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Abstract 
 
In this paper, we proposed a general form of a multi-team Bertrand game. Then, we studied a two-team Ber-
trand game, each team consists of two firms, with heterogeneous strategies among teams and homogeneous 
strategies among players. We find the equilibrium solutions and the conditions of their local stability. Nume- 
rical simulations were used to illustrate the complex behaviour of the proposed model, such as period dou-
bling bifurcation and chaos. Finally, we used the feedback control method to control the model. 
 
Keywords: Bertrand Game, Non-Convex Dynamical Multi-Team Game, Incomplete Information Dynamical 

System, Marginal Profit Method, Nash Equilibrium 

1. Introduction 
 
Game theory [1,2] is the study of multi-person decision 
problem. Such problems arise in economics. The game is 
called incomplete information if at least one of the 
players does not know the other player's payoff, such as 
in an auction when the bidders do not know the offers of 
each other. Otherwise, it is called complete information 
game. Also, the game can be classified to static or dyna- 
mic game. There are two famous economic games, the 
first is the Cournot game [3] and the second is the 
Bertrand game [4]. In economic games, the first step is to 
construct the game. The second step is to solve the game 
(get their Nash equilibrium) and study the stability of 
these equilibria. Nash [5] showed that in any finite game 
there exists at least one Nash equilibrium. 

Nature push us to make teams in all fields. This has at 
least two main advantages. The first is the improvement 
of our profit and the second is that living in a team 
reduces the risk. For example, in the forest animals live 
in teams (herds). Since looking for food in a team is 
more efficient than doing it alone and reduces predation 
risk due to early spotting of predators and that existing in 
a team gives a higher probability that the predator will 
attack another member of the team. Another example is 
the competition between firms in the market. Suppose 
M  branches of McDonald fast food shops compete 
against  branches of Kentucky fast food shops. N

Multi-team game has been studied in [6]. In their work, 
they proposed and applied the concept of multi-team 

game in the hock-dove game, prisoner dilemma game 
and Cournot game. Also, the Cournot multi-team game 
has been studied in [7-11]. The standard static Bertrand 
game has been studied in [12]. A duopoly Bertrand game 
with bounded rationality is studied in [13]. Multi-team 
bertrand game is studied in [14] with two teams but the 
second team consists of one player. 

We will construct the model in Section 2. In Section 3, 
we will analysis the model, i.e., we will find its equi- 
librium points and their stability conditions. Some nume- 
rical analysis will be done in Section 4 to show the com- 
plexity behaviour of the model. Finally in section 5, we 
will use the feedback control method to control our 

odel. m
 
2. The Model 
 
Bertrand game is a model of competition used in eco- 
nomics. It describes interaction among firms that set 
prices and their customers that choose quantities at that 
price. In this game there are at least two firms producing 
homogeneous products and compete by setting prices 
simultaneously. Consumers buy everything from a firm 
with a lower price. If all firms have the same price, 
consumers randomly select among them. 

Suppose there are totally  firms (produce certain 
product) in the market and these firms are divided into 

 teams. Let ij  be the price per unit of that product 
produced by the firm  in the team  and let ijc  be 
the marginal cost of producing one unit of that product 

n

N p
j i
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by the firm  in the team . Then, the payoff of the 
firm  in the team , if it played without the team, is 
given by the following equations;  
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where  is the number of teams and i  is the 
number of firms in the team . The positive constants 

 are the demand parameters where  is the slop of 
the demand function. 

