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Abstract 
We theoretically analyse a multi-modes atomic interferometer consisting of a se-
quence of Kapitza-Dirac pulses (KD) applied to cold atoms trapped in a harmonic 
trap. The pulses spatially split the atomic wave-functions while the harmonic trap 
coherently recombines all modes by acting as a coherent spatial mirror. The phase 
shifts accumulated among different KD pulses are estimated by measuring the num-
ber of atoms in each output mode or by fitting the density profile. The sensitivity is 
rigorously calculated by the Fisher information and the Cramér-Rao lower bound. 
We predict, with typical experimental parameters, a temperature independent sensi-
tivity which, in the case of the measurement of the gravitational constant g can sig-
nificantly exceed the sensitivity of current atomic interferometers. 
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1. Introduction 

The goal of interferometry is to estimate the unknown value of a phase shift. The phase 
shift can arise because of a difference in length among two interferometric arms, as in 
the first optical Michelson-Morley probing the existence of aether or in LIGO and 
VIRGO gravitational wave detectors [1]. Phase shifts can also be the consequence of a 
supersonic airflow perturbing one optical path, as in the first Mach-Zehnder [2], or in-
ertial forces as in Sagnac [3]. Interferometers are among the most exquisite measure-
ment devices and since their first realisations have played a central role on pushing the 
frontier of science.  
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Since the last decade, matter wave interferometers have progressively become very 
competitive when measuring electromagnetic or inertial forces. In particular, atom in-
terferometers [4] [5] have been exploited to obtain the most accurate estimate of the 
gravitational constant [6] [7] [8] [9]. The beam splitter and the mirror operations of an 
atom interferometer can be typically implemented in free space with a sequence of 
Bragg scatterings applied to a beam of cold atoms [5] [10]. Alternatively, the phase 
shifts can be estimated by measuring the Bloch frequency of cold atoms oscillating in 
vertically oriented optical lattices which have been able to evaluate the gravitational 
constant g with accuracy up to 7~ 10g g −∆  [11] [12] [13] [14]. 

The sensitivity of light-pulse atom interferometry scales linearly with the space-time 
area enclosed by the interfering atoms. Large-momentum-transfer (LMT) beam split-
ters have been suggested [15] and experimentally investigated [16] [17] [18], demon-
strating up to 88 k  splitting (where k  is the photon momentum) [16] [18]. Rela-
tive to the 2-photon processes used in the current most sensitive light-pulse atom in-
terferometers, LMT beam splitters in atomic fountains can provide a 44-fold increased 
phase shift sensitivity [16]. Further increases of the momentum differences between the 
interferometer paths are limited by the cloud’s transverse momentum width since high 
efficiency beam splitting and mirror processes require a narrow distribution [19].  

As an alternative to the atomic fountains, where the atoms follow ballistic trajecto-
ries, the interferometric operations can be implemented with trapped clouds [20] [21] 
[22]. We have recently proposed [23] a multi-mode interferometer with harmonically 
confined atoms where multi beam-splitter and mirror operations are realized with Ka-
pitza-Dirac (KD) pulses, namely, the impulse application of an off-resonant standing 
optical wave. With KD pulses applied to atoms in a harmonic trap, it is possible to 
reach large spatial separations between the interferometric modes by avoiding, at the 
same time, atom losses and defocusing occurring in Bragg processes (mostly due to the 
constraint of narrow momentum widths). In [23], the role of mirrors is played by the 
harmonic trap, which coherently drives and recombines a tunable number of spatially 
addressable atomic beams created by the KD pulses. The phase estimation sensitivity 
linearly increases with the number of beams and their spatial distance. The number of 
beams is proportional to the strength of the applied KD pulse while their distance is 
proportional to the ratio between the harmonic trap length and the wave-length of the 
optical wave. In this manuscript we discuss in detail the theory of the multi-modes KD 
interferometer which was introduced in [23]. 

2. Multi-Modes Kaptiza-Dirac Interferometer 

The initial configuration of the interferometer is provided by a cloud of cold atoms 
trapped by an harmonic potential 2 2 2hoV m xω= . The interferometric sequence is rea-
lised in four steps, see Figure 1: 

i) Beam-splitter: A KD pulse is applied to the atomic cloud state at the time 0t . KD 
creates a number of spatially addressable atomic wave-packets that evolve along differ-
ent paths under the harmonic confinement.  



