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Abstract 
Abundant evidence indicates that financial asset returns are thicker-tailed than a 
normal distribution would suggest. The most negative outcomes which carry the po-
tential to wreak financial disaster also tend to be the most rare and may fall outside 
the scope of empirical observation. The difficulty of modelling these rare but extreme 
events has been greatly reduced by recent advances in extreme value theory (EVT). 
The tail shape parameter and the extremal index are the fundamental parameters 
governing the extreme behavior of the distribution, and the effectiveness of EVT in 
forecasting depends upon their reliable, accurate estimation. This study provides a 
comprehensive analysis of the performance of estimators of both key parameters. 
Five tail shape estimators are examined within a Monte Carlo setting along the di-
mensions of bias, variability, and probability prediction performance. Five estimators 
of the extremal index are also examined using Monte Carlo simulation. A recom-
mended best estimator is selected in each case and applied within a Value at Risk 
context to the Wilshire 5000 index to illustrate its usefulness for risk measurement. 
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1. Introduction 

Abundant evidence, dating back to early work by Mandelbrot [1] and Fama [2], indi-
cates that financial asset returns are thicker-tailed than a normal distribution would 
suggest. The most negative outcomes, which carry the potential to wreak financial dis-
aster, also tend to be the most rare and sometimes fall outside the scope of our empiri-
cal observation. Understanding these “tail risks” has been at the heart of the recent 
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push for better risk measurement and risk management systems. This includes efforts 
under the 2010 Dodd-Frank Act to better identify sources of systemic risk as well as 
academic work aimed at pricing tail risk (Kelly and Jiang ([3] [4]). Value at risk (VaR) 
and the related concept of expected shortfall (ES) have been the primary tools for mea-
suring risk exposure in the financial services industry for over two decades, yet when 
these measures rely upon empirical frequencies of rare events, they tend to underesti-
mate the likelihood of very rare outcomes.  

More recently, the difficulty of modelling rare but extreme events has been greatly 
reduced by advances in extreme value theory1. From this body of research, two para-
meters have been found to play a central role in the modelling of extremes: the tail 
shape parameter ξ and the extremal index θ. In brief, let (YT) be a sequence of i.i.d. 
random variables with distribution F and MT = max(Y1, …, YT). It can be shown that as 
T  ∞, a suitably normalized function of MT converges to a non-degenerate distribu-
tion function G(Y; ξ), and if (YT) is a strictly stationary time series, then it converges to 
G(Y; ξ, θ). The tail shape parameter describes how quickly the tail of the return distri-
bution thins out and governs the extreme behavior of the distribution. The extremal 
index describes the tendency of extreme observations to cluster together, a common 
feature in data series showing serial dependence. 

This study examines, within a Monte Carlo context, five estimators for the tail shape 
parameter and five estimators for the extremal index that have been proposed in the li-
terature. While there have been various isolated studies of the properties of some of 
these estimators, there does not appear to be a comprehensive study of the properties of 
all of these estimators found anywhere in the literature2. The purpose of this study is 
twofold. From an academic viewpoint, I address the question of which estimators show 
more desirable properties, especially their finite sample behavior using typical financial 
dataset sizes. From a practical viewpoint, I address the question of which estimator a 
practitioner should choose from among a number of available options proposed in the 
literature. In other words, “Does any particular estimator for the tail shape or for the 
extremal index stand out above the alternatives?” In addition to providing evidence on 
the finite sample performance of the estimators, a specific recommendation is made for 
a “best” overall choice in each case. An application of the preferred estimators to Wil-
shire 5000 index returns is also given to demonstrate the usefulness for risk manage-
ment purposes. 

Estimation of the tail shape parameter is first introduced using a collection of relative 
maxima from sub-intervals of the data sample. This early approach to estimating the 

 

 

1See, for example, works by Embrechts, Klüppelberg, and Mikosch [5], McNeil and Saladin [6], Beirlant et al. 
[7], and de Haan and Ferreira [8]. 
2Perhaps the most extended discussion of tail shape estimators is found in Embrechts, Kluppelberg, and Mi-
kosch [5]. However, the authors only touch upon how the tail shape parameter varies for each of the estima-
tors for alternative threshold choices of the underlying distribution, and they give no firm guidance to the 
reader for applying these estimators. I compare estimators under both alternative tail shape values and alter-
native threshold choices and contrast their performance using multiple benchmarks, and I am able to select a 
“best” estimator. Likewise, there seems to be no comprehensive comparison of extremal index estimators or 
recommendation on which to use in practice. This study aims to fill these gaps. 
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tail shape is known as the “block maxima” method and is provided for historical con-
text and to contrast with the more recent estimators that are the focus of this study. The 
tail shape parameter is then estimated using the peaks over threshold (POT) approach, 
a more efficient method which uses all observations for estimation that exceed an arbi-
trary quantile of the data. Under this approach a quantile of the distribution is chosen 
(for example the 95th quantile) and all observations that exceed this are considered ex-
treme and used for estimation of the tail shape parameter. Five tail shape estimators 
based on the POT approach that have been proposed in the literature are introduced. 
Each of the five tail shape estimators is assessed through Monte Carlo simulation along 
the dimensions of bias, root mean squared error, and overall stability across a range of 
distributional thresholds.  

The extremal index measures the tendency for observations in the extreme tails of 
the distribution to cluster together. Four of the five estimators for the extremal index 
require that the data be partitioned into sub-intervals, called “blocks”, in order to look 
for clustering. I analyze the tradeoff between data independence and availability in se-
lecting block size. The goal in choosing a block size is to select an interval long enough 
that, even though there may be clustering within the blocks, the blocks themselves are, 
in effect, independent of one another. For the extremal index, each estimator is assessed 
along the dimensions of bias, root mean squared error, and overall stability across a 
range of distributional thresholds. 

This study gives an overall recommendation for the best tail shape estimator, in-
cluding the data threshold at which it tends to work best, and a proposed bias adjust-
ment. I also give an overall recommendation for the best extremal index estimator, in-
cluding the data threshold at which it tends to work best. The results also shed light on 
which estimators are useless from a practical standpoint. The best estimator from each 
category is used to highlight the usefulness of these tools in risk management applica-
tions. These results are not only of academic interest, but are of potential interest to 
practitioners, who rely upon estimated risk parameters as inputs to their risk forecast-
ing models.  

2. Overview of Extreme Value Theory 

Extreme value theory (EVT) is an approach to estimating the tails of a distribution, 
which is where rare or “extreme” outcomes are found. This branch of statistics origi-
nally developed to address problems in hydrology, such as the necessary height to build 
a dam in order to guard against a 100-year flood, and has since found applications in 
insurance and risk management. For financial institutions, rare but extremely large 
losses are of particular concern as they can prove fatal to the firm. In 1995 the Basel 
Committee on Bank Supervision, a committee of the world’s bank regulators that meets 
periodically in Basel, Switzerland, adopted Value at Risk (VaR) as the preferred risk 
measure for bank trading portfolios. VaR, which is simply a quantile of a probability 
distribution, is very intuitive as a risk measure and has since become a popular stan-
dard for risk measurement throughout the financial industry. In practical risk man-
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agement applications, forecasting relies upon historical data for estimation of future 
outcomes. However, extreme rare events are, by nature, infrequently observed in em-
pirical distributions. EVT can be used to improve probability estimates of very rare 
events or to estimate VaR with a high confidence level by smoothing and extrapolating 
the tails of an empirical distribution, even beyond the limits of available observed out-
comes in the empirical distribution. 

Classic statistics focuses on the average behavior of a stochastic process, and a fun-
damental result governing sums of random variables is the Central Limit Theorem. 
When dealing with extremes, the fundamental theorem is the Fisher-Tippett Theorem 
[9], which gives the limit law for the maxima of i.i.d. random variables3. Suppose we 
have an i.i.d. random variable Y with distribution function F, and let G be the limiting 
distribution of the sample maximum MT. The Fisher-Tippet Theorem says that under 
some regularity conditions for the tail of F and for some suitable constants aT and bT, as 
the sample size T  ∞,  

( )dT T

T

M aP y G y
b

 −
≤ → 

 
                    (1) 
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which is the Generalized Extreme Value (GEV) distribution. It has three parameters: 
location (μ), scale (β), and shape (ξ). The shape parameter ξ governs the tail behavior, 
giving the thickness of the tail and plays a central role in extreme value theory. The 
GEV distribution encompasses a wide range of distributions that fall into three main 
families, depending upon the value of ξ: 

Type I: Gumbel ξ = 0, “thin tailed”. 
Type II: Fréchet ξ > 0, “fat tailed”. 
Type III: Weibull ξ < 0, “short tailed”. 
Thin-tailed (ξ = 0) distributions exhibit exponential decay in the tails and include the 

normal, exponential, gamma, and lognormal. Short-tailed (ξ < 0) distributions include 
the uniform and beta and have a finite upper end point. Heavy-tailed distributions (ξ > 
0), which fall under the Fréchet, are of particular interest in finance, and include the 
Student-t and Pareto. 

