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Abstract 
This work describes the deterministic interaction of a diffusing particle of efavirenz 
through concentration gradient. Simulated pharmacokinetic data from patients on 
efavirenz are used. The Fourier’s Equation is used to infer on transfer of movement 
between solution particles. The work investigates diffusion using Fick’s analogy, but 
in a different variable space. Two important movement fluxes of a solution particle 
are derived an absorbing one identified as conductivity and a dispersing one identi-
fied as diffusivity. The Fourier’s Equation can be used to describe the process of 
gain/loss of movement in formation of a solution particle in an individual. 
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1. Introduction 

The derivation of an important equation by Fourier brought so many insights in the 
study of dynamics of flow through his law of thermal conduction [1]. It is an equation 
that has shaped the study of flow in liquids, solids and gases, for over two centuries. 
Additionally, Fourier proposed a method of solution to the equation using separation 
of variables [2]. The present work adopts similar construction arguments but differs in 
method of solution and variable space [3]. Fick used the same analogy of heat conduc-
tion in modelling diffusion [1]. Thus, Fick formulated what is now known as Fick’s 
Second Law of Diffusion. Fick’s work suggests that the diffusivity parameter is a con-
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stant [1] [4] [5]. The present work adopts a variable, concentration which enables the 
study of diffusivity/conductivity fluxes with the aid of movement gradient (observable 
from differences in concentrations) in a medium and time as independent variables in-
stead of a location variable and time. It notes that the anti-solvation inducing measure 
(concentration) is also implicitly a function of time. The dependent variable is the sec-
ondary saturation movement which can be independently written as a function of time 
or concentration. Thus, the partial differential equation modelling movement derived 
from formulation reduces to an ordinary differential equation. 

Further, the work notes that “diffusivity’’ is not independent of concentration as 
proposed by Fick’s laws and proposes composition-dependent diffusion coefficients as 
suggested by Boltzmann, but differs in form [1] [4]. We propose a novel form of con-
ductivity flux, a function of concentration, time, movement density and specific move-
ment capacity. The motivation for modelling secondary saturation movement of solu-
tion particle in tracking diffusivity is that the variable increases with increasing concen-
tration. However, the relationship of convection and advection with concentration is 
concave [6]. In addition, it is the only secondary movement measure that for a unique 
value of saturation movement there is a corresponding unique value of concentration. 
This results in less ambiguity in the formulation process. The derivation from the flow 
equation allows further understanding of diffusivity and conductivity fluxes of concen-
tration in media. 

Conductivity flux in this work defines the zero sum inward acquiring “concentration” 
movement of an interacting solution particle in a volume space from a neighbouring 
solution particle or central volume space in a solution particle bridge. A solution par-
ticle bridge is a state of exchange of concentration material between two interacting so-
lution particles. Diffusivity flux is the zero sum outward dispersing concentration 
movement generated from an interacting solution particle to a neighbouring solution 
particle or peripheral volume space in a solution particle bridge. A total movement flux 
is postulated to be comprised of four main entities. These components have been iden-
tified as advective, saturation, passive and convective. Advective diffusivity is the dece-
leration of the advective diffusivity flux. Advective conductivity is the acceleration of 
advective conductivity flux. 

The work considers definitions of important terms of advective movement flux. They 
are saturation kinetic advective conductivity and saturation kinetic advective diffusivity. 
Saturation kinetic advective conductivity flux is defined as the solution particle’s in-
ward formulation velocity rate constant of the secondary saturation movement with 
respect to advection. Additionally, saturation kinetic advective diffusivity flux as the 
interacting solution particle’s outward formulation velocity of the secondary saturation 
movement of an interacting solution particle with respect to advection (rate of change 
of velocity rate constant of the volume (ml) that dissolves a mass of 1 μg of efavirenz 
with respect to advection). These two important parameters vary with the state and 
properties of the volumetric spaces (Central and Peripheral), the concentration of the 
solution particle and possibly the factors that affect absorption and elimination of solu-
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tion particle. 
Diffusivity and conductivity fluxes can be tracked using the saturation relation that 

governs kinetic solubility movement in individuals to infer on the probable resultant 
effects. The solution particle characterisation is tracked in an individual through time 
and concentration. The work characterizes conductivity and diffusivity fluxes by stud-
ying the secondary saturation movement dynamics in solution particle’s bridge. The 
calculations are done in the concentration-time space. 

