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Abstract 
The purpose of this paper is to introduce to you, the Western people, nowadays a 
“widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and 
his study on the thermodynamics of transient phenomena and his theory of life. This 
is because although he was one of the top theoretical physicists in Japan before, dur-
ing and after WWII and after WWII he promoted the establishment of the biophysi-
cal society of Japan as one of the founding members, he himself and his studies 
themselves have seemed to be totally forgotten nowadays in spite that his study was 
absolutely important for the study of life. Therefore, in this paper I would like to 
present what kind of person he was and what he studied in physics as a review on the 
physics work of Motoyosi Sugita for the first time. I will follow his past studies to in-
troduce his ideas in theoretical physics as well as in biophysics as follows: He pro-
posed the bright ideas such as the quasi-static change in the broad sense, the virtual 
heat, and the field of chemical potential etc. in order to establish his own theory of 
thermodynamics of transient phenomena, as the generalization of the Onsag-
er-Prigogine’s theory of the irreversible processes. By the concept of the field of 
chemical potential that acquired the nonlinear transport, he was seemingly successful 
to exceed and go beyond the scope of Onsager and Prigogine. Once he established his 
thermodynamics, he explored the existence of the 4th law of thermodynamics for the 
foundation of theory of life. He applied it to broad categories of transient phenomena 
including life and life being such as the theory of metabolism. He regarded the 4th 
law of thermodynamics as the maximum principle in transient phenomena. He tried 
to prove it all life long. Since I have recently found that his maximum principle can 
be included in more general maximum principle, which was known as the Pontrya-
gin’s maximum principle in the theory of optimal control, I would like to explain 
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such theories produced by Motoyosi Sugita as detailed as possible. And also I have 
put short history of Motoyosi Sugita’s personal life in order for you to know him 
well. I hope that this article helps you to know this wonderful man and understand 
what he did in the past, which was totally forgotten in the world and even in Japan. 
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1. Introduction 

Who knows Motoyosi Sugita? Who is Motoyosi Sugita? 
The name of Motoyosi Sugita (see Figure 1) is “widely unknown” all over the world 

today. It is so as well even in Japan nowadays. In this paper I would like to introduce 
you to this important Japanese theoretical physicist.  

 

 
Figure 1. Dr. Motoyosi Sugita (Born August 1905-Died 14 January 1990). 
The picture was taken at the age of 29 in front of his house in Tokyo, 
Japan in Summer in 1934. His son Yūkiti was born in May in this year. 
Yūkiti passed away on the 2nd of August in 2012 (By courtesy of Ms. 
Setsu Honda). 
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I did neither know his name nor his work until this spring in 2016. As I started 
recently writing a paper on the theory of thermodynamics in the irreversible processes, 
I found him, this brightest fellow in the early stage of Japan after WWII. Actually he 
was one of the top figures in the theoretical physicists in Japan right after WWII. 

Motoyosi Sugita founded the Japanese Biophysics society as one of the first founding 
members. To start up the society, in order to show how the scientific society of Bio- 
physics was important to the Japanese Government, they presented a book on 
Biophysics as the proceedings of the first meeting among the Japanese Biophysicists [1]. 
In the part III of this book, Motoyosi Sugita wrote a review, “The Biological Open 
Systems and Fluid Equilibrium”, where his use of the words “Fluid equilibrium” was 
meant the so-called “Dynamical equilibrium”. It was his life-time objective to construct 
“Thermodynamics of life”. 

As I read any one of his articles, I have been impressed by his very deep thought on 
Life as well as Thermodynamics. His ideas seem to me very important and crucial for 
understanding the physical aspects of life, and therefore, very prompt for making a 
breakthrough in the research of theoretical biology. Thus, in this paper I would like to 
summarize what I have studied from his works.  

1.1. Birth  

Motoyosi Sugita was born in Yatsushiro-machi in Kumamoto prefecture in Japan on 
August in 1905. Exact day of the born was not known so far. His father was Heishiro 
Sugita and his mother Haya Sugita. They had the first boy, but the boy was gone by sick 
before Motoyosi was born. So, Motoyosi became the officially first son of their family. 
His father Heishiro was the school teacher, later became a principal so that he went 
many places for teaching as a principal. During Heishiro was spending time at 
Kumamoto with his mother, Motoyosi was born.  

1.2. Education  

He graduated from the elementary school attached to the Kochi Teachers College and 
entered the Dai-ichi Junior High School in Kochi prefecture in 1919. 

In 1921 he was admitted to the Konan Junior High School in Kobe, Hyogo Prefecture, 
moved from the Junior High School in Kochi. At this time most of good high schools in 
Japan had both junior high school and high school as one school system for 5 - 6 years. 
The Konan High School was one of them. 

In 1926, he graduated from the physical science division in the Konan High School 
and entered the Department of Physics, the Faculty of Science, the Tokyo Imperial 
University. 

In 1929, he graduated from the Department of Physics, the Faculty of Science, the 
Tokyo Imperial University. The Tokyo University at that time was under the old system 
of the Great Empire of Japan, which was totally different from the modern university 
system of Japan after WWII. Hence, the Tokyo Imperial University was perfectly 
different from the Tokyo University nowadays. The former was only for the top rank 
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brilliant students selected from them in the Japanese society at that time.  

1.3. Working  

In 1929, He was enrolled as a researcher at the Institute for Electricity (Denki- 
Shikenjo), the Ministry of Traffic and Postal Affairs (Teishin-sho). 

In September in 1934, he became a teacher at the School for the Japanese Navy 
Organization. 

In August in 1941, he retired the School for the Japanese Navy Organization and 
became a researcher in Kobayasi Institute in Tokyo (see Figure 2). Here he published 
his first text book “Thermodynamics New Lecture” in 1942 [2]. He became a lecturer at 
the Department of Industrial Management, the Tokyo Commercial University. 

In March in 1944, he became a professor at the Department of Industrial Man- 
agement, the Tokyo Commercial University. In April, he also worked as a lecturer at 
the Tsudajyuku University.  

In June in 1949, he became a professor at the Department of Economics, the 
Hitotsubasi University (see Figure 3). As a concurrent post he became a professor at 
the Department of Commercial Science, the Hitotsubasi University (until it was re- 
pealed by the school system change by the Government in 1951). 

In September in 1949, he earned the Ph.D. in Science from the Kyoto University by 
the doctoral thesis “Thermodynamics of Transient Phenomena”, whose partial fulfil- 
ment was published as a book “Thermodynamics of Transient Phenomena” from 
Iwanami-shoten in 1950 [3]. 

In April in 1953, as concurrent posts, he became a professor at the Department of 
Sociology, and at the Department of Economics, the Hitotsubasi University. At the 
same time, he was promoted to be a lecturer for Condensed Matter Physics, at the 
Department of Engineering, the Meiji University. 

 

 
Figure 2. Personnels of “Kobayasi Riken” in 1945. The picture was 
probably taken in front of the Kobayasi Institute (Kobayasi Rigaku 
Kenkyujo, shortly Kobayasi Riken), Tokyo, Japan, in March in 1945, 
right after WWII. Dr. Motoyosi Sugita is the second person from the 
left in the second row (By courtesy of the Kobayasi Rigaku Kenkyujo). 
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Figure 3. Prof. Motoyosi Sugita. The picture was probably taken at 
the age of 74 in the home office of his house, Tokyo, Japan in 1979 (By 
courtesy of Misuzu Shobo). 