Financial returns are known to have thick tails compared to a normal distribution, 
and a number of alternative distributions have been posited to capture this feature of 
the data, with varying success. However, for modelling extremes we do not need to 
dwell on the entire distribution since large losses are to be found in the tails. Thus, the 
central result of EVT theory, that the tails of all distributions fall into one of three cate-

 

 

3Gnedenko [10] is credited with the first rigorous proof of the Fisher-Tippett Theorem. 
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gories, greatly simplifies the task of the risk analyst. The only remaining obstacle is to 
estimate, as accurately as possible, the shape parameter ξ from the data. Value-at-risk 
formulas that incorporate the tail shape parameter, as well as standard probability func-
tions, may then be applied to measure risk. 

While the Fisher-Tippett Theorem says that maxima are GEV distributed, in order to 
be useful for estimation purposes, we need more than just one sample maximum (i.e. 
one observation) from which to estimate the three distributional parameters. In order 
to generate more observations, we may divide a sample into many sub-samples, or 
“blocks”, and compute the local maximum from each block. A block would need to be 
large enough to give fairly rare, or extreme, observations for maxima. For example, 
taking the maximum daily return out of weekly blocks (1 of every 5 observations) 
would encompass 20% of the distribution and likely fail to capture only extreme values. 
Local maxima drawn from monthly blocks (1 of every 21 daily returns) may still be in-
sufficient to focus on the most extreme values. Increasing the block size to quarterly, for 
example, will serve to produce more extreme maxima, but will also decrease the num-
ber of useable observations. Thus, when attempting to estimate parameters of the GEV 
distribution by the blocks method, one faces a fundamental tradeoff between choosing 
more, but less extreme, observations, or fewer observations that are relatively more ex-
treme. 

Since thick-tailed distributions are of particular interest, and ξ = 0 corresponds to 
distributions that are thin-tailed, we focus on the case ξ ≠ 0. Differentiating G(y), we get 
the pdf of the GEV: 

( ) ( ) ( ) ( )1 1
1 1 exp 1

y y
g y

ξ ξ ξ
ξ µ ξ µ

β β β

− + − − −   
 = + − +  
     

           (3) 

Taking logarithms and summing, we get the log likelihood function: 

( ) ( ) 1
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As an example of how the GEV distribution may be used to estimate the tail shape 
parameter, we consider daily logarithmic returns data for the Wilshire 5000 stock index 
over January 1, 1996, through December 31, 2015. Figure 1 displays the data, which 
shows episodes of increased volatility and relatively extreme returns. Suppose the data 
are partitioned into localized blocks according to calendar month, with each block 
having approximately 21 returns. Panel A of Figure 2 shows the maximum (negative) 
return within each monthly block. Note that the observations are not necessarily equal-
ly spaced because the most extreme observation may have occurred at any time during 
the block. If the data are instead partitioned into localized blocks according to calendar 
quarter, this results in each block having approximately 63 returns. Panel B of Figure 2 
shows the maximum (negative) return within each quarterly block. The quarterly 
blocks are larger, fewer in number, and are clearly capturing the more extreme returns 
compared to the monthly blocks. 
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Figure 1. Wilshire 5000 index returns. The figure shows daily logarithmic returns of the Wilshire 
5000 index from January 1, 1996 through December 31, 2015. 

 
The tail shape parameter ξ is estimated by maximum likelihood under the GEV dis-

tribution in Equation (4) for both the monthly and then quarterly block maxima and 
results are presented in Table 1. The tail shape estimate from the monthly block max-
ima is ξ = 0.181 with a t-statistic of 3.63, indicating significantly fatter tails than the 
normal distribution. The tail shape estimate based on the quarterly block maxima, 
however, is almost double at ξ = 0.330 with a t-statistic of 2.51. While both estimates 
agree that the underlying stock return distribution is fat-tailed, these estimates show 
some disparity in the degree of extreme behavior, depending upon the choice of block 
size. 

The block maxima approach to estimating tail shape only keeps one observation 
from each block, which is wasteful of data and requires a large sample for accurate pa-
rameter estimation. A more recent and popular approach to estimating tail shape se-
lects a quantile of the distribution as a threshold, above which all data are treated as ex-
treme and used for estimation. This approach is known as the Peaks over Threshold 
(POT) method, and makes more efficient use of the data because it uses all large obser-
vations and not just block maxima. The POT approach depends on a theorem due to 
Pickands [11] and Balkema anddeHaan [12], which says that the limiting distribution 
of values above some high threshold u of the data is a Generalized Pareto Distribution 
(GPD): 
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Panel A: Monthly Block Maxima 

 
Panel B: Quarterly Block Maxima 

 
Figure 2. Wilshire 5000 extreme returns. Panel A shows the maximum return within each block 
when the data are divided into blocks according to calendar month. Panel B shows the maximum 
return within each block when the data are divided into blocks according to calendar quarter. 
Note: returns have been multiplied by minus one in order to analyze the left tail. 

 
The GPD is very similar to the GEV and is governed by the same tail shape parame-

ter ξ. The distribution is heavy-tailed when ξ > 0, becoming the Fréchet-type. If ξ = 0 it 
becomes the thin-tailed Gumbel-type, which includes the normal, and if ξ < 0 it is of 
the short-tailed Weibull-type. This says that not just the maxima, but the extreme tails 
themselves, obey a particular distribution and are governed by the same tail shape pa-
rameter ξ as in the GEV. The Fréchet class of heavy-tailed distributions remains the 
focus of interest in financial applications and in this study. It is useful to note that the 
mth moment of Y, E(Ym), is infinite for m ≥ 1/ξ.  
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Table 1. GEV tail shape estimates based on block maxima. The first column of the table displays 
maximum likelihood estimates based on a generalized extreme value (GEV) distribution fit to 
monthly block maxima of (the negative of) Wilshire 5000 index daily logarithmic returns over 
January 1, 1996 through December 31, 2015. The second column displays maximum likelihood 
estimates based on a GEV distribution fit to quarterly block maxima. T-statistics are in paren-
theses, and ℒ is the value of the maximized log likelihood function. 

 
Monthly Quarterly 

β 0.0079 0.0080 

 
(16.71) (8.48) 

ξ 0.181 0.330 

 
(3.63) (2.51) 

μ 0.0148 0.0208 

 
(25.04) (20.36) 

Obs. 240 80 

ℒ 757.65 245.17 

3. Tail Shape Estimators 

Tail shape estimators based on the POT approach fall under the semi-parametric and 
fully parametric type. I next introduce five estimators for the tail shape ξ that have been 
proposed in the literature. The first is fully parametric based directly on the GPD and 
the principle of maximum likelihood. The other four estimators are semi-parametric, 
since they do not assume a distributional form for estimation purposes. 

Define: 
y = data sample. 
T = sample size. 
q = quantile of the distribution (e.g. q = 0.99). 
u = data threshold corresponding to quantile q. 
n = number of exceedances over threshold u. 
ξ = tail shape parameter. 
β = scale parameter. 
Denote the order statistics of the sample as y(1) ≤ y(2) ≤ …≤ y(T). 

3.1. Maximum Likelihood Estimators 

A fully parametric estimator of ξ may be obtained by taking the derivative of the gene-
ralized Pareto distribution function in Equation (5) and applying maximum likelihood 
techniques. The derivative of Equation (5) is the pdf of the GPD with parameters ξ and 
β: 
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and the log-likelihood function is 
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with solutions MLEξ  and MLEβ  satisfying: 
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The maximum likelihood estimator is valid for values of ξ > −1/2, and an estimate of 
the scale parameter β, which is useful for VaR calculations, is also obtained by this me-
thod. 

