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Abstract 
 
The main purpose of this article is considering the persistence non-autonomous Lotka-Volterra system with 
predator-prey ratio-dependence and density dependence. We get the sufficient conditions of persistence of 
system, further have the necessary conditions, also the uniform persistence condition, which can be easily 
checked for the model is obtained. 
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1. Introduction 
 
Predator-prey behavior is a form of very common biologi-
cal interaction in nature. There are many mathematical 
models to model predator-prey behavior such as Lotka- 
Volterra system [1-6], Rosenzweig-MacArthur system, 
Kolmogorov system, etc. Recently, models with such a 
prey-dependent-only response function have been facing 
challenges from the biology and physiology communities. 
Some biologists [7-9] have argued that in many situations, 
especially when predators have to search for food (and 
therefore, have to share or compete for food), the func-
tional response in a predator-prey model should be preda-
tor-dependent. 

The certain environment confines for the predator to be 
density dependent. The theories on the model of the preda-
tor-prey in which the predator has density dependence are 
not perfect [10-12]. Kartina [13] shows that predator de-
pendence is important at not only very high predator densi-
ties on per captia predation rate but also at low predator 
densities. In ecology, we should consider both prey and 
predator density dependence, and need to take into account 
realistic levels of predator dependence. The qualitative 
analysis for the model will be difficult compared to the 
model with only density dependent prey [10-12]. 

In this paper, we will consider the permanence of non-
autonomous density dependent and ratio-dependent preda-
tor-prey system 

( )
( ) ( ) ,

( )

( )
( ) ( ) ,

( )

c t y
x x a t b t x

m t y x

f t x
y y d t e t y

m t y x

      
       

        (1) 

where ( )x t  and stand for the density of the prey and 
the predator at time , respectively,  

 and 

( )y t
t ( ), ( ), ( ),a t c t d t

( )e t ( )f t  are functions about time t  and stand 
for the prey intrinsic growth rate, capture rate, death rate 
of the predator, predator density dependence rate, and the 
conversion rate, respectively, ( ) ( )a t b t  gives the car-
rying capacity of the prey, and ( )f t  is the half satura-
tion function. 
 
2. Preparation 
 
In this paper, we will always assume that the parameters in 
system (1) are periodic continuous on R and with common 
period 0  . 

Denote 
0

1
: ( )df f t t




  , 

where ( )f t  is a continuous and periodic function with 

period  . 
Motivated by the biological background of system (1), 

this paper only considers positive solutions of system (1). 
We can directly integrate the two equations of system (1) 
to obtain 
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0

0

( ) ( )
( ) ( ) ( ) d

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) d

( ) ( ) ( )

( ) (0) ,

( ) (0) .

t

t

c s y s
a s b s x s s

m s y s x s

f s x s
d s e s y s s

m s y s x s

x t x e

y t y e


   

 
    












 

Hence, it is obvious that the solutions ( ), ( )x t y t  is 
positive if and only if the initial value 

(0) 0, (0) 0x y  . 

In order to describe in the following results, we need 
first to discuss system (1) in the absence of the predator, 
namely, the Riccatti equation 

 ( ) ( )x x a t b t x                (2) 

with initial value , the solution is 
given by 

0 0 0( ) ( 0)x t x x 

0

0

1
( )d ( )d

0

1
( ) ( ) d .

t t
t s

a s s at
tx t e b s e s

x
 


   

   
 

    (3) 

Clearly, the null solution  exists in equation 
(2). By the uniqueness of solutions, we can see that solu-
tions with positive initial values remain positive. 

( ) 0x t 

One can easily show that * ( ) (* )x t x  t  is a peri-
odic   solution of (2), and 

 0

1
( ) ( )* ( ) 1 ( ) .

t
sa s ds a dt

tx t e b s e ds
        

The coming lemma will play a key role in proof of the 
following important results. 

