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Abstract 
 
This paper considers the single machine scheduling problem with uniform parallel machines in which the 
objective is to minimize the makespan. Four different GA based heuristics are designed by taking different 
combinations of crossover methods, viz. single point crossover method and two point crossover method, and 
job allocation methods while generating initial population, viz. equal number of jobs allocation to machines 
and proportionate number of jobs allocation to machines based on machine speeds. A detailed experiment 
has been conducted by assuming three factors, viz. Problem size, crossover method and job allocation 
method on 135 problem sizes each with two replications generated randomly. Finally, it is suggested to use 
the GA based heuristic with single point crossover method, in which the proportionate number of jobs allo-
cated to machines based on machine speeds. 
 
Keywords: Uniform Parallel Machines, Genetic Algorithm, Crossover Method, Job Allocation Method 

1. Introduction 
 
The single machine scheduling problem with parallel 
machines is classified into the following three categories. 
 Single machine scheduling with identical parallel 

machines; 
 Single machine scheduling with uniform parallel 

machines; 
 Single machine scheduling with unrelated parallel 

machines. 
Let, tij be the processing times of the job j on the ma-

chine i, for i = 1, 2, 3, ···, m and j = 1 2, 3, ···, n. 
Then the types of parallel machines scheduling prob-

lem are defined using this processing time.  
1) If tij = t1j for all i and j, then the problem is called as 

identical parallel machines scheduling problem.  
2) If tij = t1j/si for all i and j, where si is the speed of the 

machine i and t1j is the processing time of the job j on the 
machine 1, then the problem is termed as uniform (pro-
portional) parallel machines scheduling problem.  

The speeds are assumed as s1, s2, s3, ···, and sm for the 
parallel machines 1, 2, 3, ···, and m, respectively with the 
relation s1 < s2 < s3 < ···< sm. For a given job, its process-

ing times on the parallel machines will be in the ratio of 
1/s1: 1/s2:1/s3: ···:1/sm. 

3) If tij is arbitrary for all i and j, then the problem is 
known as unrelated parallel machines scheduling prob-
lem. 

In this paper, the single machine scheduling problem 
with uniform parallel machines is considered with the 
objective of minimizing the makespan. When n jobs with 
single operation are scheduled on m parallel machines, 
then each parallel machine will have its completion time 
of the last job in it.  

The maximum of such completion times on all the 
parallel machines is known as the makespan of the par-
allel machines scheduling problem, which is an impor-
tant measure of performance [1].  

The characteristics of the uniform parallel machines 
scheduling problem are as listed below. 
 It has n single operation jobs. 
 It has m parallel machines with different speeds (s1 < 

s2 < s3 < ···< sm). 
 m machines are continuously available and they are 

never kept idle while work is waiting. 
 t1j is the processing time of the job j on the machine 1 
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for j = 1, 2, 3, ···, n.  
 For each job, its processing times on the uniform par-

allel machines are inversely proportional to the 
speeds of those parallel machines (1/s1:1/s2: 1/s3: ···: 
1/sm), where s1 is the unit speed. 

 tij = t1j/si for j = 1, 2, 3, ···, n and i = 2, 3, ···, m. 
In this paper, off-line, non-preemptive single machine 

scheduling problem with uniform parallel machines is 
considered. 
 
2. Literature Review 
 
In this section, the review of off-line, non-preemptive 
single machine scheduling problem with uniform parallel 
machines is presented. 

Panneerselvam Senthilkumar and Sockalingam Nara-
yanan [2] have done a comprehensive review of litera-
ture of single machine scheduling problem with uniform 
parallel machines, in which 17 classifications were dis-
cussed. Prabuddha De and Thomas E.Morton [3] have 
developed a new heuristic to schedule jobs on uniform 
parallel processors to minimize makespan. It is tested on 
a large number of problems for both uniform and identi-
cal processors. They found that the solutions given by 
the heuristic for the uniform parallel machines schedul-
ing are within 5% of the solutions given by the branch 
and bound algorithm. Bulfin and Parker [4] have consid-
ered the problem of scheduling tasks on a system con-
sisting of two parallel processors such that the makespan 
is minimized. In particular, they treated a variety of 
modifications to this basic theme, including the cases of 
identical processors, proportional (uniform) processors 
and unrelated processors. In addition, they suggested a 
heuristic scheme when precedence constraints exist. 