R. L. Cheng et al. 
 

2045 

 

Figure 1. (color-online) Multimodes Kapitza-Dirac interferometer. The first Kapitza-Dirac pulse 
at 0t =  creates several modes consisting of atomic wave-packets evolving under the harmonic 
confinement and an external perturbing field. The n-th Kapitza-Dirac pulse at t nτ=  mixes the 
modes which are eventually detected in output at ( )1 2t n τ= + , where πτ ω= .  

 
ii) Phase shift: Each spatial mode gains a phase shift θ  with respect to its neigh-

bour’s modes due to the action of an external potential.  
iii) Beam splitter: the harmonic trap coherently recombines the wave packets and a 

second KD pulse is applied to again mix and separate the modes along different paths.  
iv) Measurement: The phase shift is estimated by fitting the atomic density profile or 

by counting the number of atoms in each spatial mode at ft . The measurement can be 
done after ballistic expansion by optimising spatial separation of the modes and atom 
counting signal to noise ratio.  

The sequences i)-iii) can be iterated an arbitrary number of times n before the final 
measurement iv).  

The plan of the paper is as follows. In Section 2, we present a detailed description of 
the multi-modes KD interferometer. As an application we calculate the Fisher informa-
tion and the Cramér-Rao lower bound sensitivity [24] of the interferometric measure-
ment of the gravitational constant g in Section 3. We predict sensitivities up to 

9~ 10g g −∆  in configurations realisable within the current state of the art and in the 
Section 4 we compare the performance of different atomic interferometers. In Section 5 
we discuss two possible sources of noise and we finally summarise the results in Section 6. 

3. Dynamics 

Let’s consider first a single atom described by a wave packet ( )0 xψ  confided in the 
harmonic trap ( ) 2 2 2hV x m xω= . The time evolution of the state in the harmonic trap 
is given by  

( ) ( ) ( )0 0, , ; , , dx t K x t y t y t yψ ψ
+∞

−∞

= ∫                    (1) 
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where ( )0, ; ,K x t y t  is the quantum propagator [25]  

( )
( )( )

( ) ( )( )( )
( )( )

2 2
0

2
0

cos 2

2 sin
0 2

0

1, ; , e ,
2π sin

h

i x y t t xy

t t

h

K x t y t
i t t

ω

σ ω

σ ω

+ − −

−= ×
−

         (2) 

with h mσ ω= 
. The KD beam-splitter is realized with an impulse application of a 

periodic potential ( ) ( )0 cosKD rV x V E kx= , where 0V  is the strength of the pulse, rE  
is the atomic recoil energy and 4πk λ= . In the Raman-Nath limit [10] [26] [27], the 
duration of the pulse is short enough to not affect the atomic density but to only change 
the phase of the initial wave-function ( ),0xψ  as  

( ) ( ) ( ) ( ) ( )cos
0 0e e ,iV kx l ilkx

l
l

x x i J V xψ ψ ψ
+∞

−

=−∞

= = −∑               (3) 

where we have used the Bessel generating function ( )
1 1
2e

z t
lt

l
l

t J z
  +∞− 
 

=−∞

= ∑  [28] and  

0 rV V E tδ=  . The Raman-Nath limit has been experimentally demonstrated in [21] 
[29]. Equation (3) shows that the KD beam-splitter creates 2 1M V +  copies of the 
initial state, each with amplitude ( )lJ V−  and an additional momentum lk .  

After the application of the first KD, the wave-packets are coherently driven by the 
harmonic trap and recombined after a time πτ ω= . At this time, the propagator 

( )0, ; ,K x t y t  in Equation (2) is simply given by  

( ) ( )2
1 0 0, ; , e .

i
K x t y t x y

ωτ

τ δ
−

+ = +                    (4) 

Furthermore, in presence of an external field, each spatial mode created by the KD 
beam splitter gains during the time τ  a phase shift θ  with respect to its neighbour’s 
modes. Right before the application of a second KD pulse, at time τ− , the wave func-
tion is  

( ) ( ) ( )cos2
0, , e e .

i iV kxx x
ωτ

θψ θ τ ψ
− − −

− = −                    (5) 

After iterating a number of times n the sequence of KD pulses and phase shift accu-
mulations, the wave function at t nτ−=  becomes  

( ) ( ) ( )( ), ,2
0, , e e ,

ni niV n xx n x
ωτ

θψ θ τ ψ
− − Θ

− = −                  (6) 

where  

( ) ( ) ( ), , cos cos ,
2 2
n nn x kx n kxθ θ θ    Θ = − + − +          

and 
2
n 
  

 is the integer part of 
2
n . For odd n we have  

( ) ( ) ( ) ( ) ( ), , 1 cos cos cos ,n x n kx kxθ θ θΘ = − + −  
while for even n we have  

( ) ( ) ( ), , cos cos .n x n kxθ θΘ =  
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After n iterations, a last KD pulse is applied at the time nτ  providing  

( ) ( ) ( )cos, , e , , .iV kxx n x nψ θ τ ψ θ τ−
−=                    (7) 

The wave packets gain their maximum spatial separation after a further 2τ  evolu-
tion in the harmonic trap. 

