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Abstract 
 
The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the 
speeds of plane waves. The appropriate solutions satisfy the required boundary conditions at the stress-free 
surface to obtain the expressions of the reflection coefficients of reflected quasi-P (qP) and quasi-SV (qSV) 
waves in closed form for the incidence of qP and qSV waves. A particular model is chosen for numerical 
computation of these reflection coefficients for a certain range of the angle of incidence. The numerical val-
ues of these reflection coefficients are shown graphically against the angle of incidence for different values 
of initial stress parameter. The impact of initial stress parameter on the reflection coefficients is observed 
significantly. 
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1. Introduction 
 
We can not know the Earth completely by assuming 
mere an elastic body. If we consider various additional 
parameters, e.g. porosity, initial stress, viscosity, dissipa-
tion, temperature, voids, diffusion, etc., then we can un-
derstand better the interior of the Earth. Initial stresses in 
a medium are caused by various reasons such as creep, 
gravity, external forces, difference in temperatures, etc. 
The reflection of plane waves at free surface, interface 
and layers is important in estimating the correct arrival 
times of plane waves from the source. Various research-
ers studied the reflection and transmission problems at 
free surface, interfaces and in layered media [1-12]. The 
study of reflection of plane waves in the presence of ini-
tial stresses as well as dissipation is interesting. With the 
help of Biot [13] theory of incremental deformation, 
Selim [14] studied the reflection of plane waves at a free 
surface of an initially stressed dissipative medium. In the 
present paper, we studied the problem on reflection of 
plane waves at a stress-free surface of an initially stress-
ed transversely isotropic solid half-space with dissipation. 
The reflection coefficients of reflected waves are com-

puted numerically to observe the effect of initial stress. 
 
2
 

. Formulation of the Problem and Solution 

Following Biot [13], the basic dynamical equations of 
motion in x-z plane for an infinite, initially stressed me-
dium, in the absence of external body forces are,  
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where  is the density, 
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component, sij (i, j = 1, 3) are incremental stress compo- 
nents, u and w arethe displacement components.  

Following Biot [13], the stress-strainrelations are 
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where Cij are the incremental elastic coefficients. 
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For dissipative medium, elastic coefficients are re-
placed by the complex constants: 
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where, i 1  ,  
 are real. Following Fung [15], the stress and strain 

components in dissipative medium are, 
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where (i, j = 1, 3) and   being the angular frequency. 
With the help of Equations (3) and (4), the Equation (2) 

becomes, 
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With the help of Equation (5), the Equation (1) be-
comes,  
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The displacement vector  is 
given by, 
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where (n) assigns an arbitrary direction of propagation of 
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Making use of Equation (9) into the Equations (6) and 
(7
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), we obtain a system of two homogeneous equations, 
which as non-trivial solution if  
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co si-P (qP) waves and quasi-SV (qSV) rrespond to qua
waves respectively. 

The above two roots give the square of velocities of 
propagation as well as damping. Real parts of the right 
hand sides correspond to phase velocities and the respec-
tive imginary parts correspond to damping velocities of 
qP and qSV waves, respectively. It is observed that both 

2
1c  and 2

2c  depend on initial stresses, damping and 
ction propagation ndire of  . In the absence of initial 

stresses and damping, the ve analysis corresponds to 
the case of transversely isotropic elastic solid. 
 
. Reflection of Plane Waves from Fr

abo

3 ee 

e an initially stressed dissipative half-space 

Surface 
 

 consider W
occupying the region z > 0 (Figure 1). In this section, we 
shall drive the closed form expressions for the reflection 
coefficients for incident qP or qSV waves. 

The displacement components of incident and re-
flected waves are as,  
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where, 
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Figure 1. Geometry of the problem. 
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The Equations (11) to (16) will satisfy the boundary 
conditions (18), if the following Snell, s law holds 
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1) For incident qP wave (A2 = 0), 
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For isotropic case, C11 =  + 2 + P, C13= P = –S11, 
then, the above theoretical derivations reduce to Selim 
[14]. 

 
4. Numerical Example 
 
For numerical purpose, a particular example of the mate-
rial is chosen with the following physical constants,  
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e incident qP and qSV waves. The numerical values of 
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dence of qP wave as shown by solid line in Figure 2. 
The variations of reflection coefficients of qP wave fo

s 
ve

n in Figure 2. 
For incident qSV wave, the reflection coefficient of 

reflected qP wave first increases to its maximum value 
and then decreases to its minimum value at angle e2 = 
45˚ when P = 0. Thereafter, it oscillates as shown by 
solid line in Figure 3. The variations of reflection coef-
ficients of qP wave for P = 1 and P = 2 are similar to that 
for P = 0. The comparison of solid line, solid line with 
asters and solid line with triangles shows the significant 
effect of initial stress on reflected qP wave for incident 
qSV wave. Similarly, reflected qSV is also affected sig-
nificantly due to the presence of initial stress as shown in 
Figure 3. 

 

 

Figure 2. Variation of the reflection coefficients of qP an  
qSV waves against the angle of incidence for incidence of 
qP wave. 
 
5. Conclusions 
 
The reflection from the stress-free surface of a trans-
versely isotropic dissipative medium is considered. The 
expressions for the reflection coefficients of reflected qP 
and qSV waves are obtained in closed form for the inci-
dence of qP and qSV waves. For a particular material, 
these coefficients are computed and depicted graphically 
against the angle of incidence for different values of ini-
tial stress parameter. From the figures, it observed that 1) 
the initial stresses affect significantly the reflection coef-
ficients of all reflected waves. 2) For incident qP wave, 
the critical angle for reflected qSV wave is observed at e1 

= 45˚ and for incident qSV wave, the critical angle f

 

d

or 
reflected qP wave is observed also at e2 = 45˚. 3) The 
effect of initial stresses on the reflection coefficients is 
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Figure 3. Variation of the reflection coefficients of qP and 
qSV waves against the angle of incidence for incidence of
qSV wave. 
 
minimum at e1 = 45˚ for incidence qP wave and at e2 = 
45˚ for incidence qSV wave. 
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