N N

,a b b

We propose that, firms in the same team share some of 
their payoffs with their team mates. So, let i

lj  be the 
payoff rate that firm  will takes from the payoff of 
firm  in the same team . It is clear that , 

j

i
lj

= 1

12

12

l
i
lj

i 0 <  < 1i
lj

< 1l
of the first firm  of the first team , if he 
played with the team, is given by the followimg;  

 and  . For example, the final payoff < 1
j

 j  = 1i 

πi

 1 1 1
13 1 111

1 1 1
21 31 1 11 1

= 1 π

π ,

N
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where 1  is the number of firms in the first team. In 
general, the final payoff of the firm  in the team i  is 
given by;  

N
j

= 1 π
N Ni i

i
ij jl ij lj il

l j
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In the case of two teams  = 2N
= 2

 where each team 
consists of two firms  and from Equation 
(1), we get the following payoffs of the firms in each 
team; 

 1 2=N N
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Using the assumption in Equation (2) of sharing some 
of the payoffs and Equation (3), we get the final payoffs 

 

of the firms as follows:  

 
 
 
 

1 1
11 12 11 21 12

1 1
12 21 12 12 11

2 2
21 12 21 21 22

2 2
22 21 22 12 21

= 1 π π ,

= 1 π π ,

= 1 π π ,

= 1 π π .

 

 

 

 

  

  

  

  

     (4) 

In this model, we assume that the firms in the first 
team use the marginal profit method [15], to expect their 
profit for the next time according to the following 
equations;  

  11
1 1 1 1

1

= ,  
t

jt t t
j j j j t

j

p p p j
p

 



= 1, 2,   (5) 

where 1 j  is the speed (rate) of adjustment and it is a 
function of the price 1 jp . The firms in the second team 
use Nash equilibrium [2], to make their decision for the 
next step by solving the following equations;  

2

2

= 0,  = 1, 2.
t

j

t
j

j
p

 


          (6) 

In this model, we assume that the speed of adjustment 
will be linear and take the form  1 1 1 1=t t

j j jp p  j , and 

1 > 0j . Substituting from Equation (4) in Equations (5) 
and (6), we get the following system (7);  

Then, Equation (7) describe a system of two teams, 
each team consists of two firms with homogeneous 
strategies among each firms in each team and heteroge- 
eous strategies among teams.  n

 
3. The Analysis of the Model 
 
The steady state (equilibrium) solutions are very interest 
[16]. In the context of difference equations, an 
equilibrium solution x  is defined to be the value that 
satisfies the relations 1 = =t tx x x . Then, we can get 
the equilibrium solutions for our model by the following. 
Let  
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Then, using Equation (8), the equilibrium points are 
given by solving the following system:  
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 21 .c

= 0,
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           (9) 

 
We get three boundary equilibrium solution points and 

the fourth one is the coexistence equilibrium one. The 
first boundary equilibrium one is given by 

1 2
1

1 1

= 0,0, , ,
l l

E
d d
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The second boundary equilibrium one is given by 1 2
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The third boundary equilibrium one is given by 
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3 11

3 3

= ,0, ,
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The most important one is the coexistence one 

 4 4 4 4
4 11 12 21 22= , , ,E p p p p , where  

         

         

       

4 3 11 3 4 4 3 12 3 4 4 3 21 3 4 4 3 22 3 4 4 34
11

4 3 3 4

2 1 11 1 2 2 1 12 1 2 2 1 21 1 2 2 1 22 1 2 2 14
12

2 1 1 2

4 3 11 3 4 4 3 12 3 4 4 3 21 3 4 4 34
21

2
= ,

2
= ,

2
=

a B B c D B F B c E B H B c F B D B c H B E B
p

A B A B

a B B c D B F B c E B H B c F B D B c H B E B
p

A B A B

a A A c D A F A c E A H A c F A D A
p

        



        


         

         

22 3 4 4 3

4 3 3 4

2 1 11 1 2 2 1 12 1 2 2 1 21 1 2 2 1 22 1 2 2 14
12

2 1 1 2

,

2
= ,

c H A E A

B A B A

a A A c D A F A c E A H A c F A D A c H A E A
p

B A B A





        


 

 
where,  

    
     



    
   



    
   