3.2. Hill Estimator 

The semi-parametric estimator proposed by Hill [13] is valid for ξ > 0 and is simple to 
compute from the n upper order statistics of the sample above a given threshold u. 

( )( )HILL
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3.3. Pickands Estimator 

The semi-parametric estimator proposed by Pickands [11] is valid for ξ ∈ ℝ and brings 
in information further toward the center of the distribution. For example, if the chosen 
threshold defining extreme data is the 5% tail, the Pickands estimator would also look 
at the order statistics at the 10% and 20% quantiles. 
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3.4. Dekkers-Einmahl-de Haan Estimators 

The estimator proposed by Dekkers, Einmahl, and de Haan [14] seeks to improve upon 
the original Hill estimator by bringing in a second-order term. This estimator also has 
the benefit of being valid over the entire real numbers, ξ ∈ ℝ, rather than for positive 
values of ξ only. Thus, it should be able to detect tails in all three classes, not only the 
Fréchet class of distributions. In addition to an estimator for tail shape, the authors 
propose an estimator for the scale parameter, β. 
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Note that ( )1
nH  is simply the Hill estimator. 
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3.5. Probability-Weighted Moment Estimators 

The Probability-Weighted Moment (PWM) estimator was proposed by Hosking and 
Wallis [15] and is valid for ξ < 1. This estimator assigns weights to the extreme order 
statistics, with more extreme values receiving smaller weight. By using a weighting 
scheme, this approach seems intuitive, but relies more on values that are closer to the 
center of the distribution than do other estimators such as the Hill estimator. 
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4. Monte Carlo Analysis of Tail Shape Estimators 

For the Monte Carlo study, I initially set the sample size at T = 2000 observations. This 
would roughly correspond to eight years of daily financial returns data, assuming 252 
trading days in a year. Data are randomly generated from a Student-t distribution with 
v degrees of freedom in order to make use of the convenient fact that the tail shape pa-
rameter ξ for a Student-t distribution is known to equal 1/v. 

In order to implement peaks over threshold (POT) estimation, there yet remains the 
issue of needing to choose a threshold of the distribution over which all data are to be 
treated as extreme. If we set a relatively low boundary, for example the 90th percentile, 
and work with the upper 10% of order statistics in the distribution, we risk including 
data that are not really that extreme and for which the underlying extreme value theory 
is less likely to hold. This can lead to an inaccurate, biased estimate. On the other hand, 
suppose we choose a very high threshold of the data, such as the 99th percentile, and use 
just the extreme upper 1% for estimation. Given the finite size of empirical datasets, we 
are likely forced to base our inference on a small number of observations, leading to 
very noisy estimates. A common rule of thumb in applied work sets a threshold of at 
least the 95th percentile as a cutoff to define the extreme tail. To illustrate the potential 
tradeoffs across a range of distributional cutoffs, I conduct a Monte Carlo simulation of 
200 trials of T = 2000 observations from a Student-t distribution with 4 degrees of 
freedom. This produces a tail shape value of ξ = 0.25, and is similar to many financial 
data series, which often fall in the range 0.20 to 0.35. For each simulation trial, I esti-
mate ξ using data above quantile q, where q is sequentially varied over the range q = 
0.9500 to q = 0.9975 in increments of .0025. For each quantile cutoff q, I estimate ξ us-
ing each of the five estimators: ML, Hill, Pickands, Dekkers, and PWM. 

The average results from 200 simulation trials are reported in Table 2 and, for ease of  
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Table 2. Bias and root mean squared error of tail shape estimators. The table presents tail parameter estimation results from 200 Monte 
Carlo simulation trials of randomly generated data from a Student-t distribution with v degrees of freedom, where v = 4 (ξ = 0.25), v = 2 (ξ = 
0.50), and v = ∞ (ξ = 0). The five estimators are Maximum Likelihood (ML), Hill, Pickands, Dekkers, and Probability-Weighted Moment 
(PWM). Reported results are for estimation at a quantile cutoff q at the 95th percentile of the distribution. Panel A shows results based on 
simulations using a sample size of T = 2000 observations. Panel B shows results based on simulations using a sample size of T = 500 ob-
servations. 

Panel A: T = 2000            

  
ξ = 0.25 

  
ξ = 0.5 

  
ξ = 0 

 

 
Mean Bias % Bias RMSE Mean Bias % Bias RMSE Mean Bias % Bias RMSE 

ML 0.173 −0.077 −30.7% 0.154 0.454 −0.046 −9.2% 0.165 −0.155 −0.155 - 0.190 

Hill 0.345 0.095 37.8% 0.101 0.539 0.039 7.8% 0.066 0.211 0.211 - 0.212 

Pickands 0.024 −0.226 −90.5% 0.288 0.330 −0.170 −34.0% 0.255 −0.155 −0.155 - 0.190 

Dekkers 0.208 −0.042 −17.0% 0.122 0.471 −0.029 −5.7% 0.122 −0.106 −0.106 - 0.154 

PWM 0.173 −0.077 −31.0% 0.155 0.440 −0.060 −12.1% 0.147 −0.104 −0.104 - 0.163 

Panel B: T = 500            

  
ξ = 0.25 

  
ξ = 0.5 

  
ξ = 0 

 

 
Mean Bias % Bias RMSE Mean Bias % Bias RMSE Mean Bias % Bias RMSE 

ML 0.122 −0.128 −51.2% 0.354 0.361 −0.139 −27.9% 0.338 −0.277 −0.277 - 0.386 

Hill 0.335 0.085 33.8% 0.104 0.515 0.015 3.1% 0.100 0.198 0.198 - 0.202 

Pickands −0.021 −0.271 −108.3% 0.472 0.304 −0.196 −39.2% 0.424 −0.256 −0.256 - 0.442 

Dekkers 0.185 −0.065 −25.8% 0.219 0.400 −0.100 −20.1% 0.213 −0.086 −0.086 - 0.182 

PWM 0.247 −0.003 −1.4% 0.231 0.409 −0.091 −18.2% 0.204 −0.044 −0.044 - 0.213 

 
comparison, displayed in Panel A of Figure 3. First, note that all of the estimators show 
some degree of bias for almost every choice of q, with no estimator consistently achiev-
ing the correct value of ξ. For a sample of 2000 observations, a threshold at the 95th 
percentile leaves 100 observations for estimation, whereas a cutoff at the 99th percentile 
leaves only 20 data points for estimation. Thus, as we move to the right along the x axis, 
the estimators are expected to become somewhat less precise and more variable, partic-
ularly in the very high quantiles. The Hill estimator displays a large upward bias at q = 
0.95, and this gradually declines as q  1. The Dekkers estimator is slightly downward 
biased at q = 0.95 and remains remarkably stable as q  1. The Pickands estimator has 
an enormous downward bias at q = 0.95 and only begins to approach the accuracy of 
other estimators as q  1, while becoming noticeably less stable. The probability- 
weighted moments estimator performs similarly to Dekkers for q = 0.95, with a down-
ward bias, but becomes unbiased and then unstable as q  1. The ML estimator shows 
more downward bias than either Dekkers or PWM, and it becomes very unstable as q  
1. 

Panel B of Figure 3 displays results for the case of ξ = 0.50, which is at the upper 
boundary of interest for many finance applications, as values beyond this point are rare 
and imply that the distribution lacks a finite second moment. The same patterns seen in 
Panel A are generally present in this case. However, the Hill estimator performs noti-
ceably better, showing less bias. Panel C shows results for an important special case—  
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Figure 3. Tail shape estimator performance as a function of the data threshold, T = 2000. The 
figure shows average estimates of ξ for each of five tail shape estimators across a range of cutoffs 
or distributional quantiles, q, for defining the extreme tail. The displayed averages are based on 
200 Monte Carlo simulation trials of T = 2000 observations randomly generated from a Student-t 
distribution with v degrees of freedom. Panel A shows results for v = 4 (ξ = 0.25), Panel B shows 
results for v = 2 (ξ = 0.50), and Panel C shows results for v →  ∞ (ξ = 0). The five estimators are 
Hill, Dekkers, Pickands, Maximum Likelihood (ML), and Probability-Weighted Moment (PWM). 
The true value of ξ is shown as a solid horizontal line. 
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namely, that of no fat tails. The data for the simulation in Panel C was generated from a 
normal distribution, which has ξ = 0. This is an important case to examine, because a 
good estimator should not give a false positive by indicating the presence of a fat tail 
when there is none. We see that the Hill estimator stumbles badly here. At the thre-
shold of q = 0.95, which is commonly adopted for empirical work, the Hill estimator 
reports a fat tail of ξ = 0.21 when in fact the distribution is thin-tailed. The other four 
estimators are downward biased, giving slightly negative values for the tail shape. Of 
these, Dekkers and ML are the most stable, changing little over the range q = 0.95 to q = 
0.99. 