Friesen and Langston [5] examined the non-preemp- 
tive assignment of n independent tasks to a system of m 
uniform processors with the objective of reducing the 
makespan. It is known that LPT (longest processing time 
first) schedules are within twice the length of the opti-
mum makespan [6]. They analyzed a variation of the 
MULTIFIT algorithm derived from the algorithm for bin 
packing problem and proved that its worst-case per-
formance bound on the makespan is within 1.4 times of 
the optimum makepsan. Gregory Dobson [7] has given a 
worst-case analysis while applying the LPT (longest 
processing Time) heuristic to the problem of scheduling 
independent tasks on uniform processors with the mini-
mum makepsan. In this research, a bound of 19/12 is 
derived on the ratio of the heuristic to the optimal 
makespan. Friesen [8] examined the non-preemptive 
assignment of independent tasks to a system of uniform 
processors with the objective of minimizing the make- 
span. The author showed that the worst case bound for 

the largest processing time first (LPT) algorithm for this 
problem is tightened to be in the interval (1.52 to1.67). 
Hochbaum and Shmoys [9] devised a polynomial ap-
proximation scheme for the minimizing makespan prob-
lem on uniform parallel processors. The technique em-
ployed is the dual approximation approach, where infea-
sible but super-optimal solutions for a related (dual) 
problem are converted to the desired feasible but possi-
bly suboptimal solution. 

Chen [10] has examined the non-preemptive assign-
ment of independent tasks to a system of m uniform 
processors with the objective of minimizing the makep-
san. The author has examined the performance of LPT 
(largest processing time) schedule with respect to opti-
mal schedules, using the ratio of the fastest speed to the 
slowest speed of the system as a parameter.  

Mireault, Orlin, Vohra [11] have considered the prob-
lem of minimizing the makespan when scheduling inde-
pendent tasks on two uniform parallel machines. Out of 
the two machines, the efficiency of one machine is q 
times as that of the other machine. They computed the 
maximum relative error of the LPT (largest processing 
time first) heuristic as a function of q.  

Burkard and He [12] derived the tight worst case bound 

 6 2 1 2
k  for scheduling jobs using the MULTIFIT  

heuristic on two parallel uniform machines with k calls 
of FFD (first fit decreasing) within MULTIFIT. Burkard, 
He and Kellerer [13] have developed a linear compound 
algorithm for scheduling jobs on uniform parallel ma-
chines with the objective of minimizing makespan. This 
algorithm has three subroutines, which run independently 
in order to choose the best assignment among them. 
Panneerselvam and Kanagalingam [14] have presented a 
mathematical model for parallel machines scheduling 
problem with varying speeds in which the objective is to 
minimize the makespan. Also, they discussed industrial 
applications of such scheduling problem. Panneerselvam 
and Kanagalingam [15] have given a heuristic to mini-
mize the makespan for scheduling n independent jobs on 
m parallel processors with different speeds. 

Agarwal, Colak, Jacob and Pirkul [16] have proposed 
new heuristics along with an augmented-neural-netwrok 
(AugNN) formulation for solving the makespan minimi-
zation task-scheduling problem for the non-identical 
machine environment. They explored four task and three 
machine-priority rules, resulting in 12 combinations of 
single-pass heuristics. They gave the AugNN formula-
tion for each of the 12 heuristics and showed computa-
tional results on 100 randomly generated problems of 
sizes ranging from 20 to 70 tasks and 2 to 5 machines. 
The results clearly showed that AugNN provides signifi-
cant improvement over single-pass heuristics.  
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Panneerselvam Senthilkumar and Sockalingam Nara-
yanan [17] have developed a simulated annealing algo-
rithm to minimize the makespan in the single machine 
scheduling problem with uniform parallel machines. In 
the first phase, a seed generation algorithm is presented 
and then it is followed by three variations of the simu-
lated annealing algorithm. They compared these three 
simulated annealing algorithms and found that there is no 
significant difference among them in terms of makepsan. 
So, they suggested to use all the three simulated anneal-
ing algorithms for a given problem and select the best 
solution. 

Cristina Mihaila and Alin Mihaila [18] have developed 
an evolutionary algorithm for single machine scheduling 
problem with uniform parallel machines, in which the 
objective is to minimize the makespan. They also, com-
pared their algorithm with other meta-heuristics and re-
ported the results. Alin Mihaila and Cristina Mihaila [19] 
have developed a genetic algorithm to minimize the 
makespan of the uniform parallel machines scheduling 
under single machine scheduling and experimented with 
instance problems and reported that their algorithm per-
forms better when compared to other algorithms. 

From, the literature, it is clear that the objective of 
minimizing the makespan in single machine scheduling 
problem with uniform parallel machines comes under 
combinatorial category. Hence, development of heuristic 
is inevitable for this problem. Hence, in this paper, an 
attempt has been made to design a GA based heuristic to 
minimize the makespan in single machine scheduling 
problem with uniform parallel machines. 
 
3. Factors Affecting GA Based Heuristic 
 
In this paper, a GA based heuristic is designed to mini-
mize the makespan in single machine scheduling prob-
lem with uniform parallel machines.  

