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Abstract 
Segal’s chronometric theory is based on a space-time D, which might be viewed as a 
Lie group with a causal structure defined by an invariant Lorentzian form on the Lie 
algebra u(2). Similarly, the space-time F is realized as the Lie group with a causal 
structure defined by an invariant Lorentzian form on u(1,1). Two Lie groups G, GF 
are introduced as representations of SU(2,2): they are related via conjugation by a 
certain matrix Win Gl(4). The linear-fractional action of G on D is well-known to be 
global, conformal, and it plays a crucial role in the analysis on space-time bundles 
carried out by Paneitz and Segal in the 1980’s. This analysis was based on the paralle-
lizing group U(2). In the paper, singularities’ general (“geometric”) description of the 
linear-fractional conformal GF-action on F is given and specific examples are pre-
sented. The results call for the analysis of space-time bundles based on U(1,1) as the 
parallelizing group. Certain key stages of such an analysis are suggested. 
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1. Introduction 

The Lie groups U(2) and U(1,1) are the two main objects to be dealt with in this paper. 
Introduce U(2) as the totality of all two by two matrices Z (complex entries allowed) 
which satisfy 

*ZZ = 1 . 

Here 1 is the unit matrix. 
Similarly, U(1,1) is the totality of all two by two matrices U which satisfy 

*U U =s s . 
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Here s is the diagonal matrix with entries 1, −1.  
Often, these two Lie groups (especially when they carry bi-invariant metric of Lo-

rentzian signature—see [1]) are denoted D = U(2) and F = U(1,1). Recall that Segal’s 
chronometric theory (see [2]) is based on space-time D. The DLF-theory is based on 
the D, L and F triad. Hence, it can be viewed as a generalization of Segal’s theory (the 
main tenets of the DLF-theory are given in [1]). 

Recall that the notion of a parallelization (of a space-time bundle—see [2], Section 
IV), for the definitions and for existence theorems) is an important mathematical tool 
in modern theoretical physics, in general, and in the chronometric approach, in partic-
ular. It is even more important in the DLF-picture. Let us remind a few quantum- me-
chanical features, first. 

According to quantum mechanics, each object is assigned its state (or wave function 
but this latter notion we better reserve for a more specialized situation, namely, after a 
parallelization has been applied). An elementary particle (it “lives” in a certain world W 
of events) is described by the set of its possible states. The latter set is a certain subspace 
of the section space (sections can later be specified as smooth, or square-integrable, 
etc.—this is not the main concern here) of a certain vector bundle over W. At this 
point, states are not, yet, number-valued (for a scalar particle) or Ck-valued (k > 1, for 
particles of non-zero spin). One way or the other, we then need to convert to paralle-
lized sections (to wave functions, in other words). 

The respective Hilbert space can then be determined. It has become an acknowledged 
way of modern theoretical physics to describe elementary particles and their interac-
tions in terms of induced representations of the (respective) symmetry group. As it is 
put in [3], “the main philosophical point of these developments is perhaps the impor-
tance of induced representations, not purely as representations, but as actions on the 
homogeneous vector bundles that naturally emerge from the induction process. This 
additional structure provides a spatio-temporal labeling of the vectors in the group re-
presentation space that is absolutely essential for the formation of local nonlinear inte-
ractions, and relatedly, for causality considerations”.  

Conventional quantum mechanics uses representations of the Poincare group, which 
are induced from its Lorentz subgroup as in Wigner’s seminal work, [4]. The underly-
ing space-time is the Minkowski world M (the one of Special Relativity). There was no 
formal parallelization involved since it was unthinkable of a better group than M’s vec-
tor group (flat parallelization, or M-parallelization, according to the current chrono-
metric terminology). Almost always in literature, physicists merely start with sections 
having values in a fixed spin space. 

