
Journal of Software Engineering and Applications, 2016, 9, 547-560
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2016.911037 November 9, 2016

Translator of Islay 3D Animations into Flash
Platform

Michitoshi Niibori1, Makoto Rokujo1, Shusuke Okamoto2, Masaru Kamada3, Tatsuhiro Yonekura3

1Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
2Faculty of Science and Technology, Seikei University, Tokyo, Japan
3Department of Computer and Information Sciences, Ibaraki University, Hitachi, Japan

Abstract
The three-dimensional (3D) interactive animations and video games are so attractive
that successful educational programming environments like Alice and Kodu Game
Lab deal with 3D characters. Islay 3D is another educational programming environ-
ment of which feature is an intuitively comprehensive user interface in terms of state
transition diagrams. Unfortunately its animation definition was too memory-hungry
when played by the built-in interpreter. In this paper, we present a translator of the
animation definitions of Islay 3D into ActionScript3 (AS3). Compiling the AS3 codes
by way of Papervision3D, we obtain the 3D Flash animation file playable on the Flash
platform. It will be shown that the memory and CPU usages will be much saved,
quartered and halved, respectively, by virtue of the translator.

Keywords
Interactive Animations, State Transition Diagrams, Flash

1. Introduction

The three-dimensional (3D) modeling is an effective means to enhance the impression
of interactive animations and video games at less cost. Adobe Flash Player [1] allows for
3D contents by way of libraries like Papervision3D [2] and is a major platform for
movies, interactive contents and video games on the web.

Adobe Flash Professional [3] is a genuine tool for authoring any kinds of Flash con-
tents. But users have to write programs in the ActionScript language in order to make
the movies as interactive as video games. There have also been educational program-
ming environments that allow even children to work on their own dynamic 3D con-
tents. Alice [4] lets children create a virtual 3D world by its scene editor and give the 3D

How to cite this paper: Niibori, M., Ro-
kujo, M., Okamoto, S., Kamada, M. and
Yonekura, T. (2016) Translator of Islay 3D
Animations into Flash Platform. Journal of
Software Engineering and Applications, 9,
547-560.
http://dx.doi.org/10.4236/jsea.2016.911037

Received: August 24, 2016
Accepted: November 6, 2016
Published: November 9, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.911037
http://www.scirp.org
http://dx.doi.org/10.4236/jsea.2016.911037
http://creativecommons.org/licenses/by/4.0/

M. Niibori et al.

548

objects in the virtual world to behave according to their program written in its script
programming language. Kodu Game Lab [5] is a visual programming environment that
lets children describe the behavior of the game characters in terms of event-driven se-
quences of actions represented by tiles.

It has been proven that the state-transition diagram, which is the most fundamental
principle for automata, is intuitively so comprehensive that even children can create
programs for interactive animations and video games in the two-dimensional (2D)
world [6]. This programming environment has been distributed with its name Islay. Its
3D version named Islay 3D [7] is an easy-to-use programming environment for au-
thoring interactive 3D animations in terms of state-transition diagrams. It is something
between Alice and Kodu Game Lab. Islay 3D is easier to use than Alice because of the
state-based programming interface although Alice’s script language is, of course, more
powerful. Islay 3D allows for description of behavior explicitly bundled to the states
while Kudo’s characters are basically stateless although it is possible for Kudo to re-
present (at most 12) states by the concept of pages where the tiles belong to.

Islay 3D has been developed first as a Microsoft Foundation Class (MFC) application
for Microsoft Windows and then rewritten in JavaScript to work on web browsers. The
web version of Islay 3D plays the animation by an interpreter written in JavaScript to
interpret the animation definition. It works fine on fast computers but is too memory-
hungry to run on smaller computers.

In the 2D world, employing Islay as the front-end user interface, tools for authoring
interactive Flash animations have been developed for ActionScript2 [8] and also for
ActionScript3 (AS3) [9].

