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Abstract 
 
Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are 
increasingly used in modeling practical super diffusive problems in fluid flow, finance and others areas of 
application. This paper presents the analytical solutions of the space fractional diffusion equations by varia-
tional iteration method (VIM). By using initial conditions, the explicit solutions of the equations have been 
presented in the closed form. Two examples, the first one is one-dimensional and the second one is 
two-dimensional fractional diffusion equation, are presented to show the application of the present tech-
niques. The present method performs extremely well in terms of efficiency and simplicity. 
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1. Introduction 
 
Fractional diffusion equations are used to model prob-
lems in Physics [1-3], Finance [4-7], and Hydrology 
[8-12]. Fractional space derivatives may be used to for-
mulate anomalous dispersion models, where a particle 
plume spreads at a rate that is different than the classical 
Brownian motion model. When a fractional derivative of 
order 1 <   < 2 replaces the second derivative in a 
diffusion or dispersion model, it leads to a super diffu-
sive flow model. Nowadays, fractional diffusion equa-
tion plays important roles in modeling anomalous diffu-
sion and subdiffusion systems, description of fractional 
random walk, unification of diffusion and wave propaga-
tion phenomenon, see, e.g. the reviews in [1-16], and 
references therein. Consider a one-dimensional fractional 
diffusion equation considered in [17] 
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Consider a two-dimensional fractional diffusion equa-

tion considered in [18] 
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on a finite rectangular domain L Hx x x   and  

L Ry y y  , with fractional orders 1 <  2  and 
1 <  2  , where the diffusion coefficients  ,  0d x y   
and  e x y,  0 . The “forcing” function  t,  ,  q x y  
can be used to represent sources and sinks. We will as-
sume that this fractional diffusion equation has a unique 
and sufficiently smooth solution under the following 
initial and boundary conditions. Assume the initial con-
dition u(x, y, t = 0) = f(x, y) for L Hx x x   and 

L Ry y y  , and Dirichlet boundary condition  
   ,  ,  y t,  ,  u x y t  B x  on the boundary (perimeter) of 

the rectangular region L Hx x x  , L Ry 
( , , )L LB x y t 

y y
( , , )B x y t

, with 
the additional restriction that . 
In physical applications, this means that the left/lower 
boundary is set far away enough from an evolving plume 
that no significant concentrations reach that boundary. 
The classical dispersion equation in two-dimensions is 
given by 

0

2   . The values of 1 <  2   and 
1 <  2   model a super diffusive process in that coor-
dinate. Equation (2) also uses Riemann fractional deriva-
tives of order   and  . In this paper, we use the varia-
tional iteration method (VIM) to obtain the solutions of 
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the fractional diffusion Equations (1) and (2). The varia-
tional iteration method (VIM) established in (1999) by 
He in [19-22] is thoroughly used by many researchers to 
handle linear and nonlinear models. The reliability of the 
method and the reduction in the size of computational 
domain gave this method a wider applicability. The 
method has been proved by many authors [23-26], and 
the references therein, to be reliable and efficient for a 
wide variety of scientific applications, linear and nonlin-
ear as well. The method gives rapidly convergent suc-
cessive approximations of the exact solution if such a 
solution exists. For concrete problems, a few numbers of 
approximations can be used for numerical purposes with 
high degree of accuracy. The VIM does not require spe-
cific transformations or nonlinear terms as required by 
some existing techniques. However, we use the VIM to 
solve fractional diffusion Equations (1) and (2) and fi-
nally the results are illustrated in graphical figures. 
 
2. Mathematical Aspects 
 
The mathematical definition of fractional calculus has 
been the subject of several different approaches [27,28]. 
The most frequently encountered definition of an integral 
of fractional order is the Riemann-Liouville integral, in 
which the fractional order integral is defined as 
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while the definition of fractional order derivative is 
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where  (  and ) is the order of the opera-
tion and n is an integer that satisfies . 

q 0q  q R
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3. Basic Idea of He’s Variational Iteration 

Method  
 
To clarify the basic ideas of VIM, we consider the fol-
lowing differential equation: 

 Lu Nu g t                 (5) 

where  is a linear operator,  a nonlinear operator 
and 

L
 

N
g t  an inhomogeneous term. According to VIM, 

we can write down a correction functional as follows: 
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d

t
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where   is a general Lagrangian multiplier which can 
be identified optimally via the variational theory. The 
subscript  indicates the n th approximation and  
is considered as a restricted variation 

n nu
0nu  .  