In general, the parallelization procedure is essentially defined by choice of the paral-
lelizing (four-dimensional but not necessarily commutative) subgroup N of the group 
G. Here G is the symmetry group of the space-time W (in our studies, G is the (con-
formal) group SU(2,2), see below). Typically N is a finite cover of the original space- 
time W. In Segal’s (with co-authors) publications the mostly used parallelizations were 
the M-, and the D-ones. Onp.170 of the monograph [5] the role of a parallelization is 
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discussed from the quantum field theory point of view.  
In [1] it was suggested to consider other (rather than D and M) parallelizing groups. 

Here is an important finding of [6]. It is formulated in terms of the commutative D-F 
diagram: despite of the singularities, both the F-parallelization and its (canonical) 
comparison to the D-parallelization are possible. Тhe comparison of parallelizations 
has been introduced in [2], Section 4.2, as well as certain examples have been discussed 
there. The thing is that an action of a subgroup (of one or of another) in G can be rea-
lized in a simple or in a complicated way—which depends on the choice of the paralle-
lization.  

The Lie groups G, GF are introduced as two equivalent representations of SU(2,2). 
Namely, G is composed of those 4 by 4 matrices g (with unit determinant), which satis-
fy 

*g Sg S= ,                            (1.1) 

where 

{ }diag 1,1, 1, 1S = − − , 

a diagonal matrix. 
Introduce the 4 by 4 matrix W, 

P
W

P Q
Q


=


 
 

,                          (1.2) 

which is formed by the 2 by 2 blocks 

1 0
0 0

P 
=


 
 

, 
0 0
0 1

Q  
=  
 

. 

It is clear that 
2 2 2det 1,  1,  ,  ,  0.W W P P Q Q PQ QP= − = = = = =            (1.3) 

Under the conjugation of the matrix S by W we get  

{ }diag 1, 1, 1,1S −= − , 

which determines another copy (denote it by GF) of SU(2,2). Namely, GF is composed 
of those 4 by 4 matrices g  (with unit determinant) which satisfy 

g Sg S∗ = 

  .                           (1.4) 

The correspondence  

Wg Wg=                             (1.5) 

is an isomorphism between Lie groups G, GF. 
Each element g of G can be viewed as a 4 by 4 matrix determined via 2 by 2 blocks A, 

B, C, D: 

A B
g

C D
 

=  
 

                    .     (1.6) 

Similarly, each element g  of GF is composed of the 2 by 2 matrices A , B , C , 
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D . 
The linear-fractional action  

( ) ( )( ) 1g Z AZ B CZ D −= + +                     (1.7) 

of G is known ([Se-1976, p.35]) to be defined on the entire D = U(2). The linear- frac-
tional (locally-defined) action  

( ) ( )( ) 1
U AU B CU Dg

−
= + +  



                     (1.8) 

of GF on F = U(1,1) has been introduced in [1].  
Given any two by two matrix M, let W(M) stand for ( )( ) 1PM Q QM P −+ + , when 

this is defined. Define the embedding of F into D by 

( ) ( )( ) 1Z W U PU Q QU P −= = + + ,                 (1.9) 

which is defined for every U in F. The mapping W is conformal but it is not used in this 
paper. Formula (1.9) is a special case (see [7]) of the Sviderskiy formula and it is easy to 
verify that the inverse map  

( ) ( )( ) 1U W Z PZ Q QZ P −= = + +                  (1.10) 

is defined if and only if Z is outside of the torus T where T consists of all matrices K in 
D = U(2) of the form 

0
0

K
p

q


=


 
 

                          (1.11) 

with p, q being arbitrary complex numbers of length one. 
The following fundamental statement has been proven in [6]: 
Theorem 1 (D-F commutative diagram). If ( )g U  is defined, then  

( )( ) ( )( ).WU Ug W g=                       (1.12) 

Remark 1. In [6], it has not been explored when (that is, for which U in F) the right 
side of (1.12) was defined. Clearly (see (1.8) above), it is defined if and only if the de-
terminant of CU D+   is not zero. However, such a condition turns out to be more dif-
ficult to verify than the one below (in Theorem 2).  