Eventually, the wave function at the final time ( )1 2ft n τ= +  right before mea-
surement is  

( ) ( ) ( )

( ) ( )0

2

0 2

, , , ; , , , d

e ef

f f

i t i l
l

l h

x t K x t y n y n y

xi J V lkφ φ

ψ θ τ ψ θ τ

θ ψ
σ

+∞

−∞

+∞

=−∞

=

 
= −    

 

∫

∑ 

             (8) 

where  

2
4

2 0 0 2

1, ; , e e ,
2 2π

h

xi yi

h

K x t y t
ωτ

στ

σ

−− + = 
 

                 (9) 

and  

( )( )
2

2

0 02 2

1 1 e d
2π

h

h

x lk
i y

n

h h

x lk y y
σ

σψ ψ
σ σ

−+∞ −

−∞

 
− = − 

 
∫              (10) 

with ( ) ( )2 1 4ft nφ ωτ= − + , 0 lφ β=  or 0 for odd or even n, respectively, 

( ) ( )
( )

sin
tan

cos 1n
θ

β
θ

−
=

+
 and  

( ) ( )( ) even : cos 1n V V nθ θ= − +
 

( ) ( )( ) ( )2 2 odd : cos 1 sin .n V V nθ θ θ= − + +
 

In the limit if zero overlap between the various wave packets in Equation (8),  

( )
22 22

0 02 2

1
d 0,hh

h h

x l kx lk
x

σσ
ψ ψ

σ σ

+∞

−∞

 − + −
=       

∫                (11) 

the density function at the measurement time ( )2 1 2n τ+  simply becomes  

( ) ( )
2

2
0 2, , .f l

l h

xx t J V lkρ θ θ ψ
σ

+∞

=−∞

 
= −    

 
∑                 (12) 

Equation (12) shows that there are ( )2 1 ~ 2 1M V nVθ= + +  momentum modes 
created by the n applications of the KD pulses. This can of course be helpful if only 
weak KD pulses can be experimentally implemented. 

In the limit of a large number 1p  of independent interferometric measurements, 
the phase estimation sensitivity saturates the Cramér-Rao [30] lower bound  

2 1 ,
pNF

θ∆ =                            (13) 
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where N is the number of uncorrelated atoms. F denotes the Fisher information calcu-
lated from the particle density at the measurement time  

( )
( ) 2

, ,1 d .
, ,

f

f

x t
F x

x t

ρ θ

θρ θ

+∞

−∞

 ∂
 =

∂  
∫                   (14) 

With Equation (12), Equation (14) becomes  

( ) ( ) ( )( ) ( )2 2
2

2 2 ,l
l

V V
F J V

θ θ
θ θ

θ θ

+∞

=−∞

∂ ∂   
 ′= =    ∂ ∂   

∑            (15) 

(see Appendix). We finally obtain  

( ) ( ) ( ) ( )2 22 sin , ,F nV S nθ θ θ=                    (16) 

where  

( )
( ) ( )( )

2

2 22

1 2 odd : , 1 1
sin cos 1

nn S n
n n

θ
θ θ

 − = − +
 + +   

( ) even : , 1n S n θ =  
Notice that even in the case of a odd value of n, with 1n , ( ), 1S n θ → . There-

fore, for an even n or an odd 1n , the phase estimation uncertainty of our interfero-
meter becomes:  

( ) ( )
1 1 1 1 1 ,

sin 2pN nV pNF
θ

θθ
∆ = =                (17) 

which can also be written as  

( )
2 1 1 ,

1sin M pN
θ

θ
∆ =

−
                      (18) 

since the total number of modes is 2 1M nV= + . As expected on a general ground 
from the theory of multimode interferometry [31], the sensitivity scales linearly with 
the number of momentum modes which have been significantly populated after KD 
beam splitters. The populations of higher diffraction orders vanish exponentially [10]. 

We remark here the important condition of non overlap of the wave packets corres-
ponding to the different momentum modes at the time of measurement, Equation (11). 
A further interesting point is that Equation (18) is independent from the temperature 
of the atoms as long as their de Broglie wavelength remains larger than the internal 
spatial separation of the periodic potential creating the Kapitza-Dirac pulse. We will 
show this in the following Sections by considering as a specific application the interfe-
rometric estimation of the gravitational constant. 

4. Estimation of the Gravitational Acceleration Constant g  

We now investigate the KD interferometer theory to estimate the gravity constant g. 
The evolution of the initial state ( )0 xψ  is influenced by the combined action of the 
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harmonic confinement ( )hV x , the gravitational field mgx  and the KD beam splitters. 
The goal is to estimate the value of the acceleration constant g. As explained in the pre-
vious Section, the phase shift θ  arises from the external gravitational field acting 
during the phase accumulation period (until nτ ). We may engineer our Hamiltonian 
to switch on/off the gravity after the first beam splitter by modifying the frequency of 
the harmonic trap by ( )2 21 1d g ω ω= −  , where ,ω ω  are the trap frequencies before 
and after the KD, respectively. We finally generalize our results by considering an 
atomic gas in thermal equilibrium at a finite temperature 0T > .  