 
In September in 1956, he became a professor both for the Tokyo Commercial 

University and Hitotsubashi University until it was repealed by the school system 
change by the Government in 1962. 

In April in 1959, he became a lecturer for the intensive lecture for Modern 
Technology at the Department of Management Sicence, the Konan University and a 
lecturer for the intensive lecture for the General Commercial Engineering, at the 
Department of Economics, the Ooita University. 

1.4. Marrige  

Motoyosi Sugita married Ms. Grace Sakae Oyama in 1933 (see Figure 4). Grace is her 
Canadian name. She was a Japanese originated Canadian whose ancestry was Christian 
and immigrated from Hirosaki, Aomori, Japan. She was born in Toronto, Canada. She 
graduated from the Victoria High School in Toronto. She entered the Nursing School 
there and graduated at the top of the school. She became the first nurse of the Japanese- 
Canadians in Canada.  

She came to Japan for marriage with Motoyosi Sugita, leaving her family in Canada 
in 1933. During WWII, she spent very sad time because Japan and Canada became 
enemy each other, and her family in Canada was forced to be sent to the concentration 
camps in Canada. Long after WWII, when they visited USA and Canada for attending 
the International conferences for biophysics and bioengineering, she was able to meet 
her family members in Canada for the first time in 28 years. 

They had one son, Yūkiti. Yūkiti went to Indonesia for his business after Motoyosi 
and Sakae died. However, he failed his business and he returned back to Japan. He 
spent his final days in his family’s summer house in Hokuto-shi, Yamanashi, Japan. 
Yūkiti died on 2 August 2012. Only one relative of Motoyosi Sugita’s family is Ms. Setsu 
Honda who lives in Hirosaki, Aomori, Japan. Other relatives are now living only in  
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Figure 4. Prof. Motoyosi Sugita and his wife, Grace Sakae Sugita. The 
picture was taken at his age of 56 in front of her parents’ home in 
Hirosaki, Aomori, Japan in July, 1961, when they visited there for 
their greeting to the family right before they went to attend the 
Conferences in Canada and USA. During the visit abroad she was able 
to meet her family and relatives in Canada for the first time in 28 
years since she came to Japan for her marriage with him (By courtesy 
of Ms. Setsu Honda). 

 
Canada. 

The above information was sent as a letter from Ms. Setsu Honda as her courtesy. I 
really appreciate it from the bottom of my heart.  

1.5. Visits Abroad  

In July in 1961, he visited the United States of America and Canada for three months. 
He attended the 4th International Conference on the Medical Electronics held at New 
York and the International Conference on Mathematical Biology held at North 
Carolina. 

In August in 1965, he visited the U.S.S.R., Austria, Italy, France, England, West 
Germany, and Denmark for three months. He attended the International Conference 
on Molecular Biology held at Napoli, Italy and the second International Conference on 
Biometrics held at Helgoländ, West Germany. 

At the time, he became the president for Bioengineering of the Japanese Society for 
Medical and Biological Engineering (until 1967). 

In 1967, he visited the U.S.S.R., Sweden, West Germany, Netherlands, Belgium, 
France, Swiss, Austria for three months. He attended the 7th International Conference 
on Medical Electronics held at Stockholm, Sweden and the 3rd International Con- 
ference on Biometrics held at Helgoländ, West Germany. 

In 1969, he retired from the Hitotsubashi University and became a professor 
emeritus (see Figure 5).  

On the 14th day of January in 1990, he passed away at the age of 85.  
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Figure 5. Prof. Motoyosi Sugita. The picture was taken at his age of 80 
in front of his second house in Hokuto-shi, Yamanashi, Japan in 
August in 1985 (By courtesy of Ms. Setsu Honda). 

1.6. Publications  

Motoyosi Sugita published many textbooks [1]-[6] as well as the general books, which 
were all written in Japanese such as Soceity and Cybernetics [7], What is Cybernetics? 
[8], W. Heitler: Thinking and Wanderings [9], What is Information Science? [10], 
Society and Theory of Systems [11], Recommendation of Engineering Thinking [12], 
The Function of Academics and Creation [13]. 

At the same time he published many important scientific papers. Before WWII, he 
published papers written in German [14]-[21]. After WWII, he published many papers 
in the Japanese science journals for the public such as Kagaku (meaning Science) and 
Seibutsu Kagaku (meaning Bioscience) [22]-[35] and Iryo Denshi to Seitai Kogaku 
(meaning Medical Electronics and Bioengineering) [36] [37]. He published many 
Japanese articles in his working place reports: in the journal of Kobayasi Institute such 
as the Bulletin of Kobayasi Institute [38]-[59]; and in his Hitotsubashi University 
journals such as the Annals of Hitotsubashi University [60] [61] [62], Hitotsubashi 
Ronso [63] [64] [65] [66] [67], the Bulletin of Hitotsubashi University [68]-[75]. He 
also published many papers written in English in Western Journals such as the Journal 
of Physical Society of Japan [76] [77] [78] [79] [80] and the Journal of Theoretical 
Biology [81]-[91], as in the references. And also he published many other papers on 
Physics education and Mathematics education as well, which are neither included nor 
listed in this paper. You can just see them in the National Diet Library, “Kokkai 
Toshokan”, of Japan [92]. 

1.7. The Research History of Motoyosi Sugita  

As early as in 1930’s before WWII, he started to study physics. During this time, at first 
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he seemed to spend much time to translate German physics papers written in Germany 
(Deutschland) such as Carl Wagner [93] and Georg Siemens [94] into the Japanese and 
published the articles to the Journal of the Mathematical and Physical Society of Japan 
(Su-butsu Gakkai Shi). Once he found the concept of the virtual heat, he applied it to 
the thermodynamics of transient phenomena, and in doing so, he published papers in 
German in the Japanese journals [14]-[21]. 

Thus he seemed to be an expert for the German language in the Japanese physics 
society at that time before WWII, since in the Japanese education system at that time 
the Japanese education system had been admirringly adopted from the German system 
as the first foreign language in the schools in Japan. And surely before WWII, Germany 
was one of the top countries in sciences including Chemistry and Physics at that time. 

Although it has been perfectly forgotten already, Japan was a leading long-time 
economical supporting country for Germany that was economically totally broken by 
the WWI. Many Japanese business men privately supported the German society as well. 
A famous example was Hajime Hoshi who was one of the richest fellows in Japan at 
that time and he was the founder of the Hoshi Pharmaceutical Company and the Hoshi 
College of Pharmacy. Hajime Hoshi had supported the Chemical Society of Germany 
for a long time until Germany would recover [95] up to the era of the Adolf Hitler’s 
Third Reich of Germany. 

Nearly ten years before WWII, Sugita published several famous papers in German as 
well as in English in the Japanese journals [14]-[21] as mentioned above. However, 
after WWII his works seemed to be ignored in the Japanese physics society. Because 
since then, the Japanese education systems totally changed to fit with the English-based 
society of U.S.A. from the German-based society of Deutschland before WWII. This 
changed to adopt English as the first foreign language instead of Germany in the 
schools. 