This work can further be developed to construct similar arguments for the primary 
saturation [6]. However, the primary level is not apparent. The primary saturation is a 
component of potential. On the other hand, the secondary saturation is the initial rea-
lized potential of solution-particle formation movement. Furthermore, the primary 
system is a sub-system of the secondary system. 

2. Methods 

Simulated projected data on secondary saturation movement, time and concentration 
was obtained from pharmacokinetic projections made on patients on 600 mg dose of 
efavirenz considered in Nemaura (2014 & 2015). Partial and Ordinary Differential equ-
ations are used in the development of models. A statistical Package R is used to develop 
nonlinear regression models.  

Derivation of Advection Kinetic Flow for the Secondary Saturation 
Movement 

Let ( ) ( ), /F x t h  be the secondary saturation movement at time t and concentration x- 
(Gradient-driven transportation inducing measure) in the blood. The variable ( ),F x t , 
is a measurement of density of movement. There is derivation of the flow equation of 
( ),F x t  from two physical “laws’’, that are assumed to be valid: 

• The amount of movement required to raise the saturation in a solution particle by 
( )/F hδ  is sq Fδ  where, q is the concentration-time amount of movement in so-

lution and s (Specific Movement Capacity) is a positive physical constant deter-
mined by material contained in the solution particle. Specific movement capacity is 
the movement per unit concentration-time amount of movement required to raise 
secondary saturation by 1 h . 

• The rate at which saturation movement crosses a solution particle is proportional to 
concentration, time and secondary saturation gradient of solution particle. The fol-
lowing proposition is made that the amount of advective conductivity flux of solu-  

tion particle μg h
ml

κ ⋅  
  
  
  is the difference between ρκ  (that amount of advective  

conductivity flux which is generated by movement density ( ),x tρ  (obtaining in 
the process of solution formation)) and 0κ  (an already existing constant (base) 
amount of advective conductivity flux (primarily obtaining in the independent of 
solute of x, solvent state)). The function of proportionality is called the amount of 
advective conductivity flux and is denoted by 0ρκ κ κ= − . The functions ρκ  and 
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0κ  are such that ( ),x tρκ ρ∝  and ( )0 0 ,y tκ ρ∝  where 0y  is the homogenous 
concentration mix in the base solvent without solute x, thus ( ),k x tρκ ρ= , 

( )0 0 ,y tκ κρ= , and where ,k κ  are constants of direct proportionality. 
Considering an abitrary solution particle bridge (A) (see Figure 1) the following re-

lationship is proposed for its density dependent advective conductivity flux, 

( ) ( ) ( )0

0

,,ˆ , .A y tk x t
x t

xt y t
κρρ

κ = −                     (1) 

In a homogenous mix, ( )0

0

,
.

y t
y t

ρ
ω=  Thus, the advective conductivity flux [advec-  

tive conductivity flux in the solvent of a solute of x, in the absence of the solute x (be-
fore mixing)] is constant and Equation (1) reduces to, 

( ) ( ),ˆ , .A k x t
x t

xt
ρ

κ κω= −                       (2) 

Assume that secondary saturation is increasing from left to right. The saturation gra-  

dient at the right end is ( ),F x x t
x

δ∂
+

∂
, so the rate at which movement crosses the right 

end is ( ) ( )ˆ , ,A Fx t x x t
x

κ δ∂
− +

∂
. Similarly, the rate at which movement crosses the left 

end is ( ) ( )ˆ , ,A Fx t x t
x

κ ∂
−

∂
. Since movement flows from regions of higher concentration  

to regions of lower concentration, movement thus should be entering the infinitesmal 
bridge through the right end and exiting the infinitesimal bridge through the left end. 
So in an infinitesimal time interval ( )tδ , the net amount of movement that enters the 
medium (solution particle bridge), is the amount that enters through the right end mi-
nus the amount that departs through the left end, which is given by, 

( ) ( ) ( ) ( )ˆ ˆ, , , , .A AF Fx t x x t x t x t t
x x

κ δ κ δ∂ ∂ − + − ∂ ∂ 
             (3) 