To take in account the effect of the gravitational force on the dynamical evolution of 
the trapped atom states, we need to include in the free propagator ( )0, ; ,K x t y t  Equa-
tion (2) the linear gravitational field [25]  

( )
( )

( )
2

0
2

0 0, ; , e , ; , ,h

t t di

gK x t y t K x t y t
ω

σ
−  

  
  ′ ′=                 (19) 

where x x d′ = +  and y y d′ = +  with 2d g ω= . After the application of the first 
KD, the states are coherently driven by the harmonic trap and the external gravitational 
field. At the time t τ= , each spatial modes, created by KD pulse, are recombined and 
the wave function becomes  

( ) ( ) ( )

2
1

2 cos 2
0, , e e 2 ,h

di
iV k x dx g x d

ωτ
σ

ψ τ ψ

   −     − +    
− = − −             (20) 

since the quantum propagator undergone with gravity field is reduced to  

( ) ( )
2

2
1, 0 0 1 0 0, ; , e , ; , .h

di

gK x t y t K x t y t
ωτ

στ τ
 
  
  ′ ′+ = +              (21) 

As expected, each spatial mode gains its phase shift 2d  with respect to its neigh-
bour’s modes at time τ  due to action of the external gravity field after the first KD 
pulse. A straightforward (slightly tedious) calculation provides the wave function at 
t nτ−=   

( ) ( ) ( )

2
1

2 , ,
0, , e e ,h

n di
iV n g xx g n

ωτ
σ

ψ τ ψ ζ

   −     − Θ 
− =                (22) 

where xζ =  for even n and 2x dζ = − −  for odd n. The function ( ), ,n g xΘ  also 
depends on the of n: for odd n we have  

( ) ( ) ( ) ( )( ) ( )( ), , 1 cos cos cos 2 ,n g x n kd k x d k x dΘ = − + + +
 

and for even n  

( ) ( ) ( )( ), , cos cos .n g x n kd k x dΘ = +
 

The last KD pulse is applied on the wave function Equation (22) at time nτ , to mix 
and therefore spatially separate the modes for the final density profile measurement  

( ) ( ) ( )cos, , e , , .iV kxx g n x g nψ τ ψ τ−
−=                   (23) 

Firstly, we consider the case without the gravity field. Then at the time  
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2ft nτ τ= + , the wave function is  

( ) ( ) ( )

( ) ( ) 0

2

0 2

, , , ; , , , d

e e ,f

f f

i t il
l

l h

x g t K x t y n y g n y

xi J V g lk

ψ τ ψ τ

ψ
σ

+∞

−∞

+∞Φ − Φ

=−∞

=

 
= −    

 

∫

∑ 

           (24) 

where ( ) ( )
2

2f f
h

n dt tωτ φ
σ
 

Φ = + 
 

 and for n even (odd) 0 lβΦ =  ( 0 lkdΦ = − ). β  

is defined by  

( ) ( )
( )
sin 2

tan ,
cos 2 2

n kd
n kd n

β = −
+ +

                    (25) 

and 
2

0 2
h

h

x lkσ
ψ

σ
 −
 
 

  be found by replacing integral function ( )( )0 1 n yψ −  as ( )0ψ ζ  

in Equation (10). Secondly, with gravity field, the wave function under quantum prop-
agator with gravity field  

2

2 4
2, 0 0 2 0 0, ; , e , ; , ,

2 2
h

di

gK x t y t K x t y t
ωτ

στ τ   ′ ′+ = +   
   

             (26) 

where 2 0 0, ; ,
2

K x t y tτ + 
 

 is defined by Equation (9), can be expressed as  

( ) ( ) ( )

( )

( )
2

2 2

2,

4

, , , ; , , , d

e , , ,h h

g f g f

x d ddi

f

x g t K x t y n y g n y

x g t
ωτ

σ σ

ψ τ ψ τ

ψ

+∞

−∞

 +
 −
 
 

=

′=

∫
             (27) 

where ( ), , fx g tψ  is defined by Equation (24) and  

( ) ( ) ( )2even : 1 2 cos ,n V g V n n kd = − + +   
( ) ( ) ( )odd : 1 cos .n V g n V kd= − +  

Except the phase difference between Equation (24) and Equation (27), a constant 
difference d is found in the centre position of each sub-wave packets induced by the 
gravity field. In the case of “no-overlap” condition (Equation (11)), which is satisfied 
when the width of the initial wave packet is much larger than the interwell distance of 
the KD optical lattice ( 0 1σ λ  ), the final density function becomes  

( ) ( )
2

2
0 2, , ,f l

l h

xx g t J V g lkρ ψ
σ

+∞

=−∞

 
= −    

 
∑                 (28) 

from Equation (24) or  

( ) ( )
2

2
0 2, , ,g f l

l h

x dx g t J V g lkρ ψ
σ

+∞

=−∞

 +
= −    

 
∑               (29) 

from Equations ((27), (12) and (28)) show that the information on the estimated values 
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of θ  and g are mainly (or entirely) contained in the weights ( )2 ,lJ V gθ   , depending 
on the final evolution during the measurement period. A small part of the information 
is involved in the center of sub-wave packets for half gravity evolution (Equation (29)). 