Motoyosi Sugita studied the foundation of thermodynamics for biological systems [2], 
and continued it after WWII. From the line of his German physics study which was the 
top physics country at that time mentioned above, he studied the theory of the German 
physicists, Becker and Döring [96] and Volmer [97] and an American physicist Frenkel 
[98] on the cluster growth in the metastable phases in supersaturated vapors. 

As early as in 1948 right after the damage of WWII slightly reduced in the society, 
Motoyosi Sugita published an important paper that discussed the relationship between 
the metastable (or quasi-static) phenomena in thermodynamics and biological pheno- 
mena in the Japanese journal, Kagaku [23]. It was also published in the textbook 
entitled by Thermodynamics of Transient Phenomena [3]. 

As the Japanese society was coming back till 1950 he published a more fundamental 
paper in a Japanese journal, Seibutsu Kagaku [29]. After a long study on the theory of 
thermodynamics in the transient phenomena such as life, he first postulated that there 
might exist the 4th law of thermodynamics; otherwise one cannot understand biological 
phenomena. He stated his considerations on it in §5 entitled by “Can one consider the 
4th law of thermodynamics?”. I would like to quote here in the corresponding part 
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from its English version [60] as follows:  

…By the way, let us think here the circumstance deeply. According to the 2nd law 
of thermodynamics, Gibbs’ free energy, G, of the world has tendency to decrease 
in isothermal and isometric change. On the other hand, we find the tendency that 
the velocity of decreasing of G, i.e., G  wants to take a large value as far as 
possible. This might be a general principle of nature which I should like to call 
temporarily the 4th law of thermodynamics. 
The foundation of such a large principle will be discussed later, and we can suggest 
here that it is very important and beneficial idea that the nature of the transient 
phenomena as well as the living system may be clarified and explained uniformly 
by this principle. 
There are many delicate problems concerning human thought if we propose to 
clarify the nature of life on the basis of physical and chemistry. In any way the 
matter looks like as if it were concerned in the 4th law. … 

Hence, following the line of thought of Motoyosi Sugita [29], I can summarize the 
laws of thermodynamics as follows: 

1) The first law (W. Thomson’s principle): The Gibbs free energy G is conserved in a 
closed system; 0G = . 

2) The second law (Clausius’s principle): The entropy S always increases in any 
process; 0G TS= − ≤  . 

3) The third law (Nernst’s theorem): The entropy approaches zero as the absolute 
temperature T approaches zero; ( )0 0S T = = . 

4) The 4th law (M. Sugita’s postulate): The decreasing rate of the Gibbs free energy 
always takes the maximum in any process; G  = max, where 0G G≡ − ≤ . 

Fortunately Sugita published the above paper one year later in English [60]. But it 
was unfortunate since the journal of the Hitotsubashi university (to which he belonged) 
that he published was not famous at all among Western physicists as well as the 
Japanese physicists. And also it has not been available to the public for so long until 
recently after the internet service was provided. 

In 1953 Motoyosi Sugita has found the way to apply the theory of thermodynamics of 
transient phenomena to more realistic biosystems such as metabolic systems [41] [42] 
[43] [44] [45] [76] [77] [78] [79]. From this stage his research entered the second stage 
to construct the thermodynamics of life. Step by step his way of thinking became 
cybernetics-like, where the feedback control systems played an important role in his 
theory [46]-[59] [81] [83]-[91]. One of them was cited in Steuart Kauffman’s famous 
book, The Origins of Order [99]. 

Since no computer system was easily available for the bio-systematic calculations in 
Japan at that time, Motoyosi Sugita collaborated with electrical engineers to construct 
analog-digital computer circuits for their calculations. They simulated the circuits to 
obtain the solutions of their-own models of the metabolic control systems. These ideas 
were summarized as books [1] [5] [6]. 

After retiring the Hitotsubashi University, Motoyosi Sugita became to write and 
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publish many general books to the community [7]-[13]. 
Although he published many papers and textbooks in science as well as many general 

books in Japanese, he published only about ten papers in English by unknown reasons. 
That is why he was so unknown in the Western countries as well as in Japan. Hence, 
nobody knew him nowadays, and so did I, in spite of his extremely important 
contributions to the thermodynamics theory. 

In this paper I would like to review some important consequences of his theory and 
discuss the maximum principle in the open non-equilibrium systems as the foundation 
for the 4th law of thermodynamics to the readers especially in the Western countries. 

In Section 2, I will show the bright ideas of Motoyosi Sugita such as the concepts of 
the broad quasi-static change, the irreversible cycle, and the virtual heat. 

In Section 3, I will discuss the Motoyosi Sugita’s approach to the diffusion pheno- 
mena as the first successful application of his concepts. 

In Section 4, I will review the theory of phase change and condensation as a 
preparation for understanding the following sections. 

In Section 5, I will present the theory of thermodynamics of transient phenomena of 
Motoyosi Sugita, where his theory of chemical reactions will be shown using the 
concept of the field of chemical potential. 

In Section 6, I will show the Motoyosi Sugita’s concept of the maximum principle in 
the transient phenomena. Here G  = max conjecture will be discussed, which is a 
demonstration for the existence of the 4th law of thermodynamics. 

In Section 7, I will compare the work of Motoyosi Sugita and those of Lars Onsager 
and Ilya Prigogine. I hope that the content of this section will be shared with the 
Western people. 

In Section 8, I will discuss the maximum principle of Motoyosi Sugita and that of 
Pontryagin as well as the Bellman’s principle of optimality. This includes my own 
theory of the application of the Pontryagin’s maximum principle to thermodynamics. 
Therefore, I believe that this section is as my emphasis most important among other 
things. 

In Section 9, I will show the Motoyosi Sugita’s theory of metabolism which is the first 
application of his maximum principle to theory of life. He spent many years as many as 
20 years for studying this problem from many sides repeatedly. 

In Section 10, I will present the Motoyosi Sugita’s way of thinking on the theory of 
life. This opens up the thermodynamics of life or life being as well as the network 
thermodynamics. 

In Section 11, as the final section, a simple summary will be made.  

2. The Bright Ideas of Motoyosi Sugita  

A couple of years after Onsager published his seminal papers on the reciprocal relations 
in the irreversible processes in 1931 [100] [101], Motoyosi Sugita published the theory 
of thermoelectric effects and the Kelvin’s relation in 1933 [17]. This was much later 
published in Japanese in the Japanese journal during WWII [20] [21] and included in 
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his new text book of theromodynamics, “Netsu Rikigaku Shinko”, meaning Thermo- 
dynamics New Lecture [2]. In this research he introduced the concept of broad quasi- 
static change, the virtual heat, and the irreversible cyclic processes in order to describe 
the irreversible changes in thermodynamics of transient phenomena. 

2.1. Sugita’s Concept of the Broad Quasi-Static Change  

Motoyosi Sugita [2] [3] meant the quasi-static change “in the broad sense” by the 
naming of the broad quasi-static change. The broad quasi-static change is defined when 
the following conditions may be assumed:  

( ) ( ) ( ) ( )1 2i , , ii , ,P f V T U f V T= =                    (2.1) 

where 1f  and 2f  are some functions of V and T, respectively. 
These are a generalization of the conditions for the case of ideal gases where  

P kT V=  and 
3
2

U kT=  are satisfied with k being the Boltzmann constant. When  

these conditions are assumed to be satisfied, one can almost follow the standard 
approach of the quasi-static processes in thermodynamics which means that the 
process is indefinitely very slow. Indeed, even in the non-idealistic cases the treatment 
of the quasi-static change in the normal sense has been applied and given plausible 
results. 