The results discussed so far are based on a generous sample size of 2000 observations. 
However, the empiricist is quite often faced with a more limited amount of data from 
which to draw conclusions. Therefore, I next repeat the above analysis using a sample 
size of T = 500 observations. At a quantile cutoff of q = 0.95, for example, this would 
leave only 25 observations in the tail for extreme inference. How do the estimators per-
form when given so few observations to work with? The tradeoff between bias and va-
riance becomes much more apparent under these circumstances when looking at Fig-
ure 4. Focusing on Panel A, which shows the case of ξ = 0.25, Dekkers appears to be the 
most stable estimator across different choices of threshold q. Although not highly un-
stable, Hill exhibits substantial variability across quantiles, with its value depending on 
the quantile q that is chosen. For low quantile cutoffs, Hill is positively biased, and this 
bias disappears and then becomes negative as q  1. PWM is unbiased at lower quan-
tiles, but becomes highly unstable above the 97th quantile. Both Pickands and ML are 
extremely negatively biased and unstable. 

Panel B shows results for ξ = 0.50. All of the patterns observed for ξ = 0.25 in Panel A 
reappear here, except that Deckers now shows more of a downward bias and some de-
cline in value as q  1. The Hill estimator seems unbiased for low values of q, but exhi-
bits a greater decline in value as q  1. In Panel C, we examine the important case of a 
thin tail where ξ = 0, now with the added complication of a small sample size. The two 
most accurate estimators, for smaller q values, are Dekkers and PWM. However, we see 
again that PWM is unstable. As q  1 and the amount of extreme tail data used for es-
timation drops, PWM becomes highly biased and variable. Dekkers, however, contin-
ues to be relatively stable and accurate as q  1. ML and Pickands are extremely nega-
tively biased and unstable. Hill is again seen to give a false positive, with its large posi-
tive bias indicating a fat tail when none exists. The magnitude of this bias declines as 
q  1. 

Overall, we may draw the following conclusions. The Pickands and ML estimators 
are extremely biased for any q less than about 0.99, but become very unstable as q 
moves above 0.97. The Hill estimator is upward biased, becoming more so as ξ falls be-
low 0.50, and is unable to detect thin tails, reporting positive ξ when none exists4. The  

 

 

4It is interesting to note that an atheoretic, or ad hoc, bias adjustment may be constructed for the Hill estima-
tor if we estimate ξ for a dozen values ranging from 0 - 0.50 on simulated datasets at q = 0.95, and then fit a 
quadratic regression of the true values to the biased values. I obtain the following: 

( )2HILL HILL HILL
Unbiased 0.33 1.84 0.51ξ ξ ξ= − + − . 
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Figure 4. Tail shape estimator performance as a function of the data threshold, T = 500. The fig-
ure shows average estimates of ξ for each of five tail shape estimators across a range of cutoffs or 
distributional quantiles, q, for defining the extreme tail. The displayed averages are based on 200 
Monte Carlo simulation trials of T = 500 observations randomly generated from a Student-t dis-
tribution with v degrees of freedom. Panel A shows results for v = 4 (ξ = 0.25), Panel B shows re-
sults for v = 2 (ξ = 0.50), and Panel C shows results for v →  ∞ (ξ = 0). The five estimators are 
Hill, Dekkers, Pickands, Maximum Likelihood (ML), and Probability-Weighted Moment (PWM). 
The true value of ξ is shown as a solid horizontal line. 
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PWM estimator performs well at a quantile value of q = 0.95, generally with a down-
ward bias. This bias is directly dependent on the size of the dataset, while holding q 
fixed at the 95th percentile, a behavior also exhibited by the ML estimator. The bias of 
the PWM estimator at q = 0.95 shrinks almost to zero for the smaller dataset of T = 500 
observations. Because of the shifting bias of the PWM estimator, I conclude that the 
best all-around estimator is the Dekkers estimator, which is slightly downward biased5. 
This estimator is quite stable for quantile values of q from 0.95 to 0.99, performing best 
around q = 0.95. This is a substantial advantage when dealing with smaller datasets, 
where Pickands and ML, which require a higher data threshold, become useless. 

5. Risk Management Applications 
5.1. Value at Risk 

One of the primary applications of interest for tail measurement is in the area of finan-
cial risk management and the calculation of value-at-risk (VaR)6. The VaR statistic may 
be defined as the worst expected loss with a given level of confidence Q, and is simply a 
quantile of the payoff distribution. For a desired quantile Q (e.g. for a 99% VaR, Q = 
0.99) the VaR statistic may be derived from the GPD distribution: 

( )

( )

1 1 , 0

ln 1 , 0

TVaR u Q
n

TVaR u Q
n

ξβ ξ
ξ

β ξ

−   = + − − ≠     
  = + − − =    

               (13) 

A related concept is the “T level.” This is the data value which is expected to be ex-
ceeded once, on average, every T periods. To find the T level, we set (1 – Q) in the VaR 
formula equal to the event frequency of interest. To find the T level for the entire sam-
ple of size T, set (1 – Q) equal to 1/T: 

1-level 1 , 0TT u
n T

ξ
β ξ
ξ

−    = + − ≠       
               (14) 

For example, if the entire data sample of size T is comprised of 1008 daily observa-
tions (4 years of daily returns data) and one wishes to find the return level that is ex-
pected to be exceeded once every four years, on average, (the “4-year level”), then set (1 – 
Q) = 1/1008. The probability of exceeding any arbitrary threshold x above u may also 
be derived from the GPD distribution: 

( ) ( )
1

1
x unP y x

T

ξξ
β

−
− 

> = + 
 

                    (15) 

 

 

5Due to its stability, an atheoretic bias adjustment may be constructed for the Dekkers estimator if we esti-
mate ξ for a dozen values ranging from 0 - 0.50 on simulated datasets at q = 0.95. I obtain the following from 

a quadratic regression: ( )2DEKK DEKK DEKK
Unbiased 0.08 0.79 0.15ξ ξ ξ= + + . 

6Pioneering studies in the finance literature illustrating the application of EVT techniques to financial series 
include Longin [16] and McNeil and Frey [17]. 
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We see that for VaR and related calculations, it is necessary to also obtain an estimate 
of the scale parameter β. We have three choices for estimating β : maximum likelihood, 
Dekkers, and probability-weighted moment. Accurate estimation of β is essential in 
order to obtain accurate inference on extreme values in the tail, such as computing the 
T-level and related probabilities. In essence, estimation of the parameter β calibrates the 
theoretical tail shape to the empirical tail of the distribution and tends to work best for 
EVT purposes when estimated at a very high quantile of the data. It is important to 
stress that β is thus not necessarily estimated at the same quantile of the distribution at 
which ξ is estimated, and it is in fact usually not optimal to do so. By “calibrating” the 
theoretical tail to the empirical tail of the distribution at a very high quantile of the data, 
such as q = 0.995, we are better-positioned to obtain accurate probability estimates of 
extreme outcomes. 

5.2. T-Level Exceedance Predictions 

I propose to use the T-level as an accuracy benchmark for the pair of EVT parameters 
in the following manner. For a simulated Student-t dataset of length T = 2000 observa-
tions, I estimate ξ at a quantile cutoff of q = 0.95 using Dekkers, ML, and PWM, and I 
estimate β by each method at a cutoff of q = 0.995. For the maximum likelihood me-
thod, this involves concentrating out the tail parameter ξ by feeding the value estimated 
by ML at q = 0.95 into the second likelihood function as a fixed value when estimating 
β. With each of three sets of parameters (ξ, β), I estimate three T-levels using Equation 
(14) and check how many times (if at all) each T-level was actually exceeded in the si-
mulated data. Recall that the T-level should be exceeded once in expectation, though 
this may or may not occur in any one realization of a data sample. However, over a 
large number of simulations, the T-level should be exceeded once on average for an 
accurate estimator. Viewing 2000 simulated observations as daily financial returns 
would give 2000/252 = 7.94 years of daily data, so I also compute the 1-year level. This 
is the level that should be exceeded once a year, or 7.94 times in a sample of this size. 