One of the main goals of the current article is to prove the following 
Theorem 2. Let g  be in GF and let U be in F. The image ( )g U  is defined if and 

only if ( )( )g W U  is not on the torus T.  
Having in mind certain earlier findings (see [1] [2] [7]), our Theorems 1, 2, and 3 

prove that the new analysis of space-time bundles (based on U(1,1) as the parallelizing 
group) is mathematically possible. It is of great interest to carry out such an analysis 
and to compare its conclusions to the ones done on the basis of U(2). Similarly to [2], 
Section5, such an analysis should start with considering of scalar bundles. The isometry 
group K (with the Lie algebra R + su(2) + su(2)) of the world D will be replaced by the 
isometry group KF (with the Lie algebra R + su(1,1) + su(1,1)) of the world F. When 
arranging for the basis in the space of the scalar representation, instead of the “left” and 
the “right” Lie algebras su(2) (see [2], Section 5.4) the “left” and the “right” Lie algebras 
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su(1.1) are to be chosen. There presentations are over the field of complex numbers. 
That allows to compare the two “pictures”: the “compact” one—based on U(2), and the 
“non-compact” one—based on U(1,1).Here one has to bear in mind the famous ‘unita-
ry trick’. Actually, the necessity to consider the F-parallelization is guaranteed by the 
following fact alone: in an infinite list of all real 4-dimensional Lie algebras only u(2) 
and u(1,1) turn out to be the reductive ones. 

The above indicated problematic is of great interest both for mathematics (cova-
riance of wave equations, invariant forms in spaces of induced representations, classes 
of special functions, etc.) as well as for physics. Namely, in [8], pp. 88-89, it is suggested 
to identify the invariant subspace of the so-called spannor [9] representation with the 
totality of proton states (which would have explained the proton’s stability).  

2. Proof of Theorem 2 

Notice that the matrix g(Z) is on the torus T if and only if 

( )AZ B K CZ D+ = + ,                      (2.1) 

where a matrix K is of the form (1.11). 
For any of the 2 by 2 matrices involved, denote their corresponding entries as fol-

lows: 

1 2

3 4

A
 

=  
 

 
 

, 1 2

3 4

B
 

=  
 

 
 

 etc.                 (2.2) 

Then the above (2.1) reads as the equality  

L N=                              (2.3) 

of these two matrices with entries 

1 1 1 2 3 1L A Z A Z B= + + , ( )1 3 1 4 3 3N p C Z C Z D= + + ,  

2 1 2 2 4 2L A Z A Z B= + + , ( )2 3 2 4 4 4N C Z C Z D= + + , 

3 3 1 4 3 3L A Z A Z B= + + , ( )3 1 1 2 3 1N q C Z C Z D= + + ,  

4 3 2 4 4 4L A Z A Z B= + + , ( )4 1 2 2 4 2N q C Z C Z D= + + . 

In accordance with (2.2), the entries of L in (2.3) are L1, L2, L3, L4; they are expressed 
in terms of the entries of matrices A, Z, B in accordance with (2.2) and with the left side 
of (2.1). The entries of N in (2.3) are N1, N2, N3, N4; they are expressed in terms of the 
entries of matrices K, C, Z, and D in accordance with the right side of (2.1). 

In what follows, it is assumed that (1.5) and (1.9) from Section 1 hold. To adequately 
understand the ongoing notation, the reader is referred to (1.8) from above. Let us start 
with 

Lemma. CU D+   is singular if and only if AU B+   is singular. Either singularity 
takes place if and only if (2.3) holds—that is, if ( )( )g W U  is on the torus T. 

Proof. Let CU D+   be singular. This is equivalent to the singularity of the matrix 

( ) ( )V C PZ Q D QZ P= + + +  ,                   (2.4) 
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where ( )Z W U= . The matrix V has the following entries: 

1 1 1 2 3 1V C Z C Z D= + + , 2 1 2 2 4 2V C Z C Z D= + + ,  

3 3 1 4 3 3V A Z A Z B= + + , 4 3 2 4 4 4V A Z A Z B= + + . 