We now consider an atomic gas at finite temperature T. To get some simple insight 
on the physics of the problem, we consider the system as made by a swarm of minimum 
uncertainty Gaussian wave packets  

( )
( )20 02

02
0 4

0

1 e e ,
π

x x xp
i

x σψ
σ

−
−

=                       (30) 

where the initial wave packet width 0σ  is equal to the thermal de Broglie wavelength 
22π

dB
Bmk T

λ =
  while the initial average coordinates 0x  and momentum 0p  are dis-

tributed according to the Boltzmann-Maxwell distribution  

( )
2

2 20
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2 2

0 0, , e .
2π

B

p
m x

k T m

B

f x p T
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ωω
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 − +
 
 =                  (31) 

Each wav packet evolves driven by the propagators calculated in the previous Sec-
tion:  
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and 
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where 
( )2

2

2 h

h

d x lkσ
ϕ

σ

−
=  for odd n and 0ϕ =  for even n. Replacing in Equation (31), 

we find that the density distribution at the output of the interferometer is  

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

( )( )

1

1
1

2
2

1 22
1

2

0 0 0 0

,

1 1
2

, , , , , , , d d

e e
h

f f

ll
l l

l l

x l l k
T T l l

x g t T f x p T x g t x p

T i i J V g J V g

σ
ξ

ρ ψ
+∞+∞

−∞−∞

+∞

=−∞

 − − +   −Γ −

=

= −       

×

∫ ∫

∑          (34) 

where ( ) ( )1 πT Tξ=  is the normalization constant and  

( )2
2

4π 1 ,
2π

Bk TT
m

ξ
ω

+
=                         (35) 

( )
2 2

2 2

24π 2π .B

B

k TT
mk Tmλ ω

 
Γ = + 

 

                     (36) 

It is interesting to note that ( )
25

216π hT
σ
λ

 Γ  
 


. In the case of 1hσ λ  , only the 
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terms with 1l l=  in Equation (34) are important and the density profile at the final 

time reduces to a sum of weighted Gaussians of width ( )Tξ :  

( ) ( ) ( ) ( )
( )

( )

22

22
,, , , e ,

hx lk

T
f l o e

l
x g t T T J V g

σ

ξρ

−
−+∞

=−∞

 =  ∑             (37) 

or  

( ) ( ), , , , , , .g f fx g t T x g t Tρ ρ ′=                     (38) 

Notice that the value of the gravitational constant g is only contained in the weights 
of the modes. 

The requirement is that sub-wave packets in Equation (37) are spatially separated, 
which means ( ) 2

hT kξ σ
. Considering Equation (35), we have  

2 4
2

4π 1 ,
2π

B
h

k T k
m

σ
ω

+
                         (39) 

which means  

( )

2

2

4π 1.
4π

dBλ
λ

+ 
 
 

                          (40) 

As expected, the spatial separation condition in Equation (37) ( ) 2
hT kξ σ

 is 
equivalents to 1dBλ λ  . This means that the initial wave packets width (the thermal 
de Boglie wavelength) should be much larger than the internal distance of the KD po-
tential. This is consistent with Equation (11). The important result is that as long as this 
condition is satisfied, the sensitivity does not depend on the temperature. 

Substituting the density function Equation (37) at the measurement time ft  into 
Fisher information Equation (14), we obtain  

( ) ( )
( ) 2

, , ,1 d .
, , ,

f

f

x g t T
F T x

gx g t T

ρ

ρ

+∞

−∞

 ∂
 =

∂  
∫               (41) 

The Fisher information for our system depends on the temperature, initial density 
profile, the interferometer transformation, and the choice of the observable that, here, 
is the spatial position of atoms. In this case, the estimator can simply be a fit of the final 
density profile. However, the same results would be obtained by choosing as observa-
ble, the number of particles in each Gassian spatial mode. Since the initial state is made 
of uncorrelated atoms, there is no need to measure correlations between the modes in 
order to saturate the Cramér-Rao lower bound Equation (13) at the optimal value of the 
value phase shift. 

Before proceeding to discuss the finite temperature case, we calculate the highest 
sensitivity of the unbiased estimation of parameter g, which is guaranteed by the 
no-overlap condition 1dBλ λ  . 