1

2 1 1 1 1 1 1
12 21 12 21 12 21

1 1 1
12 21 12

3

2 1 1 1 1 1 1
12 21 12 21 12 21

1 1 1
21 12 21

2

2 2 2 2 2 2 2
12 21 12 21 12 21

2 2 2
12 21 12

=

8 1 1 2 1 1
,

1 1 2 1

=

8 1 1 2 1 1
,

(1 ) 1 2 1

=

8 1 1 2 1 1
,

(1 ) 1 2 1

A

b

b

A

b

b

B

b

b

B

     

  

     

  

     

  

       

   

       

   

       

   

    
     


4

2 2 2 2 2 2 2
12 21 12 21 12 21

2 2 2
21 12 21

=

8 1 1 2 1 1
,

1 1 2 1

b

b

     

  

       

   

 

        
     

2

1 1 1 1 1 1
12 21 12 12 21 21

1 1 1
12 21 12

=

4 1 2 1 1 2 1 1
,

1 1 2 1

A

b

b

     

  

      

   

 

        
     

4

1 1 1 1 1 1
12 21 12 12 21 21

1 1 1
21 12 21

=

4 1 2 1 1 2 1 1
,

1 1 2 1

A

b

b

     

  

      

   

 

        
     

        
     

1

2 2 2 2 2 2
12 21 12 12 21 21

2 2 2
12 21 12

3

2 2 2 2 2 2
12 21 12 12 21 21

2 2 2
21 12 21

=

4 1 2 1 1 2 1 1
,

1 1 2 1

=

4 1 2 1 1 2 1 1
,

1 1 2 1

B

b

b

B

b

b

     

  

     

  

      

   

      

   

 

 
 

   
      



 
  

   
     



1 1
12 21

1 1 1
21 12

2 1 1 1 1 1
12 21 12 21 12

3 1 1 1
21 12 21

2 2
12 21

2 2 2
21 12

2 2 2 2 2 2
12 21 12 21 12

4 2 2 2
21 12 21

2 1
= ,

1 2 (1 )

4 1 1 2 1
= ,

1 1 2 1

2 1
= ,

1 2 1

4 1 1 2 1
= ,

1 1 2 1

b
D

b

b
D

b

b
D

b

b
D

b

 

 

    

  

 

 

    

  

 

  

    

   

 

  

    

   

 

 
  

    
     



1 1
12 21

3 1 1
12 21

2 1 1 1 1 1
12 21 21 12 21

1 1 1 1
12 21 12

2 1
= ,

1 2 1

4 1 1 2 1
= ,

1 1 2 1

b
E

b

b
E

b

 

 

    

  

 

  

    

   

 

Copyright © 2011 SciRes.                                                                                  AM 



M. F. ELETTREBY  ET  AL. 1186
 

 

 
  

   
     




2 2
12 21

4 2 2
12 21

2 2 2 2 2 2
12 21 21 12 21

2 2 2 2
12 21 12

2 1
= ,

1 2 1

4 1 1 2 1
=

1 1 2 1

b
E

b

b
E

b

 

 

    

  

 

  

    

   
,

 

  
  

    
     

  
  

    
     

  
  

 

2 2
12 21

1 2 2
21 12

2 2 2
12 12 21

3 2 2
21 12 21

1 1
12 21

2 1 1
21 12

1 1 1
12 12 21

4 1 1
21 12 21

2 2
21 12

3 2 2
12 21

2
21 21

1

2 1
= ,

1 2 1

2 1 1
=

2

1

1 1 2 1

2 1
= ,

1 2 1

2 1 1
= ,

1 1 2 1

2 1
= ,

1 2 1

2 1
=

b
F

b

b
F

b

b
F

b

b
F

b

b
H

b

H

 

 

  

  

 

 

  

  

 

 

 

 

  

   

   

 

  

   

   

 

  

    
     

,

  
  

    
     

2 2
12

2 2 2
12 21 12

1 1
21 12

4 1 1
12 21

1 1 1
21 21 12

2 1 1 1
12 21 12

1
,

1 1 2 1

2 1
= ,

1 2 1

2 1 1
= .