In this paper, we present a translator of Islay 3D animations into AS3. Compiling the
AS3 codes by way of Papervision3D [2], we obtain the 3D Flash animation file playable
on the Flash platform. Its effectiveness will be evaluated in the aspect of memory and
CPU usages saved by virtue of the translator.

2. Islay 3D

Islay3D [7] is a graphical programming environment where the behavior of animation
characters is described in terms of state-transition diagrams. A character can be recur-
sively composed of lower-level characters that behave in the local coordinate system of
the upper-level character. It is also possible to attach several state transition diagrams to
a character.

2.1. Definition of Behavior in Terms of State-Transition Diagrams

Behavior of animation characters is defined by describing state-transition diagrams on
the editor. Figure 1 is a screenshot of the editor. A state represented by an oval has ac-
tions for the character to take in the state. Actions are selected out of geometric actions
such as parallel translations and rotations or logical ones such as forking other charac-
ters. A transition represented by an arrow means that the character shifts its state to the
pointed one on condition written along the arrow. In Figure 1, the diagram is attached

M. Niibori et al.

549

Figure 1. Screenshot of the editor.

to the character so that it turns left or right when an arrow key is pressed.

2.2. Hierarchical Structure of Characters

A character can be recursively composed of lower-level characters as illustrated in Fig-
ure 2. Each character encapsulated in an orange oval has its shape in the blue oval and
definition of behavior represented by the yellow box being a set of state-transition dia-
grams.

The original character on the top level has its appearance composed of other charac-
ters representing its head, body, right and left hands, and feet. This character has a
hammer in the right hand so that the right arm is defined as an upper-level character
composed of an arm character and a hammer character. The 3D objects representing
the bottom-level characters are called atom 3D objects hereafter.

This hierarchical structure is nothing special but a standard model for composing 3D
objects. The lower-level characters behave relative to the local coordinate system of the
upper-level character. The top-level characters behave relative to the global coordinate
system.

2.3. Actions and Events

Actions are selected out of geometric actions such as parallel translations and rotations
or logical ones such as forking other characters and sending messages. A state can have

M. Niibori et al.

550

Figure 2. Hierarchal structure of characters.

both geometric action and logical action.

Events include key press, messages, and collisions with other characters or walls that
condition transition of the states.

2.4. Data Structure of Animation Definition

The definition of animation includes the shapes of atom 3D objects, character defini-
tions composed of state-transition diagrams and references to lower-level characters
with their initial relative positions, and groups of characters to be forked at the same
time. Those data are stored in an XML-based format as their example in Figure 3.

An atom 3D object’s shape is expressed in a digital asset exchange (DAE) file in the
Collada format [10] to be referred to by its file name. Its example is the light blue block
in Figure 3.

A character definition in the orange block of Figure 3 has a name, a set of state-
transition diagrams as in the yellow block of Figure 3. A bottom-level character has its
appearance specified by a DAE file name in the light blue block in Figure 3. An up-
per-level character has its appearance specified by a list of lower-level character names
and their relative initial positions in the blue block of Figure 3. Figure 4 is an expanded
form of the yellow block in Figure 3. Diagram 1 is the expression of the state-transition
diagram in Figure 1 that specifies horizontal rotation of the character according to the
left and right arrow keys. Diagram 2 is the one for moving forward or backward ac-
cording to the up and down arrow keys. A state-transition diagram in the yellow block
has the orange block where names of states are listed together with the actions to be
taken in the state. In the green block, transitions are listed each of which is a triple of
the condition, the source and destination states.

An upper-level character has its appearance specified in the blue block of composing
definition in Figure 3. There the lower-level characters are listed with their initial rela-
tive positions to form the upper-level character and also with their initial states.

M. Niibori et al.

551

Figure 3. Example of Animation Definition by Islay 3D.

A group comprises pairs of a character name and its initial state. By the “fork” action,

we can create their instances at the same time in the specified initial states. There is at
least one group named main group, which is the set of characters to start up the anima-
tion as in the part of group definition in Figure 3.