Considering a small time interval ( )tδ  the movement in the solution particle bridge  

changes by ( ),F x t t
t

δ∂
∂

. The concentration-time amount of movement in the solution 

particle bridge is ( ),x t
x

xt
ρ

δ . Thus by the first physical law, the net amount of movement  

 

 
Figure 1. Infinitesmal bridge (medium) between solution 
particles at time t. 
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which increase by ( ),F x t t
t

δ∂
∂

 is ( ) ( ),
,

x t Fs x x t t
xt t

ρ
δ δ∂

∂
. Assuming that the solution 

particle bridge is not generating or destroying movement itself. The following conclu-
sion is made that it is equal to the amount of movement that entered the solution par-
ticle bridge in the interval time tδ , that is 

( ) ( ) ( ) ( ) ( ) ( ), ˆ ˆ, , , , , .A Ax t F F Fs x x t t x t x x t x t x t t
xt t x x

ρ
δ δ κ δ κ δ∂ ∂ ∂ = − + − ∂ ∂ ∂ 

   (4) 

Dividing both sides by x tδ δ×  and taking limits , 0x tδ δ →  gives, 

( ) ( ) ( ) ( )
2

2

, ˆ, , , .Ax t F Fs x t x t x t
xt t x

ρ
κ∂ ∂

= −
∂ ∂

                 (5) 

Further, division of Equation (5) both sides by, 

( ),
.

x t
s

xt
ρ

 

The following result is immediate, 

( ) ( ) ( )
2

2
ˆ, , , ,A

s
F Fx t x t x t
t x

κ∂ ∂
= −

∂ ∂
                     (6) 

where, 

( ) ( ) ( )ˆ ˆ, , ,
,

A A
s

xtx t x t
s x t

κ κ
ρ

=  

is the specific secondary saturation advective conductivity flux (/h) associated with a 
unit amount of movement in a solution bridge. This reduces to, 

( ) ( )( ) ( )
2

,
2, , , ,s

I
F Fx t M x t x t
t x

κρ∂ ∂
= − −

∂ ∂
                 (7) 

where, 

( ) ( ) ( ), , ,  and  .
,

s
I

xt kx t D x t xt M
s x t s

κ κωρ
ρ

= = =  

The terms, 

( ) ( ) ( )
, , , ,   and  ,

,
s

I x t D x t M
s x t

κ κωρ
ρ

=  

are specific secondary saturation base-advection diffusivity flux (/h), secondary satura-  

tion advection diffusivity 2
ml

μg h
 
 ⋅ 

, and specific secondary saturation initial or rest  

advection conductivity flux (/h) respectively. 
The following relation from Equations (6) and (7) is established between advection 

conductivity flux and advection diffusivity flux, 

( ) ( )
auxilliary advection conductivity flux

,

advection diffusivity flux

ˆ , , ,A s
s Ix t M x tκκ ρ− = −





               (8) 

where ( )ˆ 0,0A
sM κ= . 
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It is important to note that ( )ˆ ,A
s x tκ  is the advection conductivity flux. 

3. Results 
3.1. Applications to Deteministic Saturation Advection Kinetic Flow of 

Concentration of Efavirenz and Numerical Analysis 

There is use of the relationship developed from [6] [7] for some patient P. The first be-
ing the concentration-time profile of patient P [7]. Additionally, the secondary satura-
tion movement-concentration profile [6]. Separate projectiles are followed for second-
ary saturation using time and concentration for the single patient. 

These two relations (Figure 2) are used to come up with the following fitted system 
of Equation(s) for patient P. 

( )
( ) [ ] ( )

[ ] ( )max

e e ,  0, 24 ,       i
,

,   0, ,                     ii

b at t
r t

F x t ux x c
v x

λ λλ − − − ∈
= 

∈
+

              (9) 

 

 
(a) 

 
(b) 

Figure 2. (a) The x-(concentration) projectile of ( ),F x t  in patient P. (b) 

The t-(time) projectile of ( ),F x t  in patient P. 
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where, x is the concentration and t is time. These two variables track solution particle 
dynamics. Furthermore, , , ,r a b uλ λ λ  and v  are constants to be found. The time (t) 
variable does not necessarily stop at 24 hours. This is only considered because it is the 
dosing interval of the drug efavirenz. Equation (9) estimates secondary saturation 
movement in terms of time and concentration independently (Table 1 and Table 2). 