I run 1000 simulation trials and report the results in Table 3. Panel A shows the fre-
quency in which the T-level was exceeded for each set of estimators over the 1000 trials. 
The PWM estimators clearly perform the worst out of the three, with 1.61 exceedances 
on average. This implies that PWM tends to set the T-level too low and it is easily ex-
ceeded in sample. Dekkers is the closest to the ideal number of one exceedance on av-
erage, with a mean of 1.05, though the ML estimators are surprisingly close at 1.07. This 
is surprising due to the larger bias exhibited by the ML estimates of ξ compared to 
Dekkers observed earlier. When paired with a beta estimated through maximum like-
lihood, the set of ML estimators manages to still give reasonably accurate probability 
estimates. Panel B tabulates results for the 1-year level, which is the level expected to be 
exceeded 7.94 times in a dataset of 2000 observations. This level is smaller, or less ex-
treme, than the full-sample T-level, and constructs another test for the ability of these 
estimators to provide useful information to the risk analyst. The PWM estimators show 
an average of 8.29 exceedances, compared to 7.77 for ML and 7.81 for Dekkers. Maximum  
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Table 3. Estimator performance at predicting T-levels. The table presents results from 1000 si-
mulation trials from a Student-t distribution with four degrees of freedom and T = 2000 observa-
tions. For each trial I estimate ξ with the upper 5% of the distribution using Dekkers, ML, and 
PWM, and I estimate β by each method with the upper .5% of the distribution. For the maximum 
likelihood method, this involves concentrating out the tail parameter ξ by feeding the value esti-
mated by ML at q = 0.95 into the second likelihood function as a fixed value when estimating β. 
With each of three sets of parameters (ξ, β), I estimate three T-levels using Equation (14) and 
check how many times each was exceeded in the actual simulated data. The T-level should be ex-
ceeded once in expectation. I also compute the 1-year level. This level should be exceeded 
2000/252 = 7.94 times in expectation. 

Panel A: T-Levels 

T-Level Exceedances ML Frequency Dekkers Frequency PWM Frequency 

0 164 164 162 

1 609 629 300 

2 221 204 329 

3 6 3 183 

4 0 0 26 

Total: 1000 1000 1000 

Mean: 1.07 1.05 1.61 

Panel B: 1-Year Levels 

1-Year Level Exceedances ML Frequency Dekkers Frequency PWM Frequency 

0 0 0 0 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 1 1 0 

5 8 10 0 

6 101 100 18 

7 266 248 137 

8 365 367 416 

9 250 261 398 

10 9 13 31 

Total: 1000 1000 1000 

Mean: 7.77 7.81 8.29 

 
likelihood and Dekkers are again close to each other and fairly close to the expected 
number of 7.94 exceedances.  

5.3. Application to the Wilshire 5000 Index 

Based on results for parameter bias, root mean squared error, stability across quantiles, 
and T-level accuracy, I believe that the Dekkers estimator is a preferable choice over the 
alternatives. Accordingly, as a real-world application of these risk management tools, I 
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use the Dekkers estimators on the Wilshire 5000 data in order to compute some VaR- 
based statistics. The Dekkers-based estimate of the shape of the left tail of the Wilshire 
returns distribution is ξ = 0.282. To gauge the precision of the estimate, I implement a 
bootstrap procedure that resamples the Wilshire data with replacement and re-esti- 
mates ξ each time in order to generate a standard error. Based on 200 bootstrap samples, 
this gives a t-statistic equal to 4.35 for ξ, indicating that the Wilshire 5000 is signifi-
cantly fat-tailed compared to a normal distribution (which has ξ = 0). The Dekkers es-
timate of β is 0.012 with a bootstrap t-statistic equal to 4.57. The T-level based on these 
parameter estimates and Equation (14) is a daily loss of 10.95%, which is expected to be 
exceeded once every 20 years. The greatest daily loss for the Wilshire during 1996-2015 
was only 9.57%, so the T-level was not actually exceeded in this 20-year sample period. 
The 1-year level according to Equation (14) is a daily loss of 4.77% and this loss was 
exceeded 20 times in the 20 year sample period, exactly equal to the expected average of 
once per year7. More interestingly, EVT allows us to answer questions that are beyond 
the scope of the empirical sample. For example, what is the 100-year loss level? Equa-
tion (14) says that a daily loss exceeding 17.18% should be expected about once every 
100 years. Also, according to Equation (15), the probability of an investor exceeding the 
observed sample maximum daily loss of 9.57% is 0.032%. 

The left tail of the distribution is most often the object of interest as it represents 
losses to investors holding long positions. However, for those with substantial short po-
sitions, extreme large returns in the right tail would be a concern, and symmetry in the 
shape of the tails need not be assumed. The Dekkers estimate for the right tail of the 
Wilshire Index is ξ = 0.232 (t = 2.78), which is slightly less than the left side, but also 
indicates a heavier tail than the normal. 

Despite its widespread use, VaR has received criticism for failing to distinguish be-
tween light and heavy losses beyond the VaR. A related concept which accounts for the 
tail mass is the conditional tail expectation, or expected shortfall (ES). ES is the average 
loss conditional on the VaR being exceeded and gives risk managers additional valuable 
information about the tail risk of the distribution. Due to its usefulness as a risk meas-
ure, in 2013 the Basel Committee on Bank Supervision has even proposed replacing 
VaR with ES to measure market risk exposure. Estimating ES from the empirical dis-
tribution is generally more difficult than estimating VaR due to the scarcity of observa-
tions in the tail. However, by incorporating information about the tail through our es-
timates of β and ξ we can obtain ES estimates, even beyond the reach of the empirical 
distribution. From the properties of the GPD, we get the following expression for ES: 

Expected Shortfall
1

VaR uβ ξ
ξ

+ −
=

−
                   (16) 

To illustrate the differences between the empirical and EVT distributions, Figure 5 
displays the empirical, normal, and EVT loss levels as a function of the quantile, or  

 

 

7However, these 20 exceedances occurred in only seven out of the 20 years, with 11 of them falling in 2008 
alone. There were also three in 2009, two in 2011, and one each in 1997, 1998, 2000, and 2001. I discuss the 
issue of dependence in the extremes in Section 6. 
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Figure 5. Value at risk and expected shortfall as a function of the confidence level. The figure shows the one-day VaR and 
expected shortfall for the Wilshire 5000 index. The empirical estimates are tabulated from the quantiles of the empirical 
distribution of returns over the sample period January 1, 1996, to December 31, 2015. The normal VaR estimates assume 
that the returns are drawn from a normal distribution. The EVT VaR estimates are based on the Dekkers bias-adjusted es-
timate of the tail shape parameter ξ. The scale parameter β was estimated using the Dekkers formula and was fit at the 
quantile q = 0.995 of the empirical distribution. 

 
confidence level. We see that simply assuming normality based on the mean and stan-
dard deviation would underestimate the loss level in the tail, due to the fat-tailed Wil-
shire returns. Note that the EVT VaR matches the empirical VaR at a quantile of q = 
0.995. This is by design; an expected outgrowth of the fact we have estimated β at q = 
0.995. The EVT VaR and EVT estimate for ES diverge considerably from their empiri-
cal counterparts at the extreme end of the distribution. This is especially true for ES and 
is due to the fact that the empirical distribution is largely empty and lacks historical 
observations in the extreme tip of the tail. However, this is not a hindrance to EVT es-
timates. 

6. The Extremal Index 

In the analysis so far, we have made the assumption that the data are i.i.d., a case ad-
dressed by the Fisher-Tippett Theorem and summarized in Equations (1) and (2). 
However, abundant evidence suggests that financial time series are not independent, 
with periods of lower volatility giving way to heightened volatility that may coincide 
with company news events or wider market shocks. Such periods of volatility clustering 
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may suggest clustering in the extreme tails of the distribution as well. The primary re-
sult incorporating dependence in the extremes is summarized in Leadbetter, Lindgren, 
and Rootzen [18]. For a strictly stationary time series (YT) under some regularity con-
ditions for the tail of F and for some suitable constants aT and bT, as the sample size 
T  ∞,  

( ){ }dT T

T

M aP y G y
b

θ −
≤ → 

 
                    (17) 

where θ (0 ≤ θ ≤ 1) is the extremal index and G(y) is the GEV distribution. Only the 
location and scale parameters are affected by the impact of θ on the distribution func-
tion; the value of ξ is unaffected. The extremal index θ is the key parameter extending 
extreme value theory from i.i.d. random processes to stationary time series and influ-
ences the frequency with which extreme events arrive as well as the clustering characte-
ristics of an extreme event. A value of θ = 1 indicates a lack of dependence in the ex-
tremes, whereas more clustering of extreme values is indicated as θ moves further be-
low 1. The quantity 1/θ has a convenient heuristic interpretation, as it may be thought 
of as the mean cluster size of extreme values in a large sample. 