This means that the local equilibrium can be satisfied even in the non-equilibrium 
states, where the broad quasi-static change makes sense if one excludes the relaxation 
phenomena in which conditions 1) and 2) are not satisfied. Unless the relaxation 
phenomena are considered, the broad quasi-static change can be applied to most of 
irreversible processes. The concept of the broad quasi-static change has the amazing 
possibility of development, once it is combined to statistical mechanics. 

Suppose that many macroscopic parts are in the equilibrium state. Let us denote by 

iS  the entropy of that i-th small part and by iF  its Helmholtz free energy. The values 
of the entropy S and the Helmholtz free energy F of the whole system are given by  

, .i i
i i

S S F F= =∑ ∑                          (2.2) 

Therefore, if we use  

ln , ln .i i i iS k W F kT Z= = −                       (2.3) 

then we have  

e , e .
F

S k kT
i i

i i
W W Z Z

−
= = = =∏ ∏                    (2.4) 

This means that when one considers the broad quasi-static change in the irreversible 
processes, one should not take or need not take the W or Z over the entire phase space. 
One must cut off the phase space into the small pieces that are in local equilibrium, and 
concatenate them to cover the whole phase space. This is the meaning of the local 
equilibrium in the point of view of Motoyosi Sugita. 
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2.2. Sugita’s Concept of the Virtual Heat  

Another assumption that forms the theory of irreversible processes is the concept of the 
virtual heat. Let us consider the case when the heat eQδ  ejected from the reservoir 
that is outside the system. Let us suppose that the reservoir follows the same change of 
the broad quasi-static change as the system under consideration. Let us denote by Qδ  
the heat absorbed by the thermodynamic system and by T its temperature. Let us 
assume that the origin of the irreversibility lies inside the system and consider the 
friction inside the system. Then,  

d d ,eU W Qδ+ =                            (2.A) 

is satisfied, where dU  is the change in the internal energy and dW  is the work to do 
the outside system. If we consider the expansion of the piston-cylinder system, 
d dW P V= . Suppose that there exists the friction between the wall of the cylinder and 
the piston and suppose that the work FdV  is consumed by the friction. Now we have  

.dW PdV fdV= −                            (2.5) 

Substituting Equation (2.5) into Equation (2.A), we obtain  

d d d .eU P V Q f Vδ+ = +                         (2.6) 

This df V  is the virtual heat defined by Motoyosi Sugita. The left hand side of 
Equation (2.6) is nothing but dQ  the heat of the system. Therefore,  

d ,eQ Q f Vδ δ= +                            (2.7) 

where  

d d .U P V Qδ+ =                            (2.B) 

Now, from the concept of the broad quasi-static change, Qδ  must have the in- 
tegration denominator as  

d d d .U P V Q S
T T

δ+
= =                          (2.8) 

Here we never think as if  

deQ T Sδ =                               (2.9) 

holds true. 
If we think of the adiabatic change without input and output of heat, i.e., 0eQδ = , 

then  

d d d .U P V Q f Vδ+ = =                        (2.10) 

Hence,  
d d dd 0.U P V f VS

T T
+

= = >                      (2.11) 

What is important here is the distinction between Qδ  and eQδ  and that between 
Equation (2.A) and Equation (2.B). 

In Equation (2.5), if the work df V  is consumed and become the heat outside of the 
cylinder, then for the inside of the system (e.g., the gas)  
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d d d .eU P V Q Q T Sδ δ+ = = =                    (2.12) 

For the outside of the system, the reservoir gives the heat edQ  to the gas system and 
at the same time it receives as a heat the energy lost from the system by the work FdV . 
Hence,  

d d de e eQ Q f V T Sδ= − + =                      (2.13) 

Therefore, for the whole system we have  

dd d 0.e
f VS S
T

+ = >                        (2.14) 

Thus, the Sugita’s concept of the virtual heat is very natural and important when one 
considers the thermodynamics of transient phenomena. 

2.3. Sugita’s Concept of the Irreversible Cycle  

Let us now consider the Sugita’s concept of the irreversible cycle. Let us denote by 0T  
the lowest possible temperature available of the thermal reservoir. Let us denote by 
d eS  the entropy change of the reservoir with temperature eT  and denote by eQ∆  its 
lost heat, in the course of the process when the irreversible cyclic process is preformed. 
Then we have  

d ,e
e

e

QS
T
∆

= −                           (2.15) 

since the reservoir gives the heat eQ∆  to the system. 
Let us denote respectively by T and S the temperature and the entropy of the system 

(working material) that performs the cycle. Then we have  

d ,eQ HS
T

∆ + ∆
=                         (2.16) 

since the system receives the heat eQ∆  in addition to the virtual heat H∆  of the 
process, where eT T< . Hence, for the whole system, we have  

1 1d d 0.e e
e

HS S Q
T T T
  ∆

+ = ∆ − + > 
 

                (2.17) 

After finishing the cyclic process, the system has to come back to the initial stage of 
the process (i.e., the initial condition) such that it yields  

d 0.S =∫                            (2.18) 

Hence, the total entropy change in the cycle is given by  

1 1d 0.e e
e

HS S Q
T T T
  ∆

∆ = = − ∆ + > 
 

∫ ∫ ∫  

             (2.19) 

On the other hand, for reversible processes, since  

, ,e eT T Q Qδ δ= =                        (2.20) 

one has  
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dd 0.QS
T

= =∫ ∫ 

                        (2.21) 

Thus, the entropy change occurs only in the thermal reservoir outside the system in 
the process of the irreversible cycle, such that Equation (2.18) cannot conflict with the 
second law of thermodynamics. The equality of Equation (2.18) has a great meaning  

that the integration of dQ
T

 vanishes when the path is closed around the course of the  

irreversible cycle. Therefore, one can treat quantitatively the thermodynamics of the 
irreversible cycle in the same as that of the reversible cycle. 

I would like to note that this aspect of the Sugita’s concept of the irreversible cycle is 
different from that of the Prigogine’s concept of the irreversible cycle, where the 
entropy change of the system is treated as a quantity that always increases during the 
process such that d 0S >  (in their notation d 0iS > ) [102]-[112]. This is the 
consequence of what they never consider the irreversible cycles. 

Now let us consider the change in the thermal reservoir. The heat d eQ  is ejected to 
the system. Therefore, its entropy change d eS  is given by  

dd ,e
e

e

QS
T

= −                           (2.22) 

since d eQ  is the heat adsorbed by the reservoir. Here the quantity 
d e

e

Q
T

 has been  

called the reduced heat. However, the reduced heat is not a real heat for the reservoir, 
since the sign of it is reverse to that of entropy of the reservoir [Equation (2.22)]. Thus, 
although the concept of the reduced heat plays a historical role, it is not so important as 
a physical quantity. From Equation (2.19) together with Equation (2.15) the following 
holds  

d d 0.e
e

e

Q S
T

= − ≤∫ ∫ 

                       (2.23) 

This is nothing but the Clausius’ inequality for the irreversible cycle, where the 
equality holds true for reversible processes. This can be regarded as the generalization 
of the standard proof for the Clausius’ inequality for the irreversible cycles [2] [3] [4] 
[113]. 