In the limit 0T = , the Fisher information can be calculated analytically  

( ) ( ) ( ) ( )
2 2

2 2
42 2 sin , ,

V g kF nV kd S n g
g ω

∂ 
= = 

∂ 
             (42) 
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where ( ) ( ) ( )
( ) ( )

2 2

2

2 cos
,

1 2 cos
n kd

S n g
n n kd
+

=
+ +

 for even n and ( ) ( )2 2, 1S n g n n= +  for odd 

n, with ( ), 1S n g →  in the limit 1n . Finally, the Cramér-Rao lower bound  
Equation (13) becomes  

( )
2 1 1 1 ,

sin2
g

g gk kdnV pN
ω∆

=                    (43) 

The Equation (43) can be rewritten as  

22 1 1 1 1 ,
2π 1 2

g
g g M mgLpN pN

ω λ ω∆
−



 
              (44) 

where ( ) 21 hL M kσ= − . 
If the gravity field is witched on in the last KD pulse, the density profile at final time 

is described by Equation (38). In this case, there is a further contribution to the Fisher 
Equation (42) from the shift on the center of sub-wave packets and we have  

2 3

2 .g
mF F
ω

= +


                          (45) 

5. Sensitivity 

We now estimate the expected sensitivity under realistic experiment conditions. We 
consider 105 88Sr atoms trapped in an harmonic trap having 2π 5 Hzω = ×  and a Ka-
pitza-Dirac periodic potential with 9532 10 mλ −= ×  [21], recoil energy  

2 2 302 5.33 10 JrE h mλ −= ≈ ×  and KD pulses applied for a time 62 10 stδ −= × .  
With a strength of the KD potential 0 4rV V E tδ= ≈  [21], a single pulse creates 

~9 modes which provide a sensitivity with a single measurement shot and a phase ac-
cumulation time of 0.1 seconds, 9~ 10g g −∆ . This sensitivity increases as 910 n− , see 
Equation (43), after n pulses and phase accumulation time up to 0.1n×  seconds. Un-
der these conditions, the maximum length spanned by the 88Sr atoms is also increased 
from 3

1 4.3 10 mL −×  to 1nL n L= × , see the black lines in Figure 3. In practice the 
sensitivity is limited by the effective length of the harmonic confinement. With current 
technologies using magnetic traps, the largest spatial separation L could be pushed up 
to a few millimeters. 

Since the thermal de Broglie wavelength decreases when increasing the temperature, 
the no-overlap condition Equation (11) breaks down at ( )2

0 2πB hk T σ λ
. In Figure 2, 

we plot the normalised sensitivity as a function of the temperature. The time-independent 
sensitivity is found for various numbers of KD pulses. Once the temperature is in-
creased up to the crossover value 0T , the sensitivity is drastically reduced see Figure 2. 
When 0T T< , the wave packets are spatially addressable (see dark and blue lines in 
Figure 3). When 0T T> , the distinguishability of the wave packets decreases (red lines 
in Figure 3) and the uncertainty in the phase estimation increases as ~g T∆  for 

0T T . 
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Figure 2. (color-online) Normalized phase estimation sensitivity as a function of the temperature 
for even and odd n. 

 

 
Figure 3. (color-online) Density profiles of the output wave function of Figure 2. The dark line, 
blue line and red line show temperatures below, equal and above the crossover temperature 0T . 

 
As a comparison with current atom interferometers, we calculate the sensitivity ob-

tained from a simple interference pattern observed after a free expansion of an initial 
atom clouds relevant, for instance, when measuring the gravitational constant g using 
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Bloch oscillations [12] [13] [14]. As shown in [32], the momentum distribution is ex-
pressed as  

( )
2 2

1 2, , exp exp ,
22

h

j

p pp t A ij
σ λψ θ θ

+∞

=−∞

    = − +    
   

∑


           (46) 

where λ  is the wave length of the laser. A is a normalization factor and j denotes the 
lattice site and θ  is the phase difference between lattice site. Since the finite size of the 
initial cold atomic cloud, there is only a finite number of terms in Equation (46) which 
contribute to the sum. We therefore have  

( )sin 2 1
2

exp
2 sin

2

M

j M

pM
pij

p

λ θ
λ θ

λ θ

′+

′=−

  ′ + +       + =       + 
 

∑






            (47) 

where 2 1M ′ +  is the maximum numbers of the lattice occupied by the initial atom 

gases. In Equation (46), each point 2 2π
2 1M

θ
λ
 − ′ + 

  has a Gaussian momentum dis-

tribution. Therefore, we obtain  

( )

( )
( )

22
1

2
2

1

, ,

1d 2 .
6, ,

p t

F p M
p t

ψ θ
θ

ψ θ

+∞

−∞

 ∂
 
 ∂
  ′= =∫                 (48) 

where ( )2
4 3π

A Mλ ′=


. Considering the experimental situations in [12] [13] [14], 

2intmg tθ λ=  , we arrive at  

( ) 22 2 2 2 2

2 2

2 2
.