Definition 2.1. System (1) is said to be permanent if 
there exist positive constants ,   with 0     
such that 

min liminf ( ), liminf ( ) ,
t t

x t y t  
 

  

max limsup ( ), limsup ( )
t t

x t y t
 

 



 

For all solutions of (1) with positive initial values. 
System (1) is said to be nonpermanent if there is a posi-
tive solution  ( ), ( )x t y t  of (1) satisfying 

min liminf ( ), liminf ( ) 0.
t t

x t y t
 

  

Lemma 2.1 If  for all  and ( ) 0b t  t R 0b  , 
then the Equation (2) has a unique nonnegative 
 -periodic solution * ( )x t  is globally asymptotically 
stable for ( )x t

0
 with positive initial value  

. Moreover, if 0 0( ) xx t 0a  , then . *x t( ) 0
In order to prove the important theorem, firstly, we 

need to prove the following theorems. 
Theorem 2.1 If 0, 0, 0,a b e    then exist posi-

tive constants 0 , 0
x yM M  and 

0 0limsup ( ) , limsup ( ) ,x y
t t

x t M y t M
 

   

For all solution  ( ), ( )x t y t  of (1) with positive initial 

values. 
Proof. If  is solution of the following equation ( )u t

 ( ) ( )u u a t b t u   , 

and assume  0

0
max ( )x

t
M u t

 
  is fixed. From the system 

(1), we can obtain that 

 ( ) ( ) ,x x a t b t x    

by comparison theorem and Lemma 2.1, we have there is 
a constant  such that 1 0T 

0
1limsup ( ) ,x

t
x t M t T


  . 

And if  is solution of the following equation ( )v t

( ) ( ) ( )v v d t f t e t v       , 

assume  0

0
max ( )y

t
M v t

 
 . Further we have 

( ) ( ) ( )y y d t f t e t y       , 

similarly, we can obtain that there is a constant  

such that 
2 1T T

0
2limsup ( ) ,y

t
y t M t T


  . 

We complete the proof of Theorem 2.1. 
Lemma 2.2. If the condition 

0( ) 0, 0, 0,H a b e a c    m  

holds, then exist positive constants   and 

limsup ( ) ,
t

x t 


               (5) 

for all solution  ( ), ( )x t y t  of (1) with positive initial 
values. 

Theorem 2.2. If the condition 0( )H  holds, then exist 
positive constant   and 

liminf ( ) ,
t

x t 


               (6) 

for all solution  ( ), ( )x t y t  of (1) with positive initial 
values. 

Proof. If the conclusion (6) is not true, then there is a 
sequence 2{ }nz R  such that 

2
liminf ( , ) , 1,2,

2




  n
t

x t z n
n

 

by Lemma 2.2, we have 

limsup ( , ) , 1, 2,


  n
t

x t z n  

there are two time sequences ( ){ }n
qs  and satisfy-

ing the following conditions 

( ){ }n
qt

( ) ( ) ( ) ( ) ( )
1 1 2 20 n n n n n

qs t s t s        

( ) ( ) ( ), , ,n n n
q q qt s t q     
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   ( ) ( )
2

, , ,n n
q n q nx s z x t z

n n
,

 
   

 ( ) ( )
2

( , ) , ,n n
n q qx t z t s t

nn

 
   . 

By Theorem 2.1, for a given positive integer , there 
is a  such that 

n
( ) 0nT 

0( , )n xx t z M . 

Thus, for any , ( )nt T

0( )
( , ) ( , ) ( ) ( )

( )n n

c t
x t z x t z a t b t M

m t

    


x 


.    (7) 

For , there is a positive integer ( ) ,n
qs q 

( )nK  such that ( )n
q

( )ns T
( )n
q

 for all . By inte-
grating (7) from 

( )nq K
s  to  for any , we ob-

tain 

(n
qt

) ( )nq K

 

 
( )

( )

( )

( ) 0

    ,

( )
, exp ( ) ( ) d ,

( )

n
q

n
q

n
q n

tn
q n xs

x t z

c t
x s z a t b t M t

m t




 

 





 

hence, 
( )

( )
0( )

( ) ( ) d ln ,
( )

n
q

n
q

t

xs

c t
a t b t M t n

m t

 
    
 

  

for . ( )nq K
If 

0

0

( )
( ) ( ) d 0,

( ) x

c t
a t b t M t

m t

  
   

 
  

this leads to a contradiction. Otherwise  

0

0

( )
( ) ( ) d 0,

( ) x

c t
a t b t M t

m t

  
   

 
  

we have 
( ) ( )n n
q qt s  , as . ( ), nn q K 

There are constants , such that for 
, 

00, 0p N 
( )

0 , nn N q K 

( ) ( ), 2n n
x q qt s

n

    p . 