Historically speaking, Clausius accomplished to derive this relation for the first time. 
From the fact that the equality holds true in the reversible processes, he showed that  

Q
T
∆

 becomes an exact differential and then he derived the entropy. In his approach he  

represented a closed curve representing any thermodynamic cycle by a staircase with 
adiabatic curves and isothermal curves. Regarding the cycle as a combination of many 
infinitesimal Carnot cycles, for the high temperature sources, denote by 1nT  and 1nQ∆  
the high temperature and the received heat of the n-th thermal source, respectively, and 
for the low temperature sources, denote by 2nT  and 2nQ∆  the low temperature and 
the eject heat of the n-th thermal source, respectively. Taking into account the sign of 
each heat, he proved the relation by using  
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1 2

1 2

0.n n

n n

Q Q
T T
∆ ∆

− ≤                           (2.24) 

Now if the intervals could be made so as to be infinitesimally small, then Equation 
(2.24) becomes  

1 2

1 2

0.n n

n n n

Q Q Q
T T T

 ∆ ∆ ∆
− = ≤ 

 
∑ ∫                     (2.25) 

This is the Clausius’ inequality derived from himself [113]. 
However, once we look at the expressions in Equation (2.24), the sign of the reduced  

heat 1

1

n

n

Q
T
∆

 or 2

2

n

n

Q
T
∆

−  is opposite to that of the entropy of the thermal source. In the  

quasi-static reversible processes it becomes exactly the entropy change of the working 
material and hence the equality of the above Equation (2.25) can hold. From this 
situation, usually it has been thought that one cannot treat the theory quantitatively 
since the inequality holds in the irreversible processes or when one seeks for the  

entropy by dQ
T

, dQ  must be the heat received under the reversible process. It is  

because one escapes from the complexity of the irreversible processes such that one 
need not take into account the working material, and because one discusses the cycle 
process only considering the lost heats. On the other hand, although not always but 
when the process can be regarded as the broad quasi-static change, and when the true 
character of the virtual heat is clearly known such as the friction heat or thermal 
conduction, we can take eQ Q H∆ = ∆ + ∆  instead of eQ∆ . And as discussed in the 
above, even in the irreversible processes we can define the entropy by Equation (2.17) 
and can use the equality Equation (2.18) as well. 

Since the state goes back to the initial state after the completion of the cycle, it seems 
trivial that the entropy goes back to its initial value as well. Since it was said that in the 
irreversible processes, one cannot say anything about the entropy in the midst of the 
process, we could not have said anything about like the above. Now we should note that 
dQ  is neither obtained by ignoring the irreversibility nor is given by intentionally 
regarding the system as being reversible. 

In order to derive the entropy, one must consider the quasi-static reversible processes 
and define the heat of the processes in the standard point of view as usual. But once one 
defines the entropy under the quasi-static change, one can use the relation d dQ T S=  
in the broad quasi-static change, whether or not the process is reversible or irreversible. 
This point seems to us neither clear nor emphasized in the standard texts. In other 
words, the distinction of the use of dQ  and d eQ  is not thorough according to one's 
needs. That is, if one takes d eQ  then the inequality of Equation (2.23) holds; if one 
takes dQ  then the equality of Equation (2.18) holds. One can generalize the above 
argument to the more general cases such as the case when there exists the thermal 
conduction in the working material as well as the case when the thermal temperature is 
not uniform. 
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This is the argument of Motoyosi Sugita for the concepts of the broad quasi-static 
change, the virtual heat and the irreversible cycles in the thermal processes. He applied 
these concepts to the various physical systems such as the thermoelectric effects of Lord 
Kelvin [2] [3] [4] [14] [15] [17] [20] [21] as well as many biological systems [38]-[91].  

2.4. Application to the Kelvin’s Relation in the Thermoelectric Effect  

As an application of the above results, we become able to treat the problem of 
thermoelectricity (see Figure 6), which had been thought to be difficult to consider. 
Now, let us denote by (1) the high temperature part with the temperature 1T  and by 
(2) the low temperature part with the temperature 2T  [3]. Denote by 1H  the heat 
ejected from (1) and denote by 1W  and 1w  the heats dissipating in wire A and B, 
respectively.  

Seeing from the outside of (1), the ejected heat per second eQ  is given by  

1 1 1
d .
d

eQ H W w
t
= − −                          (2.26) 

Next, let us denote the resistance by 1r . The Joule heat (regarding the virtual heat) 
due to the electric current i  is 2

1r i . Therefore, the heat that this part actually absorbs 
per second Q  is given by  

2
1 1 1 1

d .
d
Q H W w ri
t
= − − +                       (2.27) 

This is the so-called Peltier heat. If we take π  as the propotional constant, then 
d dQ i tπ= . Therefore, we now have  

 

 
Figure 6. The system of thermoelectric effects. 
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2
1 1 1 1 1 .i H W w riπ = − − +                       (2.28) 

For the part (2), we similarly obtain  
2

2 2 2 2 2 ,i H W w r iπ− = + + +                     (2.29) 

where the minus sign in the left hand side comes from the reverse direction of the 
current i in the circuit. 

Next consider the part x∆  in the wire A. Define by W the heat that is conducting 
the wire and flowing in the part and define by W ′  the heat that is conducting the wire 
and flowing out the part. Denote by dH  the heat emitted from the part x∆  to the 
surroundings. Denote by Ar x∆  its resistance of the wire A. Then, the heat that this 
part absorbs is given by  

2d d .A AH W W r xi i Tσ′+ − + ∆ =                   (2.30) 

This is coreesponding to the quantity dQ . This is called the Thomson heat, where 

Aσ  is a constant, dT  the temperature difference in this part. 
Similarly for the wire B and considering the part y∆ , we obtain  

2d d ,B Bh w w r yi i Tσ′+ − + ∆ = −                   (2.31) 

where the sign in the right hand side is due to the condition that the direction of the 
temperature is reversed to the direction of the current i. 

In the stationary state, the sum of the heats that this system absorbs equals the work 
that the electromotive force E can do. Hence, one has  

( ){ }2

1
1 2 d ,

T
A BT

Ei i Tπ π σ σ= − + −∫                 (2.32) 

which is the equation corresponding to the relation (2.B) but its integrated form, where 
the integration of dP V  corresponds to Ei . On the other hand, the equation cor- 
responding to the relation (2.A) is given by  

( )2 2
1 2 1 1

d d d d .H H H h i E i r+ + + = −∫ ∫ ∫               (2.33) 

Next, suppose that the relation d dQ T S=  (assuming T T ′= ) of Equation (2.8) 
holds, where in order to satisfy the relation (2.B) the assumptions of (i) and (ii) are 
necessary. For (i), it is easy for u to satisfy. But for (ii), it cannot be easy for P to 
compared with the electromotive force in equilibrium. Therefore, we assume 
d dQ T S=  instead of (i) for the foundation for the proof. By this, we obtain  

2

1

1 2

1 2

d d d 0.
d

T A B
T

S i T
t T T T

π π σ σ −
= − + = 

 
∫ ∫

            (2.34) 

It is obvious when the thermoelectric couple is in the stationary state. Then the 
entropy change occurs only in the thermal reservoir (or one may think the one-round 
of electron through the circuit as a cycle.) From Equation (2.32) and Equation (2.33), 
the Kelvin’s relation is given by  

d .
d

E
T T

π
=                            (2.35) 
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So far we are based on the Clausius’ inequality:  