The space where characters play inside is defined with its dimensions, type, back-
ground color, and the transition time interval as the part of the world definition in
Figure 3. The type can be chosen out of a space having no boundaries, a ground with a

M. Niibori et al.

552

Figure 4. Internal expression of state-transition diagrams.

boundary on the floor, and a room that has six surrounding boundaries.

3. Execution Model in ActionScript 3

The animation definition should be converted by a translator into an ActionScript3
(AS3) code for its implementation as a Flash animation. Compiling the animation de-
finition in AS3, we will get Flash 3D animation that works the same as the original Islay
3D animation. In that way, we can play Islay 3D animation on the Flash platform.

3.1. Implementation of State-Transition Diagrams

In a translation into AS3 code, actions and state transitions take place in the following
steps.
1. A class for mediating the whole animation watches the timer until the next timing

for actions and state transitions.
2. The mediator class calls the function for taking action and shifting states imple-

mented in each of the top-level characters. The function call is accompanied by
events conditioning the state transition.

3. Each character takes actions and shifts states on events.
4. If the character retains its children (lower-level characters), it calls the function of its

children for taking action and shifting states with the events.
5. Repeat 3 and 4 until all the bottom-level characters take actions and shift states.

In that way, all the characters keep taking their actions shifting their states by a regu-
lar interval.

M. Niibori et al.

553

3.2. Implementing Hierarchal Structure of Characters

In order to implement the hierarchical structure as illustrated in Figure 2, we introduce
a class named Performer. One instance of this class encapsulates that of any character.
As indicated in the top line of Figure 5, this class inherits the DisplayObject3D class of
the Papervision3D library that is the fundamental class for any kinds of 3D objects.
Among the properties of the DisplayObject3D class, the Performer class especially uti-
lizes the following: Multiple instances of the DisplayObject3D class can be retained in
an instance of the DisplayObject3D class as its children. The children instances behave
relative to the local coordinate system of their parent instance to constitute the appear-
ance of the parent. The DisplayObject3D retains all the parameters for three-dimensional
manipulation of objects such as vertex coordinates, local and global coordinate systems,
and the rotation angles. It has also the function for transforming pose and position of
3D objects by manipulating those parameters.

In the light blue ovals, the Performer class retains a reference to an instance of the
class for an atom 3D object in the case of bottom-level character or to a list of instances
of the Performer class in the case the character is made up of lower-level characters. In
that way, the hierarchical structure of the characters can naturally be implemented. It is
even capable of communicating with the children, which provides a natural means to
control the children.

Figure 5. Hierarchical structure of characters by means of the Performer class.

M. Niibori et al.

554

The character represented by the yellow box in Figure 5 is an instance of the Cha-
racter class of which detail will be described later. The Character class describes how a
character should behave in accordance with the state-transition diagrams. Encapsulated
in the Performer class, this class implements functions for state transitions and geome-
trically manipulating the Performer class instance as a 3D object.

3.3. Implementing Actions and State Transitions on Events

In order to cause actions and state transitions according to events, we introduce a class
named Mediator that is marked in pink in Figure 5. It uses the ObjetCollision and
WallCollision classes as schematized in Figure 6 for detecting collisions.

The mediator class controls the progress of whole animation by watching the timer
and calling the function for taking actions implemented in the top level character by a
constant time interval. When calling the function, events such as key press, messages,
and collisions are sent to the function, which recursively calls that of the lower-level
characters as indicated by the light blue arrows in Figure 5.

3.4. Conversion of Data Structure of Animation

We describe how to convert the Islay 3D animation definition in Figure 3 into the form
of object class definitions in AS3.

In order to implement the atom 3D object definition such as the one in the light blue
block of Figure 3, we introduce the Object class. This Object class inherits from the
Objects class of the Papervision3D library its functions such as creating an instance of
an atom 3D object and creating an instance of bounding box object for collision detec-
tion.