The genetic algorithm mimics the mechanism of se-
lection and evaluation. It generates successive population 
of alternate solutions until a solution is obtained that 
yields acceptable results. It is based on the fundamental 
processes that control the evolution of biological organ-
isms, namely natural selection and reproduction. 

The skeleton of the genetic algorithm is given below 
[20]. 

Step 1: Input the maximum number of successive 
population to be generated (Q). Let the generation count 
(GC) be 1 

Step 2: Generate a random initial population with N 
chromosome. Let this population be L. 

Step 3: Evaluate the fitness function f(x) of each chro-
mosome x in L. 

Step 4: Sort L by ascending /descending as per the ob-

jective and copy a specified percentage of chromosomes 
(30%) into a subpopulation P. 

Step 5: Randomly select two chromosomes and do the 
following: 

5.1 Perform Crossover operation. 
5.2 Perform Mutation of each offspring for a mutation 

probability, α. 
5.3 Replace the new two offspring in L along with 

their fitness function values 
Step 6: Repeat Step 5 until all the chromosomes in P 

are considered. 
Step 7: GC = GC + 1 
Step 8: IF GC ≤ Q, then go to Step 4; else go to Step 9. 
Step 9: From L, identify the chromosome which has 

the best fitness function value and print its results. 
Step 10: Stop. 
The performance of the genetic algorithm is suspected 

to be affected by the crossover method, mutation, the 
way in which the initial population is generated and the 
problem size.  

In the GA based heuristic, the design factors consid-
ered in this paper are as listed below. 
 Problem size (Factor A) in terms of number of ma-

chines and number of jobs, for which the levels are 2 × 
11, 2 × 12, 2 × 13, ···, 2 × 25, 3 × 11, 3 × 12, 3 × 13, ···, 
3 × 25, ···, 10 × 11, 10 × 12, 10 × 13, ···, 10 × 25. 

 Crossover method (Factor B), for which the levels are 
“Single point crossover method” and “Two pint 
crossover method”. 

 Method of allocation of jobs to machines while gen-
erating initial population (Factor C), for which the 
levels are “Equal number of allocation of jobs to ma-
chines” and “Proportionate number of allocation of 
jobs to machines, which is based on the speed of the 
machines”. 

 
3.1. Methods of Job Allocation to Machines 
 
This section explains the methods of allocation of jobs to 
different machines while generating the initial population 
(Factor C), viz. equal number of jobs allocation to ma-
chines and proportionate number of jobs allocation to 
machines. 
 
3.1.1. Equal Number of Jobs Allocation to Machines 
In the method which assigns equal number of jobs to 
each machine, the construction of chromosome is ex-
plained below. 

Let, NJi be the number of jobs assigned to machine i, i 
= 1, 2, 3, ···, m 

NJi = n/m, if (n/m) is integer; for i = 1, 2, 3, ···, m. 
Otherwise, 

NJi = Int(n/m), for i =1 ,2, 3, ···, m − 1 
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some 1 is shown in Figure 1 by assuming the processing 
times as in Table 2. 

1

1

NJ NJ
m

m i
i

n




   

 If the number of jobs is 9 and the number of machines 
is 3, then a sample chromosome is as presented by 
Chromosome 1 in Table 1 by randomly assigning each 
machine number to three jobs. If the number of jobs and 
the number of machines are 10 and 3, respectively, then 
a sample chromosome is as presented by Chromosome 2 
in Table 1. 

3.1.2. Proportionate Number of Jobs Allocation to  
Machines 

The construction of a chromosome in the method of 
proportionate number of jobs allocation to machines is 
explained below. 

The speed ratio of the machines be S1:S2:S3:···:Sm, in 
which S1 < S2 < S3 < ···< Sm In the above representation of chromosomes, each 

gene represents a machine to which the corresponding 
job is assigned. The generation of genes is random sub-
ject to fulfilling the number of jobs assigned to each of 
the machines. 

Let, NJi be the number of jobs assigned to machine i, i 
= 1, 2, 3, ···, m 

NJi = Int{[Si/(S1 + S2 + S3 + ···+ Sm)] × n}, if the inte-
ger value is more than 0; = 1, otherwise, 
for i = 1, 2, 3, ···, m − 1 The determination of the makespan for the Chromo- 

 
Table 1. Representation of chromosomes using equal number of jobs assignment to machines. 

Job Number 
 

1 2 3 4 5 6 7 8 9 10 

Chromosome 1: 3 1 3 2 1 3 2 1 2  

Chromosome 2: 2 3 2 1 3 1 3 2 3 1 

 
Table 2. Processing times of jobs shown in chromosome 1. 