6 6
int int h

blo

m t M m t
F

λ σ′  = =
 

                 (49) 

where intt  is the interaction time of the neighbour cold atom under the gravity-like 
force. Therefore it could be approximate as the tunnelling time ~ 1 3intt  s in [13]. 
With the Cramér-Rao lower bound Equation (13), we have  

( )

2
2

22 2

6 ,blo
int

g
m t M λ

∆ =
′

                        (50) 

where we have estimated the maximum occupied lattice sites by ( )2 1 2 ~ hM λ σ′ + . 
Therefore, the sensitivity is  

61 1 10 .blo

blo

g
g g F pN

−∆
= ≈                      (51) 

Considering the sensitivity for a single Kaptiza-Dirac pulse with Equation (51), we 
can reach a sensitivity larger than 3 order of magnitude that the sensitivity obtained in 
an interference pattern. The reason is that the KD pulses can create several wave pack-
ets spanning a distance 2~ hMkσ , which can be quite a bit larger than the typical dis-
tances between the wave packets created in far field expansion measurements. In this 
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case, the theoretical gain provided by Equation (43) is proportional to 2
h hMkσ σ , 

which can be ~103 with only once KD pulse and typical values of the experimental pa-
rameters. A further advantage is that such high sensitivity interferometry can be rea-
lised with a compact experimental setup. 

6. Noise and Decoherence 

We now consider the effects of noise and imperfections on the sensitivity of the inter-
ferometer. We mainly consider two kinds of perturbations, which may arise from the 
experimental realization of the interferometry. The first one is the effect of the anhar-
monicity, described by a position dependent random perturbation, and the second one 
the effect of a shift in position between different sequences of the KD pulses.  

The effect of anharmonicity is investigated by numerically simulating the interfero-
metric sequences with the following potential  

( ) ( ) ( ) ,h RV x V x V x= +                        (52) 

where ( ) ( ) 2 2 2R RV x V R x m xω= . RV  is the strength of a position dependent random 
perturbation ( )R x  having values [ ]1,1− . We take as length unit of the harmonic trap 

hσ  and as time unit the inverse of the trap frequency 1 ω . The strength of the external 
gravity-like potential is described by a dimensionless parameter α , then eV xα= . To 
simplify the simulation, in the following we only consider a single KD pulse.  

Starting with the ground state of the harmonic trap ( )hV x , the time dependent wave 
functions can be found by operator splitting method [33] with 1α = . Using 1N  
groups of random numbers, we generate 1N  densities at the measurement time. Then,  

the average density ( ) ( )
1

1
1

, , , ,
N

ave f j f
j

x t x t Nρ α ρ α
=

 
=  
 
∑  is used for calculating Fisher  

information ( )aveF R  for given 1N . Here, we use the Equation (53) to get the deriva-
tive for 1α =  and 0.01h =   

( ) ( ) ( ) 2d 1
d 2
f x

f x h f x h O h
x h

 = − − + + +                   (53) 

Due to the perturbation potential ( )RV x , the sub-wave packets are driven back to 
their initial position with a incoherent phase at t τ=  and the total density profile 
could be dramatically destructed. It is interesting to note that the KD pulses still do a 
quite good job and that completed spatially separated wave packets with momentum 
lk  can be found at the measurement time ft , see Figure 4. When increasing 1N , the 
visibility of the wave packets decreases compared with the ideal case (Black line, with-
out ( )RV x ). This definitely makes a impact on the sensitivity, which can be found by 
calculating the Fisher information ( )aveF R  through ( ), ,ave fx tρ α . The results have 
been presented in Figure 5. Generally speaking, a strong perturbation of the harmonic 
potential decreases dramatically, see Figure 5(b), while, for 0.1 VRV <  it is still poss-
ible to obtain a sensitivity comparable with the ideal case. 

A shift of the optical lattice with respect to the harmonic trap ( )hV x  is further 
possible reason for a decreased sensitivity. Assuming a off center shift of two consecu- 
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Figure 4. (color-online) Density profiles around each momentum component lk  ( 0.1 VRV < ) 

at time 3π
2ft = . The parameters are 1, 1, 10V kα= = = . The black line is for the pure harmonic 

trap. The green line is the average density ( ), ,ave fx tρ α  of ten groups of random number 

( 1 10N = ). The blue line is for 1 20N = . The pink line is for 1 40N = . 
 

 

Figure 5. (color-online) The average Fisher information ( ) 0ave
F R F , with 1, 1, 10V kα= = = . 