Thus, we can get as  ( )
0 , nn N q K 

( ) ( )( , ) , ,n n
n x q qx t z t s t      . 

Therefore, 

( )
( , ) ( , ) ( ) ( ) ,

( )n n

c t
x t z x t z a t b t

m t x
   
 


  

and choosing sufficiently small positive numbers 
1x   such that 

0

( )
( ) ( ) d 0

( ) x

c t
a t b t t

m t





  

 



 ,        (8) 

and by the following Equation (8), we can obtain 

   
( )

( )

( ) ( )
2

2

, ,

( )
exp ( ) ( ) ,

( )

n
q

n
q

n n
q n q n

t

xs p

x t z x s p z
n

c t
a t b t dt

m t n






  

 
   

 


 

which is a contradiction. This completes the proof of 
Theorem 2.2. 

By Lemma 2.1 and 0( )H , the following equation, 

( )
( ) ( )

( )

c t
x x a t b t x

m t

     
 

,            (9) 

has a unique positive    periodic solution 

0
( )

( ) d
( )**

1
( )

( ) d
( )

( ) 1

( ) d .
t
s

c s
a s s

m s

c
a

t m
t

x t e

b s e s



 
 

 
 

 


 

    





 
  
 
 

 
 
 
 

 

Lemma 2.3. If system (1) satisfies 0( )H  and 

**

1 **0

( ) ( )
( ) d( ) d 0

( ) ( )

f t x t
H t

m t x t

  
t   

 
 , 

where ** ( )x t  is the unique periodic solution of equation 
(9), then exist positive constants   and 

limsup ( ) ,
t

y t 


              (10) 

for all solution  ( ), ( )x t y t  of (1) with positive initial 
values. 

Theorem 2.3. If system (1) satisfies 0( )H  and 1( )H , 
then exist positive constants   and 

liminf ( ) ,
t

y t 


              (11) 

for all solution  ( ), ( )x t y t  of (1) with positive initial 

values. 
Proof. If the conclusion (11) is not true, then there is a 

sequence 2{ }mz R  such that 

2
liminf ( , ) , 1,2,

( 1)m
t

y t z m
m




 


  

but, by Lemma 2.3, 

limsup ( , ) , 1,2,m
t

y t z m


    

hence, there are two time sequences  and  ( )m
qs   ( )m

qt  
satisfying the following conditions 

( ) ( ) ( ) ( ) ( )
1 1 2 2

( ) ( ) ( )

0

, , ,

m m m m m
q

m m m
q q q

s t s t s

t s t q

      

   




 

and 

   
 

( ) ( )
2

, , , ,
1 1

m m
q m q my s z y t z

m m

 
 

 
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 
   ( ) ( )

2
, , ,

11

m m
m qy t z t s t

mm

 
  


.q  

By Theorem 2.1, for a given integer , there is a 
, such that 

0m 

)m
(1) 0mT 

0 (
1( , ) ,m yy t z M t T 

( )m

. 

Because of q , there is a positive in-
teger 

,s q 
( )mK , such that (1)

( ) ( )m
q

ms T  as . Hence,  ( )mq K

 0 ( ) ( )( , ) ( , ) ( ) ( ) , , .m m
m m y q qy t z y t z d t e t M t s t         

Integrating the above inequality from ( )m
qs  to , 

we have 

( )m
qt

     
( )

( )
( ) ( ) 0, , exp ( ) ( )

m
q

m
q

tm m
q m q m ys

d ,y t z y s z d t e t M t    

that is to say, 

 
( )

( )
0 (( ) ( ) d ln( 1), .

m
q

m
q

t m
ys

d t e t M t m q K    )



 

Thus, we obtain 
( ) ( )m m
q qt s  , as . ( ), mm q K 

By 1( )H , we can choose constant 0 0  , such that 

 **
0

0**0
0 0

( ) ( )
( ) ( ) d 0.

( ) ( )

f t x t
d t e t t

m t x t

 


 

 
   
  







 (12) 

By (12), we obtain that there are constants  
, such that for , 00, 0p N 

r p

( )
0 , mm N q K 

and , 

( ) ( )2 , 2
1

m m
x q qt s

m

     


p ,       (13) 

and 

 **
0

0**0
0 0

( ) ( )
( ) ( ) d 0.