2

1

1 2

1 2

d d d d 0
d

T
eT

H H H h S
T T T t

+
+ + = − <∫ ∫                 (2.36) 

Now, rewriting 1H , 2H , dH , dh ,  

1 1 1 2 2 2

1 2
2 2

2 2 22 21 2
1 1 1

1 2

22
2 2

2 21 1

d d
d

d d

d dd

d dd d 0.
d d

e

A A B B

A B A B

A A B B

i W w i W wS
t T T

i T W W r xi i T w w r yi
T T

r x r yi T i i
T T T T T

a aT Tx y
x yT T

π π

σ σ

π π σ σ

λ λ

+ + + +
− = −

′ ′− + − ∆ − − + − ∆
+ +

 −
= − + − − 

 

  − − <  
   

∫

∑ ∑

∫ ∫ ∫

∫ ∫



 (2.37) 

The derivation of the above result Equation (2.37) is as follows: Denote by ,A Ba a  
the cross sections of the wires A and B and by Aλ  and Bλ  the thermal conductivities 
of the wires A and B, respectively. Using the above notations, we first hold the 
following relations  

( )d ,A AW W a div grad T xλ′− + = −                  (2.38) 

( )d ,B Bw w a div grad T yλ′− + = −                  (2.39) 

d d , d d .A A B BV a x V a y= =                     (2.40) 

For the wire A we find  

1 2 1 2

1 2 1 2

.W W W WW W
T T T T T

′− +
− + = −∑                (2.41) 

By integration by parts we obtain  

( )
2

2 2

21 1

d d d ,
d

A A A
A

V a Tdiv grad T x
T xT

λλ  − = −  
 ∫ ∫           (2.42) 

On the other hand, for the wire B we similarly obtain  

1 2 1 2

1 2 1 2

,w w w ww w
T T T T T

′− +
∴ − + = −∑               (2.43) 

( )
2

2 2

21 1

d d d ,
d

B B B
B

V a Tdiv grad T y
T yT

λλ
 

− = −  
 

∫ ∫           (2.44) 

respectively. Here we think that 2
1ir  and 2

2ir  are included in the sums of 2
Ar xi∆  

and 2
Br yi∆ . 

Therefore, based on the inequality (2.37), one cannot derive the Kelvin’s relation, as 
long as the thermal conduction and Joule’s heat can be neglected. Namely, to take 
Equation (2.37) as the base is not wrong but not sufficient [3]. As Boltzmann [114] had 
shown the following relation  

( )d 2 ,
d A A A B B B

ET r a T r a T
T

π λ λ− < +              (2.45) 



K. Iguchi 
 

143 

this cannot exactly yield the Kelvin’s relation. 
Now, from Equation (2.36) the linear term of i  becomes zero. That is,  

2
2 2 22 2

21 1 1

2
2

21

d dd d dd d d
d d d

d d 0
d

A B A A
e

B B

r x r y a TS S i i x
t t T T xT

a T y
yT

λ

λ

 − = − − −  
 

 
− < 

 

∫ ∫ ∫ ∫ ∫

∫

 

        (2.46) 

This means that if Equation (2.36) is added a small quantity less than 0, then 
Equation (2.37) forms an inequality. Therefore, it is obvious that one cannot derive the 
desired result from it. On the other hand, we obtain Equation (2.36) by not only 
considering the heat flowing in from the outside of the system but also considering the 
heat that the system absorbs. And by this we can derive the Kelvin’s relation exactly. 

In summary, the point of view of Motoyosi Sugita lies in the fact that one can obtain 
Equation (2.36) even for the irreversible cycles. Now, the entropy increase can be 
obtained immediately from Equation (2.46). Motoyosi Sugita [2] [3] [4] [20] [21] 
pointed out the insufficiency of the Tolman’s argument [115] in the same problem.  

3. Sugita’s Approach to the Diffusion Phenomena  

Let us next consider the Motoyosi Sugita’s approach to the diffusion phenomena [3]. In 
order to see how the concepts of the broad quasi-static change and the virtual heat 
work in each physical problem, he applied them to the diffusion problem [3]. The 
diffusion phenomena are really important phenomena when we construct the theory of 
thermodynamics in transient phenomena. To do so, I would like to follow his argument 
in his test book [3].  

3.1. Langevin Equation  

Now let us consider an ideal gas that is constructed from the mixing of the two species 
of molecules 1 and 2. For the sake of simplicity, we assume that the density gradient 
only exists in x direction. This is equivalent to consider the one-dimensional diffusion 
problem along x direction. 

Let us denote by ( )1 2m m  the mass of each molecule of species 1 (species 2). Let us 
denote by 3

1 cmin  ( 3
2 cmin ) the number of molecules per cm3 of species 1 (species 

2) which have the velocity ( )1 2i iv v  along x direction. The mass of species 1 that passes 
the interface of 1 cm3 piercing x in a second is  

1 1 1 1 1 1 .i i i i
i i

J n m v m n v = =  
 

∑ ∑                      (3.1) 

Hence,  

1 1

1

.
i i

i
i

i
i

n v
v

n
=
∑
∑

                             (3.2) 

Now, let us denote by 1n′ , 2n′  the mole numbers per cm3 of molecules of species 1 
and 2. We have  
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1 1 2 2

1 1 2 1

, ,

, ,

a i a i
i i

a a

N n n N n n

N m M N m M

′ ′= = 

= = 

∑ ∑
                     (3.3) 

where 236.06 10aN = × , the Avogadro number. We now have  

1 1 1 1 1 1 1.aJ m N n v M n v′ ′= =                        (3.1’) 

Or if we use 1 2n n n′ ′ ′= + , 1
1

nc
n
′

=
′

, 2
2

nc
n
′

=
′

, then  

1 1 1 1.J M n c v′=                            (3.1’’) 

Now taking as 1 2m m≈  and if one can ignore the shift of the center of gravity due to 
the diffusion, then from Fick’s law, one can obtain  

,i
i i i i

cJ n M c v D
x

∂′= = −
∂

                        (3.4) 

where 1, 2i = . On the other hand, if it cannot be ignored then one has to put the 
viscous term of the fluid. If we put as  

,i i
i

TK n M k
D

′=                             (3.5) 

then the above equation looks like the Langevin equation type such as  

log .i
i i

cK v kT
x

∂
= −

∂
                          (3.6) 

So far we have considered the case of ideal gases. However, for more general cases, if 
we use  

0 log ,i i ikT cµ µ= +                           (3.7) 

the right hand side of Equation (3.6) can be rewritten as  

,i i iK v grad µ= −                            (3.6’) 

or if we use iJ  then we can rewrite as  

.i i
i i

i

n M cJ grad
K

µ
′

= −                         (3.4’) 

As Sugita pointed out, the Langevin equation is the equation of motion that one 
thinks as if the stationary motion is considered statistically so that the effect of accele- 
ration cannot play a role to the averaged velocity, and the random forces come from 
like-particles in thermal motions are statistically averaged. 

Next let us explain that when the work done by the resistance of friction i iK v  is 
added to the system as the virtual heat, the increase of entropy by this process becomes 
that of entropy by the mixing of the molecules of species 1 and 2.  