Job 
 Speed ratio 

1 2 3 4 5 6 7 8 9 

1 1 6 9 24 12 6 18 24 12 6 

2 2 3 4.5 12 6 3 9 12 6 3 

Machine 

3 3 2 3 8 4 2 6 8 4 2 

 

 

Figure 1. Gantt chart to determine makespan of chromosome 1. 
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Let the number of jobs be 10 and the number of ma-
chines be 4 with speed ratio 1:2:3:4 for the machines 1, 2, 
3 and 4, respectively. A sample chromosomes for this 
situation is as presented by the Chromosome 3 in Table 
3 by randomly assigning Machine 1 to one job, Machine 
2 to two jobs, Machine 3 to 3 jobs and Machine 4 to four 
jobs as per their speed ratio. Assume another situation in 
which the number of jobs and the number of machines 
are 10 and 5, respectively. Let the speed ratio of the ma-
chines be 1:2:3:4:5 for the machines 1, 2, 3, 4 and 5, re-
spectively. A sample chromosome for this situation is as 
presented by the Chromosome 4 in Table 3 by assigning 
Machine 1 to one job, Machine 2 to 1 job, Machine 3 to 
2 jobs, Machine 4 to 2 jobs and Machine 5 to four jobs as 
per speed ratio. 
 
3.2. Crossover Methods 
 
In this paper, single point crossover method and two 
point crossover method are used in the experiment con-
ducted to select the factors affecting the performance of 
the GA based heuristic to minimize the makespan of the 
single machine scheduling problem with uniform parallel 
machines. These are demonstrated using the chromo-
somes 5 and 6 which are given below in which the num-
ber of jobs is 10 and the number of machines is 4. 

Chromosome 5:  2  1  3  4  3  4  4  2  3  4 
Chromosome 6:  4  3  4  3  2  1  2  4  3  4 

 
3.2.1. Single Point Crossover Method 
The single point crossover method is explained using the 
chromosomes 5 and 6. Let the random position selected 
in the range 1 to 10 (positions of the job numbers in the 
chromosomes) be 4. Then, the chromosome 5 is divided 
into two parts, P and Q and the chromosome 6 is divided 
into two parts, X and Y as shown below. 

               P               Q 
 

Chromosome 5:  2  1  3  4    3  4  4  2  3  4 
 

X              Y 
 

Chromosome 6:  4  3  4  3    2  1  2  4  3  4 

The offspring 1 and offspring 2 generated using the 
single point crossover performed on these chromosomes 
are shown below. 

 
 

             X                 Q 

Offspring 1:  4  3  4  3     3  4  4  2  3  4 
 

P                 Y 
 

O
 

ffspring 2:  2  1  3  4     2  1  2  4  3  4 

 
3.2.2. Two Point Crossover Method 
The two point crossover method is explained using the 
same set of chromosomes 5 and 6. Let the two random 
positions selected in the range 1 to 10 (positions of the 
job numbers in the chromosomes) be 3 and 6. Then, the 
chromosome 5 is divided into three parts, P, Q and R, 
and the chromosome 6 is divided into three parts, X, Y 
and Z as shown below. 

  P        Q          R 
 

Chromosome 5:  2  1  3   4  3  4   4  2  3  4 
 

X        Y          Z 
 

Chromosome 6:  4  3  4   3  2  1   2  4  3  4 
 
The offspring 3 and offspring 4 generated using the 

two point crossover performed on these chromosomes 
are shown below. 

 
 

            X         Q          Z 

Offspring 3:  4  3  4   4  3  4   2  4  3  4 
 

P          Y         R 
 

O
 

ffspring 4:  2  1  3   3  2  1   4  2  3  4  

 
4. GA Based Heuristic to Minimze  

Makespan 
 
As stated earlier, the performance of the GA based heu-
ristic to minimize the makespan of the single machine 
scheduling problem with uniform parallel machines is 
mainly suspected to be affected by the factors, viz., 
“Crossover Method” and “Job Allocation Method”, each 
having two methods. So, four (2 × 2 = 4) GA based heu-  

 
Table 3. Representation of chromosomes using proportionate number of jobs allocation to machines. 

Job Number 
 

1 2 3 4 5 6 7 8 9 10 

Chromosome 3: 2 1 3 4 3 4 4 2 3 4 

Chromosome 4: 5 3 5 3 4 5 2 5 4 1 
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ristics by combining the levels of these factors to mini-
mize the makespan are presented in this section. 
 
4.1. GA Based Heuristic with Single-Point  

Crossover Method and Equal Number of  
Job Allocation Method 

 
The steps of the GA based heuristic with single point 
crossover method and equal number of job allocation 
method to minimize the makespan of the single machine 
scheduling problem with uniform parallel machines are 
presented below. 