The singularity of V (expressed as proportionality of its rows) is equivalent to the ex-
istence of a certain (not necessarily real) number q to satisfy the equality of the second 
rows in (2.3): 

( )3 3 1 4 3 3 3 1 1 2 3 1L A Z A Z B N q C Z C Z D= + + = = + + , and 4 3 2 4 4 4L A Z A Z B= + +   
( )4 1 2 2 4 2N q C Z C Z D= + + . 

In other words, the matrix g(Z) is as follows: 

( ) .
0

g Z
v w
q
 
 
 

=                          (2.5) 

Since the matrix (2.5) has to be an element of U(2), v = 0 holds. It means that 
( ) ( )( )g Z g W U=  is on the torus T and that (2.1) and (2.3) hold. Now, the equality of 

the first rows in (2.3) is equivalent to the singularity of the matrix  

M AU B= +  .                          (2.6) 

This last matrix has entries 

1 1 1 2 3 1M A Z A Z B= + + , 2 1 2 2 4 2M A Z A Z B= + + ,  

3 3 1 4 3 3M C Z C Z D= + + , 4 3 2 4 4 4M C Z C Z D= + + . 

Similarly, the singularity of the matrix (2.6) is equivalent to the existence of a certain 
(not necessarily real) number p to satisfy the equality of the first rows in (2.3). Again, 
g(Z) has to be on the torus T, and the entire (2.3) has to hold. Equality of the second 
rows in (2.3) forces the matrix CU D+   to be singular. Lemma is proven.  

Let us now proceed with 
Theorem 2. Let g  be in GF and let U be in F. The image ( )g U  is defined if and 

only if ( )( )g W U  is not on the torus T.  
Proof. Let ( )g U  exists. Then according to [6], Theorem 1,  

( )( ) ( )( )g W U W g U=  .                      (2.7) 

This implies ( )( )g W U  being off the torus T, since (as it has been mentioned in 
Section 1) W is one-to-one between F and D\T.  

If ( )( )g W U  is not on the torus T, then according to Lemma, CU D+   is non- 
singular (which means that ( )g U  is defined). Theorem 2 is proven. 

Remark 2. Several examples of transformations g  are presented below. It turns out 
that the “ ( )( )g W U  is on/off the torus T” condition is easier to verify than to deter-
mine whether the ( )det CU D+   is zero or not.  

3. Explicit Description of Singularities of a Transformation g  

For a given g , let us denote by ( )Sing g  the totality of all matrices U in F = U(1,1) 
where g  is undefined. Let g, g  satisfy (1.5). 

If a matrix K is the image of Z under g, then the equality  
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( )AZ B K CZ D+ = +                          (3.1) 

holds. Clearly, (3.1) is equivalent to  

( )A KC Z KD B− = − .                      (3.2) 

Additionally, let a matrix K be of the form (1.11). Since g is a bijection of D, the ma-
trix A KC−  is non-degenerate. Hence 

( ) ( )1Z A KC KD B−= − − .                     (3.3) 

For a matrix U in ( )Sing g , the matrix ( )( )K g W U=  is of the form (1.11). Hence, 
the set of all matrices Z (which satisfy (3.3)) is defined by the ranges of parameters p, q 
in (1.11). Now, exclude those matrices Z which have zeros as (both) entries on the main 
diagonal and denote the remaining set by Y. In other words, exclude those matrices Z 
which belong to the torus T. We have thus proven the following 

Theorem 3. (Description of singularities of g ).The set ( )Sing g  is the image of the 
above set Y under the map (1.10): 

( ) ( )Sing Wg = Y .                        (3.4) 

Let us continue to discuss (including examples—see below) the set (3.4) properties 
(in other words, to discuss a domain of a transformation g ). On the basis of (3.4), the 
next statement holds true. 