(a) 0.1RV = , (b) 1 20N = . 
 

tive KD pulses 1,2xδ , the wave function at t τ=  after the second KD is  

( ) ( ) ( ) ( )

2

1 2

π 1
2 cos 2 2

0, , e e 2 ,h

di
iV g k x d x xx g x d

σ δ δψ τ ψ

   −     + − +    = × − −         (54) 

where ( ) ( )( )1 22 cos 2V g V k d x xδ δ = − − +  . To get this result we have considered 
the properties of Bessel generating function [28].  

( ) ( ) ( ) ( )1 2
2

2 2
0 2, , e e ,fi t ilk d x xl h

f l
l h

x lk
x g t i J V gφ δ δ σ

ψ ψ
σ

+∞
− +

=−∞

 −
= ×    

 
∑        (55) 
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where ( )
2

π π1
2 4f

h

dtφ
σ

  
 = − − 
   

. Equation (55) shows that the effect of off-center 

s h i f t  
makes only an phase shifts for each sub-wave packets. Therefore, the non-overlap con-
dition Equation (11) does not have any modification even after considering the 
off-center shift In this case, the final density profiles is  

( ) ( )
222 2

0 2, , .h
f l

l h

x lk
x g t J V g

σ
ψ ψ

σ

+∞

=−∞

 −
=     

 
∑                (56) 

Equation (56) shows that the center shifts could induce a fluctuation by 1 2x xδ δ+  
around the estimated value of d. If those off-center shifts are coming from some exter-
nal noise, then it may do not play crucial effect on the value of ( )V g . Therefore, it 
does have small effect on Fisher information, by  

( )
2

2 2 1 2
42 2 sin .

2c
x xkF V kd k δ δ

ω
+ = −  

                 (57) 

7. Conclusion 

During the last few decades, matter-wave interferometry has been successfully extended 
to the domain of atoms and molecules. Most current interferometric protocols for the 
measurement of gravity or inertial forces are based on the manipulation of free falling 
atoms realizing Mach-Zehnder like configurations. Here we propose an atomic multi-
mode interferometer with atoms trapped in a harmonic potential and where the multi 
beam-splitter operation are implemented with Kapitza-Dirac pulses. The mirror opera-
tions are performed by the harmonic trap which coherently drives a tunable number of 
spatially addressable atomic beams. All interferometer processes, including splitting, 
phase accumulation and reflection are performed and completed within the harmonic 
trap. Therefore, all trapped atoms contribute to the sensitivity. We have applied our 
scheme to the estimation of the gravitational constant and estimate, with realistic expe-
rimental parameters, a sensitivity of 10−9, significantly exceeding the sensitivity of cur-
rent interferometric protocols.  
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Appendix 
Appendix A  

To obtain Equation (15), we have considered the Bessel functions identity  

( ) ( ) ( )1 1 .l l lJ V J V J V− +′ = −  
With this we have  

( )( ) ( )( ) ( )( )

( )( ) ( )( )

2 2 2
1 1

1 1

2

2

2,

l l l
l l l

l l
l

J V J V J V

J V J V

θ θ θ

θ θ

+∞ +∞ +∞

− +
=−∞ =−∞ =−∞

+∞

− +
=−∞

 ′ = + 

−

=

∑ ∑ ∑

∑             (58) 

where one more identity  

( ) ( ) ( ).j v j v
j

J A J B J B A
+∞

=−∞

= ±∑


                   (59) 

has been used to obtain  

( )( ) ( )( )1 1 0.l l
l

J V J Vθ θ
+∞

− +
=−∞

=∑                     (60) 

Appendix B 

For Equation (45), Using the Equation (41) and Equation (29), we obtain  

( ) ( )

( )

22

0 2

2

0 2
2

, ,

.

g f l

l h

h
l

x g t J V g x d lk
g g

x d lk
J V g

g

ρ
ψ

σ

ψ
σ

+∞

=−∞

∂ ∂    + = − 
∂ ∂  

 +
∂ − 

 +    ∂

∑ 



             (61) 

By using the initial state  

( )
2

22
40 2

1 e .
π

h

y

h

y σψ
σ

−

=                         (62) 

we get  

( )

( )

2

2

22

2

2

40 02 22

2
4 2

1 1 e d
π2π

1 e e .
π

h

h

h

n h

x d lk
i y

h

h hh

x d lk

i

h

x d lk
y

σ

σ

σ

µ σ

σ
ψ ψ ζ

σ σσ

σ

+ −+∞ −

−∞

+ −
−

 + −
= × 

 

=

∫

         (63) 

where 0nµ =  for even n, but 
2

2 2h
n

h

x d lk
d

σ
µ

σ
+ −

=  for odd n. So  
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( )
( )

( ) ( )( ) ( ) ( )
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 ∂
 =

∂  

  + ∂ − 
  ∂   ′= × +   ∂ ∂ 
 
  

= × + − +

= +

∫

∑ ∑∫

∑ ∫





.

 (64) 

The second step uses the “no-overlap” condition by changing x  to x′  in Equation 
(11).  
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