Step 1: Input the following. 
Number of machines (m) 
Number of jobs (n) [It is assumed that n ≥ m] 
Speed ratio of the machines: S1:S2:S3: ···:Sm, in which 

S1 < S2 < S3 < ···: < Sm 
Processing times Ti,j, i = 1, 2, 3, ···, m & j = 1, 2, 3, ···, 

n. 
Mutation probability, α (0.3). 
Step 2: Set the genetic algorithm parameters. 
Size of population, N 
Size of subpopulation, P (30% of N) 
Number of iterations to be carried out, Q 
Step 3: Construct N chromosomes of the population 

by allocating equal number of jobs to the machines in 
each chromosome, CHROMK,J, K = 1, 2, 3, ···, N and J = 
1, 2, 3, ···, n. 

Step 4: Compute the makespan of each chromosome 
in the population, MSK, K = 1, 2, 3, ···, N. 

Step 5: Set the Iteration Number q to 1. 
Step 6: Sort the chromosomes in the ascending order 

of their makespans. 
Let the sorted chromosomes be, SCHROMK,J, K = 1, 2, 

3, ···, N, J = 1, 2, 3, ···, n and the array of their makespan 
be MAKESPANK, K = 1, 2, 3, ···, N. 

Step 7: Copy the sorted chromosomes, SCHROMK,J, 
K = 1, 2, 3, ···, N, J = 1, 2, 3, ···, n into CHROMK,J, K = 1, 
2, 3, ··· N, J = 1, 2, 3, ···, n. 

Step 8: Update the best makespan, BEST_MS = 
MAKESPAN1 and  

The best chromosome, BCHROM = SCHROM1,J, J = 
1, 2, 3, ···, n. 

Step 9: Treat the topmost 30% of the population (0.3N = 
P) of the sorted population as subpopulation for cross-
over operation. 

Step 10: Set chromosome number, C = 1 
Step 11: Perform single-point crossover between the 

chromosomes C and C + 1 as listed below and obtain the 
offspring C and C + 1. 

Crossover between: CHROMC,J, J = 1, 2, 3, ···, n & 
CHROMC+1,J, J = 1, 2, 3, ···, n 

Offspring: OSPRINGC,J, J = 1, 2, 3, ···, n & OS-

PRINGC+1,J, J = 1, 2, 3, ···, n 
Step 12: Perform mutation in each of the offspring for 

a mutation probability of α. 
Step 13: Compute the makespan of each of the off-

spring. [MSC and MSC+1]. 
Step 14: Increment chromosome number by 2, C = C 

+ 2. 
Step 15: If C ≤ P then go to Step 11. 
Step 16: Copy the new offspring [OSPRINGC,J, C = 1, 

2, 3, ···, P and J = 1 ,2 3, ···, n] to the chromosomes vec-
tor, CHROMC,J, C = 1, 2, 3, ···, P and J = 1, 2, 3, ···, n, 
respectively. 

Step 17: Increment the iteration number by 1 (q = q + 
1). 

Step 18: If q ≤ Q, then go to Step 6. 
Step 19: Print the following results. 
Best makespan, BEST_MS 
Best chromosome, BCHROM, which is SCHROM1,J, J 

= 1, 2, 3, ···, n. 
Step 20: Stop 

 
4.2. GA Based Heuristic with Two Point  

Crossover Method and Equal Number  
of Jobs Allocation Method 

 
The steps are same as given in the Section 4.1, except the 
Step 11. The Step 11 of the two-point crossover is shown 
below. 

Step 11: Perform two point crossover between the 
chromosomes C and C + 1 as listed below and obtain the 
offspring C and C + 1. 

Crossover between: CHROMC,J, J = 1, 2, 3, ···, n & 
CHROMC+1,J, J = 1, 2, 3, ···, n 

Offspring: OSPRINGC,J, J = 1, 2, 3, ···, n & OS-
PRINGC+1,J, J = 1, 2, 3, ···, n 
 
4.3. GA Based Heuristic with Single Point  

Crossover Method and Proportionate  
Number of Jobs Allocation Method 

 
The steps are same as given in the Section 4.1, except the 
Step 3. The Step 3 is shown below. 

Step 3: Construct N chromosomes of the population 
by allocating proportionate number of jobs to the ma-
chines in each chromosome, CHROMK,J, K = 1, 2, 3, ···, 
N and J = 1, 2, 3, ···, n. 
 
4.4. GA Based Heuristic with Two Point  

Crossover Method and Proportionate  
Number of Jobs Allocation Method 

 
The steps are same as given in the Section 4.1, except the 
Step 3 and Step 11. The Step 3 and the Step 11 are 
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shown below. 
Step 3: Construct N chromosomes of the population 

by allocating proportionate number of jobs to the ma-
chines in each chromosome, CHROMK,J, K = 1, 2, 3, ···, 
N and J = 1, 2, 3, ···, n. 