Corollary 1. ( )Sing g  is diffeomorphic to a subset of a (two-dimensional) torus. 
As the first example, consider the following one-parameter subgroup in G: each g is 

determined by blocks 

0 0
,

0 0
A D B

s
c s

C
c −

=
   
   −  

= =


= .                 (3.5) 

Here c = ch(t/2), s = sh(t/2)—hyperbolic cosine and sine of a real parameter t. As-
sume that t is not zero (that is, g is not an identical map). Interestingly, the matrix g  
is the same asg. It is an important example (see [2], p. 85) since the isometry sub-algebra 
and the infinitesimal generator of the subgroup (3.5) generate the entire (15-dimensional) 
Lie algebra su(2,2). This holds both for the D-case, as well as for the F-case. Recall that 
each of the isometry groups is determined by the totality of all block-diagonal matrices: 
(1.6) for D, and its analogue for F. In [1], Theorem 9, it was proven that these isome-
tries of F act without singularities on it. 

Proposition 1. Each matrix Z in (3.3) is of the form 

( ) ( ) ( ) ( )2 2 2 2 2 2
1 4 2 31 , , .Z Z sc pq c pqs Z p c pqs Z q c pqs= = − − = − = −    (3.6) 

The proof reduces to a (3.5)-based direct computation. Notice that for any (admissi-
ble in these circumstances) choice of parameters p, q, t, the expression ( 2 2c pqs− ) in 
(3.6) is never zero.  

Hence, the following statement holds.  
Corollary 2. The set of all singular points of a transformation (3.5) is W-diffeomor- 

phic to a set which is a (two-dimensional) torus with acircle cut off it: this circle is de-
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termined by the equation pq = 1 in (3.6). 
Recall [1], Section 6, where it has been shown that transformations (3.5) are singular 

in F. The example from there corresponds to a choice pq = −1 in (3.6). 
Corollary 3. ( )Sing g  is contained in the subgroup SU(1,1) of the group F = U(1,1). 
Proof. Applying Theorem 3, compute W(Z), where Z is an element of the set Y. One 

gets W(Z) as the product RS where 

1 1 0
, ,

0 1
a b

u a
R S −   

   
   

= =                      (3.7) 

1 4a Z Z= = , 2b Z= , 3u Z= . From (3.7) it follows that the determinant of the ma-
trix W(Z) equals 1. Corollary 3 is thus proven. 

As the second example, consider a two-parameter group А in G which is an (Ab-
elian) subgroupА from the Iwasawa decomposition G = КAN. An arbitrary element 
min А is of the form  

,m gf=                              (3.8) 

where the blocks (1.6) of the matrix g are as follows:  

1 0
0 c

A 
=


 
 

, 
0 0

0
B

s


=


 
 

, 
0
0 0

C
s

=


 
 

, 
0

0 1
D

c
=


 
 

.          (3.9) 

Here c = cht1, s = sht1, hyperbolic cosine and sine of a real parameter t1. The blocks 
(1.6) of the matrix f are as follows:  

0
0 1

A
c

=


 
 

, 
0
0 0

B
s

=


 
 

, 
0 0

0
C

s


=


 
 

, 
1 0
0 c

D 
=


 
 

.         (3.10) 

Here c = cht2, s = sht2, hyperbolic cosine and sine of a real parameter t2. 
The following statement can be proven by a direct computation: 
Proposition 2. For an arbitrary element m of the form (3.8), the matrix Z in (3.3) 

belongs to the torus T, given by (1.11). Namely, 

( )( ) ( )( )1 1
1 4 2 2 2 2 2 3 1 1 1 10, , ,Z Z Z pc s c ps Z qc s c qs− −= = = − − = − −     (3.11) 

where c1 = cht1, s1 = sht1, с2 = cht2, s2 = sht2. Notice that none of the denominators in 
(3.11) vanishes since 1p q= = . 

In other words, restriction onto T of a transformation (3.8) is a bijection of T. The 
mapping W is inapplicable to matrices (3.11).That is why (according to Theorem 3) the 
set ( )Sing m  is an empty one. We have thus proven 

Corollary 4. Each transformation m WmW=  is everywhere defined on U(1,1). 
Remark 3. Corollary 4 can be proven on the basis of Theorem 2: in this case each 

transformation m of the form (3.8) is a bijection of the set D\T onto itself. In other 
words, none of the matrices ( )( )m W U  is an element of the torus T. 