In Figure 7, the BoundingVolume class retains data fields of the oriented bounding
box for collision detection. The ExtendedDAE class creates an atom 3D object as an in-
stance of itself. An atom 3D object being a DAE file is parsed by the ExtendedDAE class
extending the DAE class of Papervision3D to create an instance of the atom 3D object
and embed it to be available in the animation.

In order to implement the character definition including actions and state transi-
tions, we introduce the Character class that inherits the Characters class as illustrated in
Figure 8.

The Characters class includes common functions for applying actions to the per-

Figure 6. Mediator class.

M. Niibori et al.

555

Figure 7. Object Class.

Figure 8. Character class.

former class and a function to remember the current state. Inheriting the Characters
class, the Character class implements the state transition diagrams in the form illu-
strated in Figure 9 for the example character definition in Figure 4. As in the red block
of Figure 8, each state is represented by a function that applies actions in the state to
the 3D object which is appearance of the Performer class, and returns the name of the
next state at the parts underlined in blue. In the green block, the destination state is de-
termined as the return value according to the transition conditions. If no conditions
match, the state remains the same (for the null return value).

The Character class retains the name of its appearance by which the Performer class

M. Niibori et al.

556

Figure 9. Function representing state and transitions in the Character class.

M. Niibori et al.

557

gets an instance of the PartsFactory class (described later). The Performer class, called
by the Mediator class by a regular time interval, calls the function representing the cur-
rent state of the encapsulated Character class to apply the actions to its appearance. The
return value of the function updates the current state if not null.

The PartsFactory class creates instances of the Object class in accordance with the
atom 3D object definition and also composes the appearances of upper-level characters
in accordance with the composing definition such as in Figure 3.

When the instance of the Performer class is created, 3D object name for specifying its
appearance is passed to this class. Example atom 3D object names are listed in the light
blue block in Figure 3. In the blue block of composing definition in Figure 3, the low-
er-level characters are registered with their relative positions to compose the up-
per-level character and also with their initial states.

The PartsFactory class creates (3D) Object instances, sets their initial positions, and
returns these to the Performer class instance as illustrated in Figure 10. In the case that
the Performer class instance represents a bottom-level character, this class returns an
Object class instance. In the case that the Performer class instance represents an up-
per-level character, this class returns a set of Performer class instances.

The groups class retains pairs of a character and its initial state and creates instances
of the Performer class retaining those characters when the they are forked. The group
of characters in Figure 11 is the initial performers in this example animation.

The Main class sets a space where characters play inside in accordance with the
world definition such as in Figure 3. As illustrated in Figure 12, the Main class inherits
from the IslayBasicView class its auxiliary functions for displaying walls and catching
user events such as key input and mouse click. The IslayViewport3D class displays the
walls. The IslayInteractiveSceneManager class makes it possible to catch the mouse event.

Figure 10. PartsFactoy class.

M. Niibori et al.

558

Figure 11. Groups class.

Figure 12. Main class.

4. Performance Evaluation

The developed translator converts an Islay 3D animation into ActionScript3, which is
then compiled by the Flash compiler to yield SWF (small web format) file playable on
the Flash platform.

Figure 13 shows screenshots of an example 3D animation running as a Flash con-
tent. The ball-like character walks around in the space according to the arrow key input
and throws a hummer at the flying saucers when the space bar is pressed.

Table 1 shows the memory and CPU usages of the animation when played as a Flash
content or as the original animation definition interpreted by the old built-in interpre-
ter of Islay 3D written in JavaScript on the same PC of the specifications listed in Table
2. Table 1 indicates that the Flash content produced by the developed translator con-
sumes only a quarter of the memory and a half of the CPU power consumed by the old
interpreter on JavaScript.

5. Conclusion

We have developed a translator of Islay 3D animations into ActionScript3 for the

M. Niibori et al.

559

(a)

(b)

Figure 13. Screenshots of Flash animation.

Table 1. Performance comparison in terms of memory and CPU usages.