Step 11: Perform two point crossover between the 
chromosomes C and C + 1 as listed below and obtain the 
offspring C and C + 1. 

Crossover between: CHROMC,J, J = 1, 2, 3, ···, n & 
CHROMC+1,J, J = 1, 2, 3, ···, n 

Offspring: OSPRINGC,J, J = 1, 2, 3, ···, n & OS-
PRINGC+1,J, J = 1, 2, 3, ···, n. 
 
5. Experimentation 
 
In the GA based heuristic, the design factors are as listed 
below. 
 Problem size (Factor A) in terms of number of ma-

chines and number of jobs, for which the levels are 2 × 
11, 2 × 12, 2 × 13, ···, 2 × 25, 3 × 11, 3 × 12, 3 × 13, ···, 
3 × 25, ···, 10 × 11, 10 × 12, 10 × 13, ···, 10 × 25. 

 Crossover method (Factor B), for which the levels are 
“Single point crossover method” and “Two point 
crossover method”. 

 Method of allocation of jobs to machines while gen-
erating initial population (Factor C), for which the 
levels are “Equal number of allocation of jobs to ma-

chines” and “Proportionate number of allocation of 
jobs to machines, which is based on the speed of the 
machines” 

A comparison is made between the GA based heuris-
tics with these three factors to minimize the makespan of 
the single machine scheduling problem with uniform 
parallel machines. 

The problems are generated by varying the number of 
machines (m) from 2 to 10 with an increment of 1 and 
the number of jobs from 11 to 25 with an increment of 1. 
The speed ratio of the machines is assumed as the ratio 
of the machine numbers. If a problem has four machines, 
the speed ratio of the machines 1, 2, 3, and 4 is 1:2:3:4, 
respectively. 

The problem sizes are 2 × 11, 2 × 12, 2 × 13, ···, 2 × 
25, 3 × 11, 3 × 12, 3 × 13, ···, 3 × 25, ···, 10 × 11, 10 × 12, 
10 × 13, ···, 10 × 25. The total number of problem sizes 
is 135.  

For each combination of the factors, two replications 
have been carried out. So, 270 problems (135 problems 
sizes with two replications in each problem size) were 
generated randomly as per the layout shown in Table 4. 

The values of the makespan of the problems under each 
experimental combination are obtained. The formula to 
compute the percent deviation of the makespan of a 
problem from the minimum makespan of that problem is 
given by the following formula.  

Mak

Per

esp

centag

an for

e deviation 

 given exper

of makespan for a given 

imental cond

experimental condition in a replicati

ition Minimum of the four Makespan values in th

on of a

e repli

 p

cation

Minim

roblem =


100

um of the four Makespan values in the replication

 
 

 

 

 
The respective ANOVA model [21] is presented below. 

Yijkl = μ + Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + eijkl 

where, Yijkl is the percentage deviation of makespan w.r.t. 
lth replication under ith problem size, jth crossover method 
and kth job allocation method.  
μ is the overall mean of the percent deviation of the 

makespan values. 
Ai is the effect of the ith problem size on the percent 

deviation of the makespan value. 
Bj is the effect of the jth crossover method on the per-

cent deviation of the makespan value. 
ABij is the interaction effect of the ith problem size and 

jth crossover method on the percent deviation of the 
makespan value.  

Ck is the effect of kth job allocation method on the 
percent deviation of the makespan value. 

ACik is the interaction effect of the ith problem size and 
kth job allocation method on the percent deviation of the 
makespan value. 

BCjk is the interaction effect of the jth crossover 

method and kth job allocation method on the percent de-
viation of the makespan value. 

ABCijk is the interaction effect of the ith problem size, 
jth crossover method and kth job allocation method on the 
percent deviation of the makespan value.  

eijkl is the random error associated with the lth replica-
tion under ith problem size, jth crossover method and kth 
job allocation method.  

The different hypotheses of this model are listed below.  
Factor: Problem Size (A) 
H0: There is no significant difference between problem 

sizes in terms of the percent deviation of makespan 
value. 

H1: There is significant difference between problem 
sizes in terms of the percent deviation of makespan 
value.  

Factor: Crossover Method (B) 
H0: There is no significant difference between cross-

over methods in terms of the percent deviation of make- 
span value. 

H1: There is significant difference between crossover  
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Table 4. Layout of problem generation. 

Crossover Method (B) 

Single Point Two Point 

Method of Allocation of Jobs (C) Method of Allocation of Jobs (C) 
 

Equal Allocation Proportionate Allocation Equal Allocation Proportionate Allocation

    
2 × 11 

    

    
2 × 12 

    

    
2 × 13 

    

.     

.     