Remark 4. Corollary 4 is coherent to the matrix m  being a block-diagonal one 
(compare to [1], Theorem 9). 
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4. Conclusion 

The action (1.8) of GF on F = U(1,1) has been introduced in [1] where it has been 
detected that this action has singularities. In [6] the fundamental relationship (1.12) 
between the action of G on D = U(2) and of GF on F has been determined. However, in 
[6], it has not been explored when (that is, for which U in F) the right side of (1.12) was 
defined. Our Theorem 2 provides these singularities’ general (“geometric”) description. 
Theorem 3 and examples (in Section 3) indicate that the description is quite a working 
one. In particular, it is now guaranteed that the new analysis of space-time bundles 
(based on U(1,1) as the parallelizing group) is mathematically possible. 

References 
[1] Levichev, A.V. (2011) Pseudo-Hermitian Realization of the Minkowski World through DLF 

Theory. Physica Scripta, 83, 1-9.  
http://iopscience.iop.org/article/10.1088/0031-8949/83/01/015101 
http://dx.doi.org/10.1088/0031-8949/83/01/015101 

[2] Paneitz, S.M. and Segal, I.E. (1982) Analysis in Space-Time Bundles I: General Considera-
tions and the Scalar Bundle. Journal of Functional Analysis, 47, 78-142.  
http://www.sciencedirect.com/science/article/pii/002212368290101X 
http://dx.doi.org/10.1016/0022-1236(82)90101-X 

[3] Segal, I.E. (1982) Covariant Chronogeometry and Extreme Distances. III. Macro-Micro Re-
lations. International Journal of Theoretical Physics, 21, 851-869.  
http://dx.doi.org/10.1007/BF01856877 

[4] Wigner, E.P. (1939) On Unitary Representations of the Inhomogeneous Lorentz Group. 
Annals of Mathematics, 40, 149-204. http://dx.doi.org/10.2307/1968551 

[5] Baez, J.C., Segal, I.E. and Zhou, Z. (1992) Introduction to Algebraic and Constructive 
Quantum Field Theory. Princeton University Press, Princeton. 

[6] Kon, M. and Levichev, A. (2016) Towards Analysis in Space-Time Bundles Based on Pseudo- 
Hermitian Realization of the Minkowski Space. Journal of Functional Analysis, submitted. 

[7] Levichev, A.V. and Feng, J. (2013) More on the Mathematics of the DLF Theory: Embed-
ding of the Oscillator World L into Segal’s Compact Cosmos D. AJUR, 11, 29-33. 

[8] Levichev, A.V. (2010) Segal’s Chronometry: Emergence of the Theory and Its Application 
to Physics of and Interactions. In: Lavrentiev, M.M. and Samoilov, V.N., Eds., The Search 
for Mathematical Laws of the Universe: Physical Ideas, Approaches and Concepts, Aca-
demic Publishing House, Novosibirsk, 69-99. 

[9] Segal, I.E. (1991) Is the Cygnet the Quintessential Baryon? Proceedings of the National 
Academy of Sciences of the United States of America, 88, 994-998.  
http://dx.doi.org/10.1073/pnas.88.3.994 

 

http://iopscience.iop.org/article/10.1088/0031-8949/83/01/015101
http://dx.doi.org/10.1088/0031-8949/83/01/015101
http://www.sciencedirect.com/science/article/pii/002212368290101X
http://dx.doi.org/10.1016/0022-1236(82)90101-X
http://dx.doi.org/10.1007/BF01856877
http://dx.doi.org/10.2307/1968551
http://dx.doi.org/10.1073/pnas.88.3.994


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org            

http://papersubmission.scirp.org/
mailto:jmp@scirp.org

	A Contribution to the DLF-Theory: On Singularities of the SU(2,2)-Action in U(1,1)
	Abstract
	Keywords
	1. Introduction
	2. Proof of Theorem 2
	3. Explicit Description of Singularities of a Transformation 
	4. Conclusion
	References