Clustering of extremes is relevant to risk management, especially financial institu-
tions who are not able to unwind their positions instantly or recover from a single neg-
ative shock. This means that such institutions are subject to the cumulative effects of 
multiple extreme returns within a short time period. Indeed, the Basel Banking Com-
mittee recommends considering price shocks over not just a single day, but a holding 
period of 10 days. What is the impact of the extremal index on VaR statistics? For a 
given return x (or VaR), the probability Q of observing a return no greater than x is 
adjusted for dependence as Qθ, or 

( ) ( )1P y x P y x Q
θθ θ≤ = − > =                      (18) 

For example, if the 95% VaR has been computed with Equation (13), which does not 
include θ, and θ were estimated to equal 0.75, then the probability quantile would be 
adjusted as 0.95θ = 0.95(.75) = 0.9623. In other words, due to dependence, the VaR statis-
tic obtained is actually a 96.23% VaR statistic. This also means there is a 1 − 0.9623 = 
0.0377 or 3.77% chance that this VaR statistic may be exceeded. Extremal dependence 
raises the VaR statistic, or possible loss level, for a given quantile/confidence level, or, 
alternatively, it decreases the likelihood of exceeding a given loss level within a fixed 
time period. The potential loss level is raised due to clustering, and the likelihood of 
exceeding the loss level is decreased, also due to clustering. The intuition is that, you 
may now have many days of clear skies, but when it rains, it will continue to pour. In 
order to adjust the VaR, rather than the probability quantile Q, for dependence, we 
would use 

( )

( )

1 1 , 0 and 0 1

ln 1 , 0 and 0 1

TVaR u Q
n

TVaR u Q
n

ξβ θ ξ θ
ξ

β θ ξ θ

−   = + − − ≠ < ≤     
  = + − − = < ≤    

           (19) 



T. R. A. Sapp 
 

646 

which, as noted above, has the effect of increasing the VaR when θ < 1. 

7. Extremal Index Estimators 

Below I briefly introduce five estimators for the extremal index that have been proposed 
in the literature, after defining some notation. Due to the possible presence of depen-
dence or clustering of extreme observations in the data, most approaches to estimating 
the extremal index sub-divide the sample into blocks to look for exceedances over a 
high threshold. Four of the five estimators I examine require that the sample be sub- 
divided into blocks. Only the intervals estimator, discussed last, does not. The issue of 
selecting an optimal block size is addressed in the appendix. 

Define: 
y = data sample of stationary, possibly dependent time series. 
T = sample size. 
q = quantile of the distribution. 
u = data threshold corresponding to quantile q. 
n = number of exceedances over threshold u. 
r = block length when data is divided into blocks. 
k = T/r, number of blocks, where in practice k is rounded down to the nearest integer. 
Mi = maximum of block i, for i = 1 to k. 
m = number of blocks with exceedances over threshold u. 
z = number of blocks with exceedances over threshold v, where qv = 1 – m/T. 
w = total number of runs of length k. 
I = indicator function, taking the value 1 if the argument is true, otherwise 0. 
θ = extremal index, 0 < θ ≤ 1. 
θ−1 = mean cluster size. 

Let ( ) ( )
1

1 T

T i
i

F u I Y u q
T =

= ≤ =∑  and let ( ) ( )
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k i
i

F u I M u
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= ≤∑ . 

7.1. Blocks Estimator 

The Blocks estimator of Hsing [19] divides the data into approximately k blocks of 
length r, where T = kr. Each block is treated as a cluster and the number of blocks m 
with at least one exceedance over threshold u, out of the total number of exceedances n, 
gives an estimate of the extremal index. Hsing notes that the inverse, n/m, or 1/θ, may 
be taken as an estimate of the mean size of clusters. 
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               (20) 

The length of r must be chosen subject to ( )1 1r T n q≤ = − . As discussed in the 
appendix, for purposes of the Monte Carlo study, I set r = 30. 

7.2. Log Blocks Estimator 

Smith and Weissman [20] propose a refinement of the simple Blocks estimator which 
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they argue may have better performance due to second-order asymptotic properties. I 
refer to their estimator as the LogBlocks estimator. 
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As discussed in the appendix, I set the block size for the study at r = 30. 

7.3. Runs Estimator 

The Runs estimator was proposed by O’Brien [21] and counts the number of runs of 
continuous observations for which there is no exceedance over threshold u. Define the 
event ( )1, , ,i i i i rA y u y u y u+ += > ≤ ≤

. This says that a run A occurs when an ex-
ceedance is followed by a run of r observations below the threshold. If the total number 
of runs is w, then the Runs estimator is given by 
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The “Downcrossing” estimator proposed by Nandagopalan [22] is just a special case 
of the Runs estimator with r = 1 and will not be separately analyzed here. Intuitively, if 
there is no dependence in the extremes, then each extreme observation should be fol-
lowed by a run of (at least) r observations. In such a case, w and n would be equal and 
θRuns would tend toward 1. As discussed in the appendix, the Runs estimator tends to 
function well with a much smaller block size than the other blocks-based estimators, 
performing optimally at r = 4, so this is the value I use for the Monte Carlo study. 

7.4. Double-Thinning Estimator 

The Double-Thinning estimator of Olmo [23] counts the number of blocks m with at 
least one exceedance over threshold u and then chooses a higher threshold v and counts 
the number of blocks z having an exceedance of this higher threshold. Specifically, de-
fine a second threshold v > u, where qv = 1 − m/T. Olmo shows that the extremal index 
may be estimated as the ratio of the number of block exceedances from the two thre-
sholds: 
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              (23) 

This Double-Thinning estimator will generally require more data than other estima-
tors to perform well as it relies on a second, more extreme, threshold in the tail which 
will necessarily yield fewer exceedances from which to estimate z. As discussed in the 
appendix, a block size of r = 30 is adopted for studying this estimator. 

7.5. Intervals Estimator 

The previous four estimators are based on the data being partitioned into blocks, re-
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quiring a choice of block size r. The Intervals estimator of Ferro and Segers [24], how-
ever, is based on modelling the interarrival times between extreme observations and so 
does not call for dividing the data into blocks. Ferro and Segers build on the proposi-
tion that the arrival of exceedance times is a compound Poisson process to prove that 
the interarrival times may be modelled as exponentially distributed. This leads to the 
following Intervals estimator for the extremal index. For the n observations of y that 
exceed threshold u, let 11 nS S≤ < <  be the exceedance times. Then the observed 
inter exceedance times are Zi = Si+1 − Si for 1, , 1i n= −

, and 
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8. Monte Carlo Analysis of Extremal Index Estimators 
8.1. Simulating Doubly Stochastic Series 

In order to conduct a Monte Carlo study, it is necessary to generate data for which the 
value of the extremal index is known. Early work on estimating the extremal index in-
cludes Smith and Weissman [20], who study the following doubly stochastic process for 
simulating data with a known extremal index value. Let εi be i.i.d. with distribution H 
and Y1 = ε1, and suppose for I > 1, Yi = Yi−1 with probability ψ, and Yi = εi with proba-
bility 1 − ψ. The doubly stochastic process {Xi} is then defined as Xi = Yi with probabil-
ity η, and Xi = 0 with probability 1 − η, with each realization i being independently 
chosen. Smith and Weissman show that this process has an extremal index equal to 

1
1

ψθ
ψ ψη
−

=
− +

                            (25) 

