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Abstract 
 
Consistency and asymptotic normality of the sieve estimator and an approximate maximum likelihood esti-
mator of the drift coefficient of an interacting particles of diffusions are studied. For the sieve estimator, ob-
servations are taken on a fixed time interval [0,T] and asymptotics are studied as the number of interacting 
particles increases with the dimension of the sieve. For the approximate maximum likelihood estimator, dis-
crete observations are taken in a time interval [0,T] and asymptotics are studied as the number of interacting 
particles increases with the number of observation time points. 
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1. Introduction 
 
Finite dimensional parameter estimation in one-dimen- 
sional stochastic differential equations from continuous 
and discrete observations by maximum likelihood and 
Bayes methods are extensively studied in Bishwal [1]. 
Interacting particle systems of diffusions are important 
for modeling many complex phenomena, see Dawson [2] 
and Ligget [3]. Interacting particle systems are useful in 
constructing particle filter algorithms for finance and 
computation of credit portfolio losses, see Carmona et al. 
[4]. Grenander [5] introduced the method of sieves for 
estimating infinite dimensional parameters. Sieve esti- 
mation for linear stochastic differential equations is 
studied in Nguyen and Pham [6]. Statistics for interacting 
particle models has not received much attention. Maxi- 
mum likelihood estimation in interacting particle system 
of stochastic differential equations was studied in Ka- 
songa [7]. In this paper we study nonparametric and 
parametric estimation in interacting particle system of 
stochastic differential equations by the method of sieves 
and the approximate maximum likelihood method re- 
spectively. 

Consider the model of  interacting particles of 
diffusions satisfying the Itô stochastic differential equa- 
tions  
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  , = 1,2, ,jX t j n  are observed on  0,T . 

The functions , ; = 1, 2, ,j j j n   are assumed to 
be known such that the system has a unique solution. 

Here are some special cases: 
1) Linear case:  
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2) Simple Mean-Field Model: Here the subsystems are 
interacting and exchangeable described by the system of 
SDE’s 
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  0t  . The term containing  can be viewed as 

an interaction between the subsystems that creates a 
tendency for the subsystems to relax toward the center of 
gravity of the ensemble. Here 

 t

      = ,t t   t . The 
case  corresponds to sampling independent 
replications of the same process given below. 

  0t

3) Independent case:  

         d = d d , = 1,2,j j j j ,X t t X t t X t W t j  n
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We need the following assumption and results to 
prove the main results. 

Assumptions (A1): Suppose that 
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tinuous nonrandom functions of  0,t T . The limiting 

matrix  is positive definite,   =I t   
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 ' I t   is increasing for all pR   and .  0 = 0I
In the exchangeable case (A1) follows from McKean- 

Vlasov Law of Large Numbers. In particular, (A1) will 
be satisfied when   =jl l jX X 


 and 

  =j jX X   which corresponds to the independent 
replicated sampling on  0,T . We also need the 
following version of Rebolledo’s Central Limit Theorem 
for Martingales: 

Let ,nM n Z  be a sequence of local square 
integrable martingales with . Suppose the 
following condition holds: 
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, a continuous 
Gaussian martingale with zero mean and covariance 
function     , = , , 0,K s t

=
c s t s t T   where 

s s sM M M   denotes the jump of M at the point s. 
 
2. Sieve Estimator 
 
Let P  and 0  be the probability distributions of P
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Our aim is to estimate the function     on  0,T  
based on  interacting particles n

     1 2 , nX X X, ,    of  X t  on  0,T . The log- 
likelihood function is then 
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  2 0,L T t

 nV
,d  with finite dimension  such that 

1n
 is dense in 

dn

  2 0, ,dL T t . The method of sieve 
(see Grenander [5]) consists of maximizing  nL   on 

n . Let kV , k = 1, 2, ,  be a sequence of independent 
vectors of   ,dt2 0,L T  such that 1, , dn

   form a 
basis of  for all . Then for nV

  
n

 k k d

=1
n

k
, =nV   , we have 

 

         

    

       

         

d
2

,0
=1 =1 =1

d

,0
=1 =1 =1 =1

2
,

=1

= d

1

2

d

1
=

2



   