1 1 2 1

b

b

b
H

b

b
H

b



  

 

 

  

  

 

   

 

  

   

   

 

The stability of this equilibrium solutions is based on 
the eigenvalues of the Jacobian matrix of the system (7), 
which is given by (10); 
where 
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The equilibrium solution will be stable if the 
eigenvalues , = 1,2,3,4i i  of the Jacobian matrix (10) 
satisfy the conditions < 1, = 1,2,3,4i i . 

The eigenvalues for the first equilibrium point  are 
given by 
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equilibrium points it is very difficult to compute these 
eigenvalues. Instead, we find the characteristic polyno- 
mial, which has the following form:  
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The coefficients of the characteristic polynomial for 
the most important one (coexistence) are as follows:  
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Then, the equilibrium solution 4  of the system (7) 

is stable under the conditions (11). This means that in the 
long run all firms are coexist. So, the market will be 
stable.  

E

 
4. Numerical Simulations 
 
In this section, we will use some numerical simulations 
to show the complicated behaviour of the model (sta- 
bility, period doubling bifurcation and chaos). Figure 1 
shows the bifurcation diagram of the prices and profits 
with respect to the adjust speed 11  while the other 
parameters are constant and have taken the values 

, , , , 
, , , , , 
, , , ,  and 

0
11 = 0.30p
1
12 = 0.2
12 = 0.13c

12 = 0.2

0
12 = 0.55p

1
21 = 0.3 2

12
21 = 0.21 c

0
21p

= 0.1 = 0
= 0.2

= 0.60
2
21

3 a

0
22 = 0.64p

4 11 = 0.1c
= 3b


c

.
= 1

1

22

 . 
This figure shows that the equilibrium point 
= 0.5212497,0.5254234,0.5638708,0.5599204p   is 

locally stable for 11 < 0.7569938 , after this value it 
became periodic and finally the system became chaotic. 
The same thing occur to the profits in figure 1B at the 

same value of 11 . 
Figure 2 shows the effect of changing the parameters 

i
lj . We get a bifurcation diagram for the prices and 

profits with respect to 1
12  with the values of the other 

parameters are the same as in Figure 1 except that 11  
became constant and takes the value 12 = 0.9  and 1

12  
became variable. 

We note that the small cooperation among the firms in 
the same team ( ) will lead to a complex 
behaviour in the system, while the increasing this 
ooperation will lead to the stability.  

1
12 < 0.3459991

c
 
5. Chaos Control 
 
As we seen in the last section, the adjustment rate ij  
and the payoff return i

lj  of the boundedly rational 
firms play an important role in the stability of the market. 
So, to avoid this complexity we will try to control the 
chaos. We will use the feedback method [18] to control 
the adjustment magnitude. Modifying the first equation 
in our system will give us the following controlled 
system;  
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Figure 1. The bifurcation diagram of the prices and the profits with respect to α11. 
 

  

Figure 2. The bifurcation diagram of the prices and the profits with respect to 1
12 . 
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where the parameter  is the control factor. The Jacobian matrix of the controlled system will be:  > 0k
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The original system is chaotic for the parameter values 
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  and 12 = 0.2 . But the controlled system is 
stable ( i < 1, = 1,2,3,4i ) for all the above parameters 
values and for . > 0.455k 9977
 

 

Figure 3. The bifurcation diagram of the prices with respect 
to the controlling factor k. 
 

 

Figure 4. The bifurcation diagram of the prices with respect 
to the controlling factor k = 0.5. 

From Figure 3, we find that the controlled system 
begin chaotic, periodic and then stable by increasing the 
control factor . k

Figure 4 shows the stability behaviour of the 
controlled system when . This means that if the 
firms in the first team adopt the feedback adjustment, the 
price system can switch from a chaotic to a regular or 
equilibrium state. 

= 0.5k
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