( ) ( )

r f t x t
d t e t t

m t x t




 

 
    
  







q

  (14) 

In addition, 
( ) ( )

0

( )
0

( , ) 2 , , ,

,

m m
m q

m

y t z t s t

m N q K

       
 

 

It is easy to obtain that, 

( )
( , ) ( , ) ( ) ( ) ( , ) ,

( )m m m

c t
x t z x t z a t b t x t z

m t

   
 


  

From ** ( )x t of (12) and the comparison theorem, we 
can get 

** ( ) ( )( , ) ( ), , .m m
m qx t z x t t s t    q

p

q

 

Hence, there exists , which is dependent of 
 and q , such that 

0T 
m

** ( ) 0 ( )
0( , ) ( ) , , .m m

m qx t z x t t s T t        

Hence, 

 **
0

0**
0 0

( , ) ( , )

( ) ( )
( ) ( )

( ) ( )

: ( , ) ( )

m m

m

y t z y t z

f t x t
d t e t

m t x t

y t z g t




 

 

 
   
   



 

Integrating the above inequality from ( ) 0m
qs T  to 

 yields ( )m
qt

 
 

 

 

( )

( ) 0

( )
2

( ) 0

2

,
1

             , exp ( )d

              ,
1

m
q

m
q

m
q m

tm
q m s T

g t z
m

y s T z g t t

m









 




  

From (12). This is a contradiction. We complete proof of 
Theorem 2.3. 
 
3. The Main Conclusions 
 
From Definition 2.1 and Theorems 2.1-2.3, we can get 
the following theorem. 

Theorem 3.1. If the condition 0( )H  and 1( )H  hold, 
the system (1) will be uniform persistent. 

Lemma 3.1. If system (1) satisfies 0( )H  and 

**

2 **0

( ) ( )
( ) ( ) d 0

( ) ( )

f t x t
H d t t

m t x t

  
,    

  

where ** ( )x t
lim

 is the unique periodic solution of equation 
(9), then ( ) 0,

t
y t


  for all solution  ( ), ( )x t y t  of 

(1) with positive initial values. 
Proof By 2( )H , for any given 0 1  , there exists 

1 1(0 )     and 0 0  , such that 

**
1

**0
1

0

( )( ( ) )
( ) ( ) d

( ) ( ( ) )

.
2

f t x t
d t e t t

m t x t

e

 


 
 

 
   

  

   


     (15) 

From (1), easily get 

( ( ) ( ) )x x a t b t x   ， 

hence, for given 1 , there exists , have 1 0T 
**

1( ) ( ) , 1x t x t t T   .          (16) 

Together with (15), we have 

0 10

( ) ( )
( ) ( ) d , .

( ) ( )

f t x t
d t e t t t T

m t x t


 


 
     

   (17) 
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1There will exists , and 2T T 2( )y T  . Otherwise,  
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it implies 0  , which is a contradiction. In the follow-
ing we will prove 
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Otherwise, there exists , such that 3T T 2

( )
3( ) .Dy T e    

By the continuity of , there must exist  
 such that 4
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that 3 4
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which is a contradiction. That is to say, ( )( ) ,Dy t e    
by the arbitrariness of  , we derive li

t
m ( ) 0,y t


  this 
completes the proof of Lemma 3.1. 

From Theorem 3.1 and Lemma 3.1, we can easily get 
the following theorem. 

Theorem 3.2. Supposed that the condition 0( )H  
holds, then the system (1) is uniform persistent if and 
only if 1( )H  is true. 
Example 3.1. In system (1), let  

( ) 3, ( ) 2 cos , ( ) 2,a t b t t c t     

1 1 1
( ) sin , ( ) 1 sin ,

10 20 2
d t t e t t     

( ) 1, ( ) 2 and 2πf t m t     

then Equation (1) becomes 

  2
3 2 cos ,

2

1 1 1
   sin 1 sin

10 20 2 2

y
x x t x y

y x

x
y t t y

y x

       
           

  (18) 

By simple computation, we have 

0, 0, 0, 0.a b e a c m      

From (4), we can obtain solution of equation 

 3 2 cosx x t    x    

is 
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2 1
1 cos sin

5 5
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
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Hence, 
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2π
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m t x t

 
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That is to say, system (18) is uniform persistent by 
Theorem 3.1. 
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