  

   

  





  
 
  

    
  

    
  



 

 



n

p n nT

l k k jl j j
l j k

p p n nT

l k k jl
l m j k

dn

j jm m k k
k

'n n n n n

L

t X t X t X t

t X t

X t X t t t

B A

 

where  and    ,n nB   nA  are vectors and the matrix 
with general elements  
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is the solution of  

     ˆ =n n nA B  

Since  nA  is invertible almost surely,  

      1
ˆ = .n n nA B


 

 
3. Properties of the Sieve Estimator 
 
In this section we obtain consistency and asymptotic nor- 
mality of the sieve estimator. 

We focus on the interacting and exchangeable cases 
described by the system of SDE’s  
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Proof. The method of proof is similar to Nguyen and 
Pham [6] by using assumption (A1). We omit the details. 

Theorem 3.2 (Asymptotic Normality) 
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Proof. The method of proof is similar to Nguyen and 
Pham [6] by using Rebolledo’s CLT for martingales. We 
omit the details. 

 
4. Approximate Maximum Likelihood 

Estimator 
 
In practice, one can not observe the diffusion process in 
continuous time. In this section we study parameter 
estimation based on observations at discrete time points. 
Let P  and 0  be the probability distributions of P

  , 0,tX t T  when   is the true parameter and 
= 0  respectively. It is well known that P  is 

absolutely continuous with respect to . 0P
The model is  
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  ; 0 , = 1,2, ,t j nj  are independent Wiener 

processes. Here 
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 1 2= , , , p   
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 is the unknown 
parameter. The functions , ;  = 1, ,j n l p     
are assumed to be known such that there exists a unique 
solution  X t  to the above SDE. Approximate maxi- 
mum likelihood estimation for the one dimensional case 
 = 1n  has been extensively studied, see Bishwal [1]. 
The approximate log-likelihood based on observations 
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Here we have used the approximation of the stochastic 
integral and the ordinary integral as in Bishwal [1]. 

Equating the derivative of the log-likelihood function 
to zero provides the estimating equations 
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.

and the approximate maximum likelihood estimator 
(AMLE) 
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5. Properties of the Approximate Maximum 

Likelihood Estimator 
 

In this section we obtain the consistency and asymptotic 
normality of the approximate maximum likelihood esti- 
mator. 

Theorem 5.1 (Consistency) Under (A1), we have 

 ˆ n P
N   as  and . N  n 

Proof. The method of proof is similar to Kasonga [7] 
by using assumption (A1) with the aid of discrete 
approximations of the stochastic and ordinary integrals in 
Bishwal [1]. We omit the details. 

Theorem 5.2 (Asymptotic Normality) Under (A1), 
we have 

     1ˆ 0,n D
Nn N I T N      as  and 

. n 
Proof. The method of proof is similar to Kasonga [7] 

by using Rebolledo’s central limit theorem for martin- 
gales with the aid of discrete approximations of the sto- 
chastic and ordinary integrals in Bishwal [1]. We omit 
the details. 
 
6. AML Estimation in Mean-Field Model 
 
Let us consider approximate maximum likelihood esti- 
mator (AMLE) for the simple mean-field model  
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Sampling  independent Ornstein-Uhlenbeck pro- 
cesses on 
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 0,T  and letting  and  

give weak consistency and asymptotic normality of the 
AMLE: 

n  N 

 n PˆN   and     2 2
0

2
ˆ 0,

e 1

n D
N T

n N


 


 
  
  

 

as  and n . N  

1 ,  

Remark 1: One can look at this problem in a different 
way. If one observes the first  Fourier modes in the 
expansion of the solution (the finite dimensional 
projection of the corresponding random field) of a 
parabolic stochastic partial differential equation (SPDE) 
and let the dimension of the projection  increase 

n

n
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7. References while  remains fixed, the Fourier modes are indepen- 
dent Ornstein-Uhlenbeck processes, see Bishwal [1]. 
Another important point to be noted here is the connec- 
tion between the method of sieves and the spectral 
Fourier asymptotics in SPDE. 
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