Browser Firefox 48 Internet Explorer 11

Content Flash JavaScript Flash JavaScript

Memory usage 105 - 120 MB 600 - 630 MB 130 - 145 MB 680 - 720 MB

CPU usage 16% - 18% 39% - 42% 17% - 18% 48% - 53%

M. Niibori et al.

560

Table 2. Specifications of the test platform.

Parts Specifications

OS Windows 7 Professional 64 bit

CPU Core i7 2600, 3.4 GHz, 4 cores, 8 threads, 8 MB cache

Main memory 8 GB

Graphic card AMD Radeon HD 6350

Display Width 1920 × Height 1080 pixels

purpose of playing the animations on the Flash platform. A comparison of the memory
and CPU usages for the same animation played as a Flash content produced by the de-
veloped translator or as the original animation definition interpreted by the old inter-
preter written in JavaScript has shown that the memory and CPU usages are much
saved, quartered and halved, respectively. That means that the developed translator
helps the smaller computers run the animation created by Islay 3D. On the other hand,
for the creation of animations by the Islay 3D editor, we still have to use the larger and
faster computers. That is a remaining problem to be solved in the future.

References
[1] Adobe Flash Player. http://www.adobe.com/products/flashplayer.html

[2] Papervision3D. https://en.wikipedia.org/wiki/Papervision3D

[3] Adobe Flash. http://www.adobe.com/products/flash.html

[4] Cooper, S., Dann, W. and Paush, R. (2003) Teaching Objects-First in Introductory Com-
puter Science. Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education, Reno, 19-23 February 2003, 191-195.

[5] Fowler, A., Fristace, T. and MacLauren, M. (2012) Kodu Game Lab: A Programming Envi-
ronment. The Computer Games Journal, 1, 17-28.

[6] Okamoto, S., Kamada, M. and Nakao, T. (2005) Proposal of an Interactive Animation Au-
thoring Tool based on State Transition Diagram. IPSJ Transactions on Programming, 46,
19-27.

[7] Kwong, D., Niibori, M., Okamoto, S., Kamada, M. and Yonekura, T. (2014) Islay 3D—A
Programming Environment for Authoring Interactive 3D Animations in Terms of State-
Transition Diagram. Journal of Software Engineering and Applications, 7, 177-186.
http://dx.doi.org/10.4236/jsea.2014.73019

[8] Nakagawa, M., Okamoto, S., Kamada, M. and Yonekura, T. (2006) Flash Movie Authoring
Environment Based on State Diagram. Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games (NetGames 2006), Singapore, Article No. 45.
http://dx.doi.org/10.1145/1230040.1230055

[9] Niibori, M., Arisawa, Y., Okamoto, S., Kamada, M. and Yonekura, T. (2012) An Authoring
Tool for Flash Games in ActionScript3.0. Proceedings of the 15th IEEE International Con-
ference on Network-Based Information Systems (NBiS 2012), Melbourne, 26-28 September
2012, 889-892.

[10] COLLADA—Digital Asset and FX Exchange Schema. https://www.khronos.org/collada/

http://www.adobe.com/products/flashplayer.html
https://en.wikipedia.org/wiki/Papervision3D
http://www.adobe.com/products/flash.html
http://dx.doi.org/10.4236/jsea.2014.73019
http://dx.doi.org/10.1145/1230040.1230055
https://www.khronos.org/collada/

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Translator of Islay 3D Animations into Flash Platform
	Abstract
	Keywords
	1. Introduction
	2. Islay 3D
	2.1. Definition of Behavior in Terms of State-Transition Diagrams
	2.2. Hierarchical Structure of Characters
	2.3. Actions and Events
	2.4. Data Structure of Animation Definition

	3. Execution Model in ActionScript 3
	3.1. Implementation of State-Transition Diagrams
	3.2. Implementing Hierarchal Structure of Characters
	3.3. Implementing Actions and State Transitions on Events
	3.4. Conversion of Data Structure of Animation

	4. Performance Evaluation
	5. Conclusion
	References