Following from Equation (9), Equation (6) assumes the form of, 

( ) ( ) ( )
2

2
d dˆ ,
d d

, , ,A
sx t x tF F

t x
t xκ= −                     (10) 

and Equation (8) becomes, 

( ) ( )( ) ( )
2

,
2 ., ,d d,

d d
s

I
F FM x t
t

x t x t
x

κρ= − −                  (11) 

The following conditions holds for secondary saturation advective diffusivity ( ),D x t  
at boundary points of loss/formation of the solution particle in the central volume 
space. 

( ) ( )
( )

, 0,0
lim , ,

x t
D x t

→
= −∞  

( ) ( )
( ),

, 0,0
lim , 0,s

Ix t
x tκρ

→
=  

( ) ( )
( )

, 0,
lim ,    for some 0,

x t t
D x t t

→
= ∞ >  

( ) ( )
( ),

, 0,
lim ,    for some 0.s

Ix t t
x t M tκρ

→
= >  

It is noted that for ( )ˆ ,A
s x tκ  the following holds at boundary points of advective 

conductivity flux: ( )ˆ 0,0 :A
s Mκ = , value at rest of saturation conductivity flux. 

The part CC shows the advective diffusivity solution particle space (Central volume 
space) and CE shows the diffusivity in the complement space of the solution particle 
(neighbourhood volume space-Peripheral volume space) (Figure 3). A solution particle 
 
Table 1. Parameter estimates in modelling saturation movement rate with respect to t (Model 
9(i)). 

Parameters Estimate Std Error t Value ( )Pr t>  

rλ  0.623106 0.012214 51.02 162 10−< ×  

bλ  0.022465 0.001203 18.68 155.35 10−×  

aλ  0.439258 0.017354 25.31 162 10−< ×  

 
Table 2. Parameter estimates in modelling saturation movement rate with respect to x (Model 
9(ii)). 

Parameters Estimate Std Error t Value ( )Pr t>  

u 0.801936 0.05934 135.1 162 10−< ×  

v 5.624198 0.126684 44.4 162 10−< ×  
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Figure 3. Time matched plot of advection diffusivity of saturation movement in the locality of 
two neighbouring volume spaces. 
 
is affected by two neighbourhoods, one that is in the central volume space (CC) and the 
other is related to the complement (CE) immediate peripheral volume space. Move-
ment in these two spaces varies according to the characterisation of these two spaces. 
The advective diffusivity flux’s deceleration within the central compartment (that vo-
lume space which the solution particle is taken from) is given by ( ),CCD x t . While, the 
advective diffusivity flux’s deceleration in the complement and is defined by ( ),CED x t . 
They are equal only ( ) ( ), , 0CC CED x t D x t= = . Thus, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, 0 , 0,        Case i ,

, 0 , 0,        Case ii ,

, 0 , 0,        Case iii .

CC CE

CC CE

CC CE

D x t D x t

D x t D x t

D x t D x t

< ⇔ >


= ⇔ =
 > ⇔ <

             (12) 

A positive value for advective diffusivity in the volume space (CC) implies that the 
movement is “concentrating” within CC space. However, a negative value shows 
movement is “concentrating” in the complement space (CE). 

3.2. Saturation Movement: Advection-Base Diffusivity and Conductivity 
Fluxes 

The diffusivity flux is an important parameter which is further investigated to see its 
dynamics in terms of the four entities that formed the basis of a solution particle. The 
existence of negative values for advection diffusivity shows presence of negative advec-
tive diffusivity flux (Figure 3). The following relations describe the expected advective 
diffusivity flux in the locality of the central volume space: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

,

,

, 0 0,        Case i ,

, 0 0,        Case ii ,

, 0 0,        Case iii ,

s
CC I CC

s
CC I CC

s
CC I CC

D x t t

D x t t

D x t t

κ

κ

κ

ρ

ρ

ρ

 < ⇒ <

 = ⇒ =


> ⇒ >

             (13) 

where, ,s
I CC
κρ  is the advective diffusivity flux relative to the central volume space. 