4. The Fractional Diffusion Equation Model 
and Its Solution by VIM 

 
Now we adopt variational iteration method for solving 
Equation (1). In the light of this method we assume that 
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where ( )x  indicates a differential with respect to x 
and dot denotes a differential with respect to t,   is 
general Lagrangian multiplier.Similarly, for Equation (2) 
using variational iteration method, we can obtain 

   

 
1

( ) ( )

0
( , ) ( , ) ( , , ) d

n n

t x y
n n n

u t u t

u d x y u e x y u q x y t  

 

    
  (8) 

 
5. Numerical Illustrations  
 
5.1. Example 1 
 
Let us consider a one-dimensional fractional diffusion 
equation for the Equation (1), as taken in [17] 
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on a finite domain 0 1x  , with the diffusion coeffi-
cient 

2.8 2.8( ) (2.2) 6 0.183634d x x x         (10) 

the source/sink function 
3( , ) (1 ) tq x t x e x               (11) 

the initial condition  
3( ,0) ,u x x            (12) for 0 1x 

and the boundary conditions 
(0, ) 0, (1, ) , 0tu t u t e for t           (13) 

 
Implementation of Variational Iteration Method for 
Example 1  
Now we consider the application of VIM to one- 
dimensional fractional diffusion equation with the initial 
condition of: 

3( ,0) ,u x x            (14) for 0 1x 
Its correction variational functional in x and t can be 

expressed, respectively, as follows: 
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where (1.8 )x indicates a differential with respect to x 
and dot denotes a differential with respect to t,   is 
general Lagrangian multiplier. After some calculations, 
we obtain the following stationary conditions: 

  0                   (16) 

 1 t   0                (17) 
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Equation (16) is called Lagrange-Euler equation and 
Equation (17) is natural boundary condition. The La-
grange multiplier can therefore, be identified as 1    
and the variational iteration formula is obtained in the 
form of: 

 (1.8 )
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t x
n n n nu x t u x t u d x u q x t       (18) 

We start with the initial approximation of  
given by Equation (14). Using the above iteration for-
mula (18), we can directly obtain the other components 
as follows: 
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In Figure 1 we can see the 3-D result of approximate 
solution of the one-dimensional fractional diffusion 
equation by VIM. 
 
5.2. Example 2 
 
Let us consider a two-dimensional fractional diffusion 
equation for the Equation (2), considered in [18]. 
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Figure 1. For the one-dimensional fractional diffusion equa- 
tion with the initial condition (12) of Equation (9), VIM 
result for . ( , )u x t
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and 
2.6( , ) 2 / (4.6)e x y x y             (24) 

and the forcing function 
3 3.6( , , ) (1 2 ) tq x y t xy e x y          (25) 

with the initial condition 
3 3.6( , ,0)u x y x y              (26) 

and Dirichlet boundary conditions on the rectangle in the 
form  and 

, for all . 
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Implementation of Variational Iteration  
Method for Example 2  
Again we consider the application of VIM fractional 
diffusion equation with the initial condition of: 

3 3.6( ,0) ,u x x y       (27) for 0 1,  0 y 1x   

Its correction variational functional in x and t can be 
expressed, respectively, as follows: 
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where (1.8 )x  indicates a differential with respect to x, 
 indicates a differential with respect to y and dot 

denotes a differential with respect to t, also 
(1.6 )y

  is gen-
eral Lagrangian multiplier. After some calculations, we 
obtain the following stationary conditions: 

  0                    (29) 

 1 t   0                 (30) 

Equation (29) is called Lagrange-Euler equation and 
Equation (30) is natural boundary condition. The La-
grange multiplier can therefore, be identified as 1    
and the variational iteration formula is obtained in the 
form of: 
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We start with the initial approximation of  
given by Equation (27). Using the above iteration for-
mula (31), we can directly obtain the other components 
as follows: 
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Figure 2. For the two-dimensional fractional diffusion equa-
tion with the initial condition (26) of Equation (22), VIM 
result for  with . ,( )x tu  1y
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In Figure 2 we can see the 3-D result of approximate 
solution of the one-dimensional fractional diffusion equa-
tion by VIM. 
 
6. Conclusions 
 
In this paper, He’s variational iteration method has been 
successfully applied to find the solution of space frac-
tional diffusion equation. All cases show that the results 
of the VIM method are very good and the obtained solu-
tions are shown graphically. In our work, we use the 
Maple Package to calculate the functions obtained from 
the He’s variational iteration method. 
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