3.2. Mixing Entropy and Free Energy  

Now let us denote by ( )ic x  the density of the molecule of species i at each point x in 
the midst of the mixing process. And let us denote by ( )in x  the number of the 
molecule of species i at each point x in the midst of the mixing process such that 
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( ) ( )i ic x n x N= , where ( )iiN n x= ∑ . Assume that the chemical potential (per mol) 
for each component of i, ( )i xµ , is given as  

( ) ( ) ( )0 log , 1, 2 ,i i ix kT c x iµ µ= + =                     (3.8) 

where 0iµ  is assumed to be constant in the system. Then, the Gibbs free energy of the 
entire system should be given as  

( ) ( ) ( )d , 1, 2 .i i
i

G x n x x iµ= =∑∫                       (3.9) 

If the equation is reversely seen, then the chemical potential has to be defined by  

( ) ( )( ) ( ), 1, 2 .
di

i

Gx i
n x x

µ ∂
= =
∂

                     (3.10) 

Now, since the G is decreasing by the mixing, from Equation (3.9) we have  

( ) ( ) ( )d 0, 1, 2 .i i
i

G x n x x iµ= < =∑∫                    (3.11) 

This means that in the mixing system of ideal gases, the mixing entropy is increasing by 
the mixing of the molecules and by it G is decreasing. And although the decrease of G is 
the decrease per second in the irreversible process, we cannot necessarily know but 
surely know the change in time of G in the midst of the process. 

Based on the Langevin equation Equation (3.6'), suppose that the molecule is forced 
to move by ( )igrad xµ−  and it transports against the friction. Suppose that we can 
regard the friction the virtual heat and therefore the entropy of the system can increase 
by the virtual heat. 

For the sake of simplicity let us limit ourselves to the ideal gases. Then, only the 
energy per molecule 2

i iK v  is given as a heat per second from the virtual heat. This 
amount of the quantity per volume becomes 2

i i in K v . For the whole system it provides 
only the heat that is defined by  

2 2d d .i i i i i i
i i

n K v x n c K v x′=∑ ∑∫ ∫                      (3.12) 

If we assume the process is an isothermal change, then replace i iK v  by Equation 
(3.6'). We have  

( ) ( )

( ) ( ) ( )

d d

1 1d

i
i i i i

i i i

i ii
i

i ii i

JnS c v grad x x grad x x
T TM

x J xJ x x
T x TM T M x

µ µ

µ
µ

′
∆ = − = −

∂ ∂
= − + ∂ ∂ 

∑ ∑∫

∑ ∑∫ ∫
         (3.13) 

The first term in the right hand side vanishes if the boundary condition is taken. In 
the second term in the right hand side, since we have the continuity equation:  

( ) ( ) ,i i iM n x J x
t x

∂ ∂
= −

∂ ∂
                        (3.14) 

if we change in′  as in  in Equation (3.1'), then Equation (3.13) can be represented as  

( ) ( )1 d .i i
i

S x n x x
T

µ∆ = − ∑∫                       (3.15) 
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On the other hand, in the ideal system the change in G only occurs in the change of 
entropy. Therefore, if we rewrite S∆  as S , then we obtain  

( ) ( )d .i i
i

G TS x n x xµ= − = ∑∫ 

                      (3.16) 

Hence, this agrees with Equation (3.11). From considering the above situation, we 
can recognize that the assumption that the force acting on the diffusion particle is given 
by Equation (3.6’) is not inconvenient. 

Let us consider the case of the non-ideal systems [28]. In this case the chemical 
potential 0iµ  becomes density dependent. And in the case of the isothermal and 
isobaric mixing, the volume change and the flow in and out of the heat can occur. And 
therefore the entropy change is no longer given by that of the ideal mixing, 

logi iiR n c∑ . For this time, Equation (3.9) and Equation (3.11) hold true and the 
entropy increase due to the receive of the virtual heat is given by Equation (3.15) as well. 
How can one interpret this? The mixing entropy in this case can change since there 
occurs the thermal heat exchange other than the virtual heat. If temperature T and 
pressure P are kept constant, and if the work done for the outside of the system is given 
by dP V  and the change in the internal energy is given by dU , then the input and 
output of the heat is given by  

d d .eQ U P Vδ = +                          (3.17) 

Therefore, once we add the heats due to Equation (3.15) and Equation (3.16) to the 
above increase of entropy due to eQδ , we find  

( ) ( )1 d .i i
i

U PV U PV GS x n x x
T T T

µ+ + −
= − =∑∫

   



             (3.18) 

This is not inconsistency but rather everything is consistent very much. If we 
compare the above with Equation (3.16), then  

( ) ( )d .i i
i

G TS U PV T S x n x xµ= − + + = − ∆ = ∑∫   


            (3.19) 

This means that G  occurs by S∆  ( S≡  ). Thus, even for this case of non-ideal 
gases the entropy increase due to the friction by the mixing can be regarded as the heat 
receive from the virtual heat source. This is also thermodynamical support for the 
phenomenological construction of the theory where the quantity such as igrad µ  can 
be regarded as a field. Motoyosi Sugita called this approach the Onsager-Meixner- 
Sugita’s method [3].  

3.3. How to Count the Number of Partition  

For this title, Motoyosi Sugita used the word the number of complexion. The number 
of complexion is nothing more than the number of partition in classical statistical 
mechanics or the number of sates in quantum statistical mechanics in the modern 
terminology [116] [117]. When the system is in equilibrium, the number of ways that 
particles interchange their positions in the system is nothing but the number of 
complexion in his terminology. In this equilibrium case, one can definitely define the 
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chemical potential such as Equation (3.8). 
Can such a treatment be allowed even in the midst of the non-equilibrium process? 

This was the Motoyosi Sugita’s problem. Obviously, it is allowed for the equilibrium 
state of the process. But it is not trivial for the non-equilibrium state in the irreversible 
or transient phenomena. 

Suppose that the previous argument that provides Equation (3.8) is correct [28]. 
Assume that 0iµ  is constant. Then one finds  

( ) ( ) ( ) ( ) ( ) ( )0d d log d ,i i i i i i
i i i

G x n x x x n x x RT n x c x xµ µ= = +∑ ∑ ∑∫ ∫ ∫      (3.20) 

where aR N k= , the gas constant and aN  the Avogadro number. Or regarding the 
above integral for dx  as the sum over x∆ , we can rewrite it as in a different form:  

( ) ( ) ( ) ( ) ( ) ( )0 log .i i i i i i
i x i x i x

G x n x x x n x x RT n x c x xµ µ
∆ ∆ ∆

= ∆ = ∆ + ∆∑∑ ∑ ∑ ∑∑    (3.21) 

Hence, by taking the functional derivative for the above with respect to ( )in x x∆ , 
the chemical potential ( )i xµ  is given by  

( ) ( ) ( ) ( )0 log .i i i
i

Gx x RT c x
n x x

µ µ∂
= = +
∂ ∆  

              (3.22) 

The second term in the right hand side comes from the mixing entropy of the system. 
Therefore, it corresponds to what one assumes that the number of partition at an 
instantaneous time in the midst of the process is given by  

( ) ( )
( ) ( )

1 2

1 2

!
.