8.2. Monte Carlo Results 

I create a doubly stochastic process of length T = 500 for six extremal index values (θ = 
0.17, 0.33, 0.42, 0.57, 0.67, 0.83), simulating each series 200 times each. I also create a 
series with θ = 1.00 using randomly generated i.i.d. N (0,1) data. I set the cutoff for de-
fining extreme observations at the 95thpercentile of each data series, and estimate θ on 
each series using each of the five estimators defined in Section 7. The numerical results 
for bias and root mean squared error (RMSE) are reported in Table 4. However, for 
ease of comparison, I also graphically summarize the results, and will focus on the visu-
al displays. Panel A of Figure 6 presents results for bias and Panel B displays results for 
RMSE. The Double-Thinning and Runs estimators show small positive bias for low 
values of θ, but become negatively biased as θ  1. The Blocks estimator is only accu-
rate around θ = 0.33 and heavily biased elsewhere, whether positively (at θ = 0.17) or 
negatively (above θ = 0.33). The Intervals estimator shows substantial positive bias at 
low θ, which gradually declines as θ  1. The LogBlocks estimator shows small positive 
bias at all values of θ. The case of θ = 1 is of particular interest, because it represents ei-
ther weak or no dependence in the extremes. A desirable characteristic of an estimator  
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Table 4. Bias and root mean squared error of extremal index. The table presents extremal index estimation results from 200 Monte Carlo 
simulation trials of data generated for seven extremal index values (θ = 0.17, 0.33, 0.42, 0.57, 0.67, 0.83, 1.00). The five estimators are 
Blocks, LogBlocks, Runs, Double-Thinning, and Intervals. Reported bias and root mean squared error results are for estimation at a quan-
tile cutoff q at the 95th percentile of the distribution and T = 500 observations (Panel A), the 95th percentile and T = 2000 (Panel B), the 
98th percentile and T = 2000 (Panel C), and the 98th percentile and T = 5000 (Panel D). 

   
Bias 

    
RMSE 

  
θ Blocks Log Blocks Runs Double-Thinning Intervals Blocks Log Blocks Runs Double-Thinning Intervals 

 Panel A: T = 500, q = 0.95        

0.17 28.8% 14.5% 14.8% −7.9% 75.4% 9.5% 9.1% 8.5% 17.5% 18.3% 

0.33 −6.8% 8.3% −8.7% −2.3% 34.3% 7.1% 10.6% 9.1% 15.8% 16.9% 

0.42 −16.5% 6.2% −5.1% −3.0% 26.2% 9.9% 13.2% 8.8% 15.2% 18.6% 

0.57 −26.9% 6.8% −9.6% −12.6% 20.2% 16.8% 17.4% 10.7% 15.0% 20.7% 

0.67 −32.2% 5.2% −11.9% −14.5% 16.7% 22.3% 18.8% 11.0% 14.2% 20.9% 

0.83 −40.5% 4.0% −15.8% −22.2% 12.7% 34.2% 21.8% 15.6% 20.9% 20.5% 

1.00 −46.9% 2.1% −18.5% −29.0% 10.7% 47.1% 22.1% 19.7% 29.9% 20.5% 

 
Panel B: T = 2000, q = 0.95 

       
0.17 5.4% 12.7% −5.1% 3.0% 9.3% 3.0% 4.3% 3.2% 9.6% 5.1% 

0.33 −11.3% 10.6% −3.5% 2.3% 8.3% 5.0% 6.4% 4.3% 8.3% 7.6% 

0.42 −19.5% 6.6% −9.2% −2.6% 5.6% 8.8% 7.1% 5.9% 8.0% 8.0% 

0.57 −30.0% 2.7% −12.9% −12.4% 2.6% 17.4% 7.5% 8.7% 9.7% 9.1% 

0.67 −34.1% 3.9% −12.5% −15.9% 4.5% 23.0% 9.5% 9.6% 12.2% 10.5% 

0.83 −41.3% 2.4% −15.6% −23.1% 3.0% 34.6% 10.1% 13.6% 19.8% 9.9% 

1.00 −47.5% 0.4% −18.5% −29.8% 2.1% 47.6% 11.9% 18.9% 30.1% 10.1% 

 
Panel C: T = 2000, q = 0.98 

       
0.17 23.3% 14.1% 9.7% 11.3% 41.8% 6.7% 6.4% 6.2% 16.9% 11.0% 

0.33 5.2% 9.9% 7.3% 10.4% 20.7% 6.9% 8.4% 7.8% 13.7% 13.0% 

0.42 −2.9% 5.0% −0.5% 1.3% 15.3% 6.6% 8.7% 8.0% 11.0% 12.9% 

0.57 −10.7% 2.7% −3.7% −5.5% 13.5% 9.2% 9.8% 7.6% 9.9% 15.6% 

0.67 −14.0% 3.0% −3.9% −8.4% 11.3% 11.3% 9.9% 7.3% 11.2% 16.4% 

0.83 −18.9% 2.1% −5.2% −12.4% 7.7% 16.7% 9.6% 7.6% 12.4% 16.0% 

1.00 −23.4% 1.2% −7.5% −18.2% 7.5% 23.9% 9.4% 8.6% 18.9% 16.4% 

 
Panel D: T = 5000, q = 0.98 

       
0.17 17.0% 16.6% 2.2% 10.1% 12.6% 4.8% 5.1% 3.8% 9.1% 5.7% 

0.33 1.7% 10.0% 1.7% 6.6% 7.2% 4.1% 6.0% 4.4% 8.0% 7.3% 

0.42 −3.3% 7.8% −0.8% 4.2% 8.0% 4.4% 6.3% 4.6% 7.4% 8.7% 

0.57 −11.6% 3.1% −4.1% −5.2% 4.3% 7.8% 6.2% 5.1% 6.3% 9.1% 

0.67 −15.1% 2.2% −4.9% −8.4% 4.5% 11.0% 7.0% 6.1% 8.0% 10.2% 

0.83 −19.1% 2.3% −5.7% −13.1% 4.0% 16.3% 6.2% 6.2% 11.7% 11.1% 

1.00 −23.8% 0.6% −7.8% −18.5% 3.5% 24.1% 6.4% 8.2% 18.8% 10.6% 
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Figure 6. Bias and root mean squared error of extremal index for T = 500, q = 0.95. The figures show the per-
centage bias and root mean squared error for five estimators of the extremal index. A sample size of T = 500 
observations was generated under each of seven distinct values of the extremal index (θ = 0.17, 0.33, 0.42, 0.57, 
0.67, 0.83, 1.00). Results are based on 200 simulation trials for each value of θ. Extreme observations are desig-
nated as those exceeding the quantile q = 0.95 of the distribution. 

 
is that it would not detect a false positive by indicating dependence when none exists. 
We see that Blocks, Double-Thinning, and Runs fail badly at θ = 1, indicating an ex-
tremal index value that is substantially below 1. In terms of RMSE, the Runs estimator 
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is consistently the lowest, followed by LogBlocks and Double-Thinning. 
Panel A of Figure 7 shows Bias results for simulations when T = 2000 and q = 0.95. 

With the larger data sample, the Intervals estimator shows the most improvement,  
 

 
Figure 7. Bias and root mean squared error of extremal index for T = 2000, q = 0.95. The figures show the 
percentage bias and root mean squared error for five estimators of the extremal index. A sample size of T = 
2000 observations was generated under each of seven distinct values of the extremal index (θ = 0.17, 0.33, 0.42, 
0.57, 0.67, 0.83, 1.00). Results are based on 200 simulation trials for each value of θ. Extreme observations are 
designated as those exceeding the quantile q = 0.95 of the distribution. 
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having small positive bias similar to that of the LogBlocks estimator across the range of 
θ. The other estimators are fairly accurate for low values of θ, but show increasingly 
negative bias as θ  1. This again highlights the inability of three of the estimators to 
accurately report a lack of dependence when θ = 1. In Panel B the LogBlocks and Inter-
vals estimators are seen to consistently have the lowest RMSE, followed by the Runs es-
timator.  

In order to examine the estimators’ behavior further out in the tail of the distribution, 
Figure 8 shows results using the higher threshold cutoff of q = 0.98 while keeping the 
sample size fixed at T = 2000 observations. Thus, the extremes are more extreme, but 
there are fewer of them from which to estimate θ. Moving to the more extreme tail has 
helped to substantially reduce the negative bias of the Blocks, Runs, and Double-Thin- 
ning estimators, while increasing the positive bias of the Intervals estimator. The bias of 
the LogBlocks estimator appears unaffected and this estimator still does best in terms of 
consistently low bias. In Panel B we see that the RMSE of LogBlocks is consistently low, 
with only the Runs estimator showing slightly better RMSE.  