Considering Equation (13), we deduce that for case (i), the advective diffusivity flux 

( ),s
I CC
κρ  is in the direction of peripheral volume space from the central volume space. 

The advective diffusivity flux is zero for case (ii) the movement is inferred to be equal 
in both spaces, and in case (iii) advective diffusivity flux is positive implying movement 
is in the direction of central volume space from the peripheral volume space. The form 
of advection diffusivity flux has allowed for the postulation that diffusivity flux is ac-
tually a movement entity in equilibrium which comprises four entities. The principal 
parameter being the advection diffusivity flux. This is motivated by the same behaviour 
that has been observed in solution particle concentration in relation to saturation [6]. 
There is a mutualistic relationship postulated that enables us to study equilibrium of 
movement diffusivity flux. It is noted that the characterisation of saturation movement 
behaves similarly to concentration dynamics in-vivo. The reference movement with 
respect to saturation is advection, it is investigated and the constituent behaviour is 
suggested by Equation (14) (Table 3). 

( )


( )


saturation diffusivity flux
convection diffusivity flux

,

base-advection diffusivity flux passive diffusivity flux

e e 1 .s nt dt
I

ftt wt b
g t

κρ − −= + − +
+



    (14) 

The characterisation of the four main diffusivity flux entities are shown and magni-
tudes of effects (Figure 4). The region CC represents that which affects the central vo-
lume space and CE that which affects the immediate peripheral volume space. 

From Equation (8), we can infer that auxilliary conductivity flux consists of four main 
components and affects the movement into-solution particle and diffusivity flux affects  
 
Table 3. Parameter estimates in modelling saturation movement diffusivity fluxes in Equation 
(14). 

Parameters Estimate Std Error t Value ( )Pr t>  

w −37.240855 1.320478 −28.203 162 10−< ×  

n 0.416443 0.007034 59.207 162 10−< ×  

b 87.672322 12.141991 7.221 77.42 10−×  

d 0.157279 0.002074 75.816 162 10−< ×  

f 99.406672 13.520844 7.352 75.74 10−×  

g 1.979299 0.179995 10.996 91.12 10−×  

w—residence rate of the convective diffusivity flux, n—declining rate of the convective diffusivity flux, b—maximum 
passive diffusivity flux rate constant, d—declining rate of the passive diffusivity flux, f—maximum saturation dif- 
fusivity flux rate constant and, g—time at which the saturation diffusivity flux was half of f. 
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Figure 4. Components of diffusivity flux in the locality of two neighbouring volume spaces. 

 
the movement out-of-solution particle. Diffusivity flux is symmetrical to conductivity 
flux in solution particle formation, 

( ) ( )


saturation conductivity fluxauxilliary advection conductivity flux convection conductivity flux

passive conductivity flux

ˆ , e e 1 ,A nt dt
s

ftx t M wt b
g t

κ − − −
− = − + − − +

+

 



 (15) 

where, , , , , ,w n b d f g  are constants with respect to conductivity flux as in Equation 
(14) and 5.12193M = . It is noted that auxilliary conductivity flux is translated con-
ductivity flux by a constant ( )M− . 

One notices a range of interpretations that can be deduced from the numerics done 
for the saturation dynamics of a solution particle (Figure 5). The advective conductivi-
ty flux is negatively correlated to advective diffusivity flux. Furthermore, auxilliary ad-
vective conductivity flux is negatively correlated to advective diffusivity flux thus ad-
vective diffusivity (see Equation (8)). The striking observation is how all the other va-
riables relate similarly to the two variables that of concentration (x) and saturation 
movement ( )( ),F x t  (Figure 5) ( ( )( ), , 0.95corr x F x t = ). 

4. Discussion 

This work proposes possible markers in the transportation of a drug which are conduc-
tivity and diffusivity. The partial differential equation derived has been shown to model 
the advection component of diffusivity and conductivity. 