    
2 × 25 

    

    
3 × 11 

    

    
3 × 12 

    

    
3 × 13 

    

.     

.     

    
3 × 25 

    

.     

.     

    
10 × 11 

    

    
10 × 12 

    

    
10 × 13 

    

.     

.     

    

Problem Size (A) 

10 × 25 
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methods in terms of the percent deviation of makespan 
value. 
Interaction: Problem Size (A) × Crossover Method 

(B) 
H0: There is no significant difference between differ-

ent pairs of interaction terms of problem size and cross-
over method in terms of the percent deviation of 
makespan value. 

H1: There is significant difference between different 
pairs of interaction terms of problem size and crossover 
method in terms of the percent deviation of makespan 
value. 

Factor: Job Allocation Method (C) 
H0: There is no significant difference between job al-

location methods in terms of the percent deviation of 
makespan value. 

H1: There is significant difference between job alloca-
tion methods in terms of the percent deviation of 
makespan value. 

Interaction: Problem Size (A) × Job Allocation 
Method (C)  

H0: There is no significant difference between differ-
ent pairs of interaction terms of problem size and job 
allocation method in terms of the percent deviation of 
makespan value. 

H1: There is significant difference between different 
pairs of interaction terms of problem size and job alloca-
tion method in terms of the percent deviation of 
makespan value. 

Interaction: Crossover Method (B) × Job Alloca-
tion Method (C)  

H0: There is no significant difference between differ-
ent pairs of interaction terms of crossover method and 
job allocation method in terms of the percent deviation of 
makespan value. 

H1: There is significant difference between different 
pairs of interaction terms of crossover method and job 

allocation method in terms of the percent deviation of 
makespan value. 

Interaction: Problem Size (A) × Crossover method 
(B) × Job Allocation Method (C) 

H0: There is no significant difference between differ-
ent combinations of interaction terms of problem size, 
crossover method and job allocation method in terms of 
the percent deviation of makespan value. 

H1: There is significant difference between different 
combinations of problem size, crossover method and job 
allocation method in terms of the percent deviation of 
makespan value. 

The results of the corresponding ANOVA model are 
shown in Table 5. 

The hypotheses for which the effects are significant are 
as listed below. 

Factor “Problem Size (A)” 
In the Table 5, the calculated F ratio for the factor 

“Problem Size (A)” is 4.65, which is more than the cor-
responding table F value of 1 for (134, 540) degrees of 
freedom at a significance level of 0.05. Hence, the alter-
nate hypothesis is accepted. This means that there is sig-
nificant difference between the problem sizes in terms of 
percent deviation of makespan.  

Factor “Job Allocation Method” (C) 
In the Table 5, the calculated F ratio for the factor, 

“Job Allocation Method (C)” is 546.169, which is more 
than the table F value of 3.84 for (1, 540) degrees of 
freedom at a significance level of 0.05. Hence, the cor-
responding alternate hypothesis is accepted. This means 
that there is significant difference between the job allo-
cation methods in terms of percent deviation of make- 
span. 

Interaction “Problem Size × Job Allocation 
Method” (A × C) 

In the Table 5, the calculated F ratio for the interac-
tion “Problem Size × Job Allocation Method” is 2.72,  

 
Table 5. Results of ANOVA. 

Source of Variation Sum of squares Degrees of freedom Mean sum of squares FCalculated Ftable at α = 0.05 Inference 

A (Problem Size) 62602.35000 134 467.190 4.650 1.00 Significant

B (Crossover Method) 72.96875 1 72.969 0.726 3.84 Insignificant

AB 9760.92200 134 72.8430 0.725 1.00 Insignificant

C(Job Allocation Method) 54869.26000 1 54869.260 546.169 3.84 Significant

AC 36622.24000 134 273.300 2.720 1.00 Significant

BC 9.0156000 1 9.106 0.0897 3.84 Insignificant

ABC 9056.37500 134 67.584 0.673 1.00 Insignificant

Error 54249.32000 540 100.462    

Total 227242.50000 1079     
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which is more than the table F value of 1 for (134, 540) 
degrees of freedom at a significance level of 0.05. Hence, 
the corresponding alternate hypothesis is accepted. This 
means that there is significant difference between the 
interaction terms, A1C1, A1C2, A2C1, A2C2, ···, A135C1, 
A135C2 in terms of makespan. 

Since, there is significant difference between the job 
allocation methods (Equal number of jobs allocation and 
proportionate number of jobs allocation), the best 
method of allocation of the jobs to the machines can be 
based on the least mean percentage deviation of the 
makespan values. The mean percentage deviation of the 
makespans of the equal number of allocation of jobs to 
the machines and the proportionate number of allocation 
of jobs to the machines are 17.70365 and 2.26711, re-
spectively. Since, the mean percentage deviation of the 
proportionate number of allocation of jobs to the ma-
chines is less when compared to that of the equal number 
of allocation of jobs to the machines, the method of pro-
portionate number of allocation of jobs to the machines 
is the best. 