Finally, Figure 9 extends the length of the sample to T = 5000 while keeping the de-
finition for the tail extreme at the 98th percentile. Here, with abundant data, it becomes 
difficult to pick a clear winner as both LogBlocks and Runs perform equally well in 
terms of bias and RMSE. The Intervals estimator is close behind these two, being nearly 
identical with LogBlocks in terms of bias, but having greater RMSE across the range of 
θ. 

8.3. Summary of Results 

Overall, we may draw the following conclusions. Three of these estimators—Blocks, 
Double-Thinning, and Runs—need a higher threshold (q ≈ 0.98) for best performance. 
The Intervals estimator likes lower thresholds (q ≈ 0.95) for best performance, and the 
LogBlocks estimator consistently does well regardless of threshold choice. The Blocks 
estimator performs poorly and is the worst of the five. It is extremely biased and does 
not estimate θ over the full range of values, maxing out around 0.75. This means the 
Blocks estimator will always report clustering in the extremes, even when the true value 
of θ is 1. The Double Thinning estimator is an improvement over the basic Blocks es-
timator, but does not match the other three in any sample size and for any threshold q. 
The LogBlocks estimator has only a very small bias, and the bias does not tend to vary 
with θ, the sample size, or threshold8. The LogBlocks also does quite well for lower 
thresholds, such as q = 0.95, and when sample size is small, this represents a distinct 
advantage as it affords more useable observations. Competing for second and third 
place are the Runs estimator and the Intervals estimator. The Intervals estimator works 
well when the sample size is sufficiently large (T ≥ 2000), and has the benefit of not re-
quiring the specification of a block size r. For very large samples (T ≥ 5000), both the 
Runs and Intervals estimators perform as well as the LogBlocks estimator. However,  

 

 

8The bias may be corrected by applying an atheoretic, ad hoc adjustment. By estimating a dozen index values 
from simulated data and fitting a regression equation, I obtain: LogBlocks LogBlocks

Unbiased 1.01 0.03θ θ= − . 
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Figure 8. Bias and root mean squared error of extremal index for T = 2000, q = 0.98. The figures show the per-
centage bias and root mean squared error for five estimators of the extremal index. A sample size of T = 2000 ob-
servations was generated under each of seven distinct values of the extremal index (θ = 0.17, 0.33, 0.42, 0.57, 0.67, 
0.83, 1.00). Results are based on 200 simulation trials for each value of θ. Extreme observations are designated as 
those exceeding the quantile q = 0.98 of the distribution. 

 
because of its ability to detect θ = 1, its small bias, and generally low RMSE at all sample 
sizes, the LogBlocks estimator is the best all-around choice.  
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Figure 9. Bias and root mean squared error of extremal index for T = 5000, q = 0.98. The figures show the per-
centage bias and root mean squared error for five estimators of the extremal index. A sample size of T = 5000 
observations was generated under each of seven distinct values of the extremal index (θ = 0.17, 0.33, 0.42, 0.57, 
0.67, 0.83, 1.00). Results are based on 200 simulation trials for each value of θ. Extreme observations are desig-
nated as those exceeding the quantile q = 0.98 of the distribution. 

8.4. Further Risk Management Applications 

In order to compute the extremal index for the Wilshire 5000 left tail returns using the 
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LogBlocks estimator, I sub-divide the sample into blocks of r = 30 daily returns and use 
a threshold of q = 0.95. I also compute a bootstrap standard error using block resam-
pling, with a block size of r = 30, in order to maintain the dependence structure in the 
data. This results in a value of θ = 0.489 having a standard error of 0.040. A t-test of the 
hypothesis that θ = 1 results in a t-statistic of 12.66 and is easily rejected, indicating the 
stock market exhibits significant clustering in the extremes. The mean cluster size of 
extreme losses is equal to about 2 (=1/0.489). The presence of dependence affects our 
prior VaR and probability calculations, which reflected the unconditional likelihood of 
observing a negative extreme. The probability of an investor exceeding the observed 
sample maximum daily loss of 9.57%, when accounting for dependence, is only 1 − (1 − 
0.00032)θ = 0.0156% according to Equation (18). Assuming independence, we pre-
viously computed that a daily loss exceeding 17.18% should be expected about once 
every 100 years. However, the VaR level taking into account dependence is a loss ex-
ceeding 20.99% about once every 100 years. 

9. Conclusions 

Corporations and, in particular, financial institutions have become acutely aware of the 
need to better measure and manage their exposure to large movements in market risk 
variables. While by nature these large losses are very rare and infrequently observed, 
recent advances in extreme value theory have helped to make the risk manager’s task of 
quantifying tail risk less difficult. The tail shape parameter ξ and the extremal index θ 
are the fundamental parameters governing the extreme behavior of the distribution, 
and the effectiveness of EVT in forecasting depends upon their reliable, accurate esti-
mation. 

This study provides a comprehensive analysis of the performance of estimators of 
both key parameters in extreme value theory. I examine five prominent estimators for 
the tail shape parameter that have been proposed in the literature and find that of 
Dekkers, Einmahl, and de Haan [14] dominates the other four. I also examine five es-
timators for the extremal index that various authors have proposed and find that the 
Log Blocks estimator of Smith and Weissman [20] dominates the other four. These two 
estimators consistently performed well in terms of low bias, low RMSE, and insensitiv-
ity to distributional threshold definition. In addition to these metrics, an important re-
quirement expected of a good estimator is that it does not return a false positive. This 
means it must be capable of detecting ξ = 0 in the case of the tail shape parameter, and 
θ = 1 in the case of the extremal index. In each respective case, the selected optimal es-
timator also fulfills this requirement. By providing a comprehensive comparison of all 
of these estimators across multiple metrics in one place, this paper fills a gap in the 
academic literature. Further, this study has also addressed the very practical question of 
which estimators would be optimal to actually use in an empirical setting, information 
of immediate usefulness to risk management practitioners. 

Some possible limitations of this study include the following two issues. First, as dis-
cussed in the appendix, pinning down the choice of the optimal block size for estimat-
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ing the extremal index is somewhat arbitrary. However, refinements to this choice will 
likely yield diminishing returns in highlighting differences between the estimators. A 
second possible limitation is that the data used in the simulations were generated from 
particular distributional forms: Student’s t in the case of simulated data for the tail 
shape estimators, and a doubly stochastic process in the case of the extremal index. Al-
though there is no reason to expect different results in estimator performance when ap-
plied to data from other underlying distributional forms, this is an open question that 
may be explored through future research. 
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Appendix 
Selection of the Optimal Block Size 

Due to the possible presence of dependence, or clustering, of extreme observations in 
the data, most approaches to estimating the extremal index sub-divide the sample into 
blocks to look for exceedances over a high threshold. To be effective, a block size must 
be selected that is large enough to maintain the data clusters without disrupting any 
dependence structure in the data, while still allowing a sufficiently large number of 
blocks to test for exceedances. The goal is to select the length r just large enough that 
the individual blocks, while containing the dependence structure, are effectively inde-
pendent from each other. For daily financial returns, a one-month block length of r = 
21 trading days is often insufficient, and 25 to 30 days of returns is required. By esti-
mating the extremal index over an expanding range of block sizes, graphing the results, 
and looking for a point of relative stability, an optimal block size may be selected.  

Figure A1 displays the extremal indexes estimated using the four blocks-based es-  
 

 
Figure A1. Panel A shows results from estimating the extremal index on a single simulated 
doubly stochastic process with T = 2000 and θ = 0.294 using four blocks-based estimators for 
various block sizes from 1 to 200. Panel B shows results from estimating the extremal index on a 
single simulated i.i.d. normal process with T = 2000 and θ = 1 using four blocks-based estimators 
for various block sizes from 1 to 200. 
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timators by sub-dividing a simulated data sample of 2000 observations into alternative 
block sizes ranging from 1 to 200. Panel A is estimated on a single dataset simulated to 
have an extremal index of θ = 0.294. We see that the Blocks, LogBlocks, and Double- 
Thinning estimators are approximately accurate at a block size of about r = 30. The 
Runs estimator needs a much smaller block size of about 3 - 5. Repeated testing 
through Monte Carlo simulations confirms that a block size of r = 4 works best for the 
Runs estimator and r = 30 is optimal for the other three blocks-based estimators, re-
gardless of the value of θ in the data. Panel B illustrates that all of the estimators except 
LogBlocks struggle when the true value of θ is equal to 1, regardless of the block size se-
lected. 
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