A new development is inferred where the movement diffusivity flux is shown to be a 
function of four primary components. The primary components have been identified as  
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Figure 5. Summary scatter time-matched plot of the relationship between the following variables ( ) ( ) ( ),ˆ, , , , , , ,A s

s It x F x t x t x tκκ ρ  and 

( ),D x t  for patient P informed by Equations (9), (10) and (11). 

 
advection, saturation, convection and passive. The total movement diffusivity flux in 
the system is zero for any given concentration at a given time. The two movement dif-
fusivity fluxes convection and passive are inferred to exert their influence in the peri-
pheral volume system. However, saturation and advection predominantly exerts influ-
ence in the central volume space. The increase in advective diffusivity flux shows a cor-
responding reduction of advective conductivity, this is postulated from the negative 
correlation that these two parameters share in this system. It has been shown that, not 
only concentration affect diffusivity and conductivity, but also the state of the neigh-
bourhood. Additionally, there are potential factors that could be involved in the 
processes of transportation, absorption and elimination of the drug. 

The advective diffusivity of the drug has partly negative values. Furthermore, it is not 
a constant and the regions of negative advective diffusivity are relatively very high as 
compared to positive diffusivity in the volume spaces. Initially, the negative values of 
advective diffusivity indicate that the peripheral volume space has relatively higher le-
vels of flow. The drug is flowing more in the peripheral space. Thus the drug is quickly 
available to the peripheral space initially and furthermore is “concentrating” in this 
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space [8]. This could potentially have beneficial or negative effects depending on what 
is being transported and the individual’s reaction to it. This result led to the proposal of 
the potential effect on CNS adverse drug reactions. There is increased transportation in 
the peripheral regions in the initial stages. Other researchers have found that the ma-
jority of efavirenz-induced CNS adverse drug reactions appear early even after a single 
dose [9]. Diffusivity is one parameter that could potentially be affected with the pres-
ence of the residual drug in the system (from previous dose) in the volume spaces. This 
work shows that transportation consistently alters in the human body and there are 
differences in the two neighbouring volume spaces. A relatively controlled state is 
achieved during the terminal phase. The solution particle is “concentrating” in the cen-
tral volume space. 

Inference on in-vivo release can be made using models developed. The interpretation 
of kinetic conductivity developed here allowed study of diffusivity. The work made use 
of data informed directly from the developed PK/PD models [6] [7]. Other researchers 
have proposed models to deal with complications involving concentration, time and 
location dependence on diffusivity. As a result, Fick’s formalisation has been thought to 
be less effective [10]. However, this work recast Fick’s law with the aid of secondary sa-
turation transportation that has been found to be positively correlated to concentration. 
In place of the location variable it uses concentration and retains the time variable. This 
system enables the study of characterisation of diffusion and conduction. It proposes a 
new space that can be used to further our understanding of the phenomenological ap-
proach of the Fick’s law [11]. 

Diffusivity and conductivity of drugs in patients finds its use in studying drug release 
kinetics. This is important to the successful design of polymeric delivery systems bear-
ing in mind that in-vivo release models are laborious and costly [12]. Using the new va-
riable space proposed experiments can be developed to aid our understanding of diffu-
sion across a range of applications [4] [11]. The results proposed here have implications 
in the way gradient induced diffusion could be handled mathematically. Currently, dif-
fusivity and conductivity are investigated using the location and time as independent 
variables. This work proposes a different approach in investigating them in-vivo. 

Diffusivity is symmetrical to conductivity in solution particle formation. These two 
processes occur concurrently. The pro-gradient-driven-movement entities of a solution 
particle with respect to conductivity and diffusivity are convective and passive. While, 
anti-gradient-driven-movement entities are saturation and advection. This analysis is 
inferred from the characterisation of a solution particle in Nemaura (2015) [6]. The de-
rivation of the phenomenon observed, points to advection as a significant primary ent-
ity. 

With the aid of the characterisation of a saturation kinetic flow (strictly positively 
correlated relation to concentration), one can use this to infer the behaviour of the so-
lution particle in relation to its neghbourhood through advective diffusivity. This work 
shows the existence of a model which is deterministic and describes the behaviour of 
how a solution particle gain/lose movement relative to its local neighbourhood. The 
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gain of movement is synonymous with conductivity and loss of movement is syn-
onymous with diffusivity. The two advection movement fluxes are symmetric about 
half the initial value of advection conductivity (M/2) and also all the other subsequent 
corresponding components in the 24 h. 
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