It is observed that there is no significant difference 
between the single point crossover method and two point 
crossover method in terms of the percentage deviation of 
the makespan. So, any of these two crossover methods 
can be selected for implementation.  

However, the selection is done based on the least 
mean percent deviation of the makespan values of “Sin-
gle Point Crossover Method with Proportionate Alloca-
tion of Jobs” and “Two Point Crossover Method with 
Proportionate Allocation of Jobs”. The mean percentage 
deviation of the makespan of the “Single Point Crossover 
Method with Proportionate Allocation of Jobs” is 2.2457 
and that of the “Two Point Crossover Method with Pro-
portionate Allocation of Jobs” is 1.8823. Since, the mean 
percentage deviation of the makespan of the “Two Point 
Crossover Method with Proportionate Allocation of 
Jobs” is less than that of the “Single Point Crossover 
Method with Proportionate Allocation of Jobs”, the GA 
based heuristic with two point crossover method with 
proportionate allocation of jobs is the best. 

Based on the above discussions, it is recommended to 
use the GA based heuristic with two point crossover 
method, in which the initial population is generated by 
way of proportionate allocation of jobs to the machines 
based on the machine speeds. 
 
6. Conclusions 
 
Production scheduling plays a vital role in industries. 
The single machine scheduling problem with uniform 
parallel machines which is presented in this paper is a 
special kind of parallel machines scheduling problem. 

The minimization of the makespan is considered as the 
objective of the problem. This problem comes under 
combinatorial category. Hence, the development of a 
meta-heuristic is inevitable for better solution. Among 
the meta-heuristics, very little work has been done on 
GA based heuristic to minimize the makespan for this 
problem. Hence, in this paper, four different GA based 
heuristics have been designed by combining the two 
crossover methods (single point crossover method and 
two point crossover method) and the two job allocation 
methods (equal number of allocation of jobs to machines 
and proportionate number of allocation of jobs to ma-
chines based on machine speeds). 

To select the best GA based heuristic, a comprehen-
sive three factor ANOVA experiment has been con-
ducted by assuming the factors as “Problem Size (A)”, 
“Crossover Method (B)” and “Job Allocation Method 
(C)”. The problem sizes are 2 × 11, 2 × 12, 2 × 13, ···, 2 × 
25, 3 × 11, 3 × 12, 3 × 13, ···, 3 × 25, ···, 10 × 11, 10 × 12, 
10 × 13, ···, 10 × 25. The total number of problem sizes 
is 135 and each problem size is with two replications. So, 
in total 270 problems are solved using four different GA 
based heuristics to obtain their corresponding makespan 
values. Then the percent deviation of each makespan is 
obtained from the minimum makespan of each replica-
tion of each problem size to draw inferences using 
ANOVA.  

From ANOVA, the following are observed. 
 There is significant difference between the problem 

sizes in terms of percent deviation of makespan.  
 There is significant difference between the job alloca-

tion methods in terms of percent deviation of 
makespan,  

 There is significant difference between the interaction 
terms, A1C1, A1C2, A2C1, A2C2, A3C1, A3C2, ···, 
A135C1, A135C2 in terms of percent deviation of 
makespan. 

Since, there is significant difference between the job 
allocation methods, and the mean percentage deviation 
of the proportionate number of allocation of  jobs to the 
machines (2.064055) is less when compared to that of 
the equal number of allocation of jobs to the machines 
(17.01832), the method of proportionate number of allo-
cation of jobs to the machines is the best. 

Further, it is observed that there is significant differ-
ence between different problem sizes in terms of mean 
percent deviation of makespan as well as between dif-
ferent combinations of problem size and job allocation 
method in terms of percent deviation of makespan. These 
two facts further support the strong significant difference 
between the job allocation methods in terms of percent 
deviation of makespan.  

It is observed that there is no significant difference 
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between the single point crossover method and two point 
crossover method in terms of the percentage deviation of 
the makespan. So, any of these two crossover methods 
can be selected for implementation. However, the two 
point crossover method is selected because of its reduced 
mean percent deviation of the makespan values. 

Based on the above discussions, it is recommended to 
use the GA based heuristic with two point crossover 
method, in which the initial population is generated by 
way of proportionate allocation of jobs to the machines 
based on the machine speeds. 

The research reported in this paper is a significant con-
tribution under the single machine scheduling problem 
with uniform parallel machines in terms of designing a 
meta-heuristic to minimize the makespan. Future re-
searches may be focused on uniform parallel machines 
scheduling with stochastic processing times for the jobs. 
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