2, 3k M= =  and 4. 

 CWSCM ( )2, 3k M= =  CWSCM ( )2, 4k M= =  

t 2L  L∞  2L  L∞  

0.1 102.4 10−×  118.3 10−×  106.2 10−×  107.4 10−×  

0.2 105.7 10−×  116.7 10−×  114.1 10−×  91.9 10−×  

0.3 91.6 10−×  102.9 10−×  109.1 10−×  94.3 10−×  

0.4 108.0 10−×  97.1 10−×  91.7 10−×  92.9 10−×  

0.5 97.6 10−×  96.1 10−×  88.8 10−×  99.6 10−×  

0.6 94.3 10−×  95.7 10−×  87.1 10−×  94.1 10−×  

0.7 99.5 10−×  94.4 10−×  87.5 10−×  97.4 10−×  

0.8 99.4 10−×  91.9 10−×  85.8 10−×  91.6 10−×  

0.9 97.4 10−×  94.2 10−×  85.3 10−×  97.5 10−×  

1.0 99.6 10−×  96.5 10−×  82.2 10−×  87.5 10−×  

 

 
Figure 3. Comparison of exact solution with approximate solution for Example 3 at 2, 4k M= = . 
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