! !
j j

i
i i j j

n x x n x x
W W

n x x n x x

 ∆ + ∆ = =
   ∆ ∆   

∏ ∏                (3.23) 

If we take logS k W= , then since ( ) ( ) ( ) ( )1 2l gG x n x x n x U PV TSµ µ= + = + −  
and ( ) ( ) ( ) ( )10 1 20 2U x n x x n xµ µ= + , Equation (3.22) is derived directly. Therefore, 
the meaning of iW  is the partition number that is considered within the local part of 

ix∆ . 
Now, suppose that the whole region of space is divided into small parts of ix∆  and 

that the molecule traffic between the small parts is assumed to be forbidden. In the 
time-interval of t∆  for the irreversible process, each part accomplishes its local 
equilibrium with the concentration ( )i jc x , which means that the concentration of the 
i-th molecule at jx  within jx∆ , such that the number of partition is given by 
Equation (3.23) and G is given by Equation (3.21). Corresponding to this state, some 
region in the phase space has to be considered statistical mechanically. 

Next, if we remove the partitions and wait for a short time so that the diffusion 
occurs, and if we place the partitions in the system once again, then the distribution of 
the molecules becomes different concentrations of ( )i jc x  from those before, since the 
diffusion mixes molecules within such a short time. And the system becomes a new 
local equilibrium since the partitions are entered in the system. If we looked at the 
corresponding area in the phase space, then it would move to the position slightly away 
from the previous one as long as the time interval is very short. 

In this way, as the distribution of concentrations is continuously changing by the 
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diffusion, the corresponding region in phase space is also moving continuously through 
the region corresponding to each state in the midst of the irreversible process and going 
into the region corresponding to its final equilibrium state. Once the true equilibrium is 
achieved, not changing or mixing the molecules within the region jx∆  but the 
changing or mixing the molecules in the entire space becomes necessary. Hence, the 
number of partition for the entire system has to be calculated in equilibrium. 

There is no limit for time in the equilibrium state, since each process is reversible so 
that an infinite time can be spent. Therefore, even if molecules are far apart to each 
other, the state that the molecules exchange their positions can be realized by the 
ergodic assumption. When the diffusion occurs, ( )i jc x  at each point can change 
continuously in time. If ( )i jc x  is fixed at some moment, then for such a short time 
the molecules within jx∆  can exchange their positions and the macroscopic mixing 
state in the so-called relaxation time can be realized. The above result supports this sort 
of consideration. 

In other words, the molecules within jx∆  are jumping the positions ceaselessly one 
after another and transporting microscopically different states by thermal fluctuations. 
Considering this situation for the phase space, we think that the representative point is 
doing the Brownian motion within the limited partial region of the phase space and for 
the time interval considered above it is wandering each point in that region. This 
approximation would be a rough approximation than the request from the ergodic 
assumption. But it wanders to the extent that the macroscopic state near the 
equilibrium state can be realized. Hence, the number of partition is calculated within 
this region such as Equation (3.23). Thus, if we explicitly describe this, then with 
gradually shifting the region where the Brownian motion is carried out, the region is 
going to expand, and finally becomes an extremely broad region that corresponds to 
the equilibrium. Although this speculation must be justified statistical mechanically 
[118] [119], it is required from the macroscopic argument inevitably. 

On the other hand, for each diffusion molecule, it should not move with the constant 
velocity iv  in Equation (3.6') but the central point of the molecules moves with each 
molecule following the Brownian motion. In many molecules there are higher speed 
molecules and the lower speed molecules at the same time, and even there exist 
molecules that reverse their motion. The averaged velocity among such molecules like 
the molecule of species 1 is given by 1v . In the same way, the chemical potential iµ  is 
meaningful as an averaged value per molecule. This is related to iv . Thus, we consider 
the averaged quantities without considering each motion of the molecule such as the 
kinetic theory of gases. Although it is a phenomenological theory, in order to generalize 
the treatment of complex statistical mechanics kinematically and to relate it to 
thermodynamics, there exists nothing else so far. 

In summary, the above argument is the Motoyosi Sugita’s argument on the 
application of the concepts of the broad quasi-static change and the virtual heat to the 
diffusion phenomena [3]. He also applied his brilliant concepts to many other systems 
such as the osmotic pressure for the cell membranes. However, I would like to skip this 
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here.  

4. The Theory of Phase Change and Condensation  

Before going to discuss the Motoyosi Sugita’s theory of thermodynamics of transient 
phenomena in detail, let us look at the theory of nucleation or condensation in 1930’s 
[96] [97] [98] as an excursion. 

His theory was motivated to be apply it to construct the thermodynamic theory or 
thermodynamics of life or life being [3]. In order to construct thermodynamics of life 
or life being, he presented mainly three big concepts:  

1) the “field”of chemical potential; 
2) the generalized nonlinear Ohm’s law; 
3) the maximum principle in transient phenomena. 
He extracted these concepts from intensively studying the theory of phase change 

and condensation or nucleation originated by the German physicists, Becker and 
Döring [96] and Volmer [97] and an American Physicist, Frenkel [98] before WWII. 
Therefore let us first review some of the early theory of nucleation phenomena as a 
prototype or precursor of the theory of thermodynamics of transient phenomena of 
Motoyosi Sugita.  

4.1. Frenkel’s Theory on Nucleation in the Supersaturated State  

When Mayer [120] studied statistical mechanically the nature of vapor, he considered 
clusters that are aggregated into groups of several molecules in addition to single 
molecules. Frenkel [98] simplified this idea to phenomenologically represent such 
groups of several molecules as spherical clusters with a certain radius. 

Let us now denote by (n) a cluster with n molecules. Denote by nφ  its free energy. 
Let us define by lµ  the chemical potential per molecule in the liquid state. Let us 
define by σ  the surface energy per area of a small drop whose radius is defined by r. 
In this setting, the free energy of the drop with radius r is given by  

24π .n ln rφ µ σ= +                            (4.1) 

If we define by ν  the number of molecules in 1 cm3 in the liquid state, and if we 
write as  

2 2
2

3 33 2 34π 3 3, , 4π ,
3 4π 4π

r n r nν α σ   = = =   
   

 

then  
2
3 .n ln nφ µ α= +                            (4.2) 

Next, define by nN  the number of (n) (n-clusters) in the vapor and we define as  

, ,n
n n

n

NN N c
N

= =∑                          (4.3) 

then the Gibbs free energy G of the whole vapor is given by  
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log ,n n n n
n n

G N kT N cφ= +∑ ∑                       (4.4) 

where T is the temperature of the system, k is the Boltzmann constant. Here 1 gφ µ=  is 
the chemical potential for a single molecule in the vapor and the second term in 
Equation (4.4) comes from the mixing entropy of the molecules. 

When the mixing entropy between single molecules and clusters with different sizes 
should be evaluated, the expression of mixing entropy for molecules of identical sizes is 
assumed and used to this case. This seems a problem. And as n becomes large, the 
expression for the mixing entropy must be modified. Furthermore, we cannot imagine 
that big liquid drops can float in the vapor. Therefore, the above expression of the 
Gibbs free energy is not exact quantitatively. However, if we restrict ourselves to the 
phenomenological argument, then it seems sufficient to approximately represent the 
system by Equation (4.4). 

On the other hand, let us denote by N ′  the total number of molecules in the whole 
system. We now have  

1
.n

n
N nN

∞

=

′ = ∑                            (4.5) 

Suppose that this mixture of clusters in vapor lies in equilibrium. In this case, seeking 
for the maximum of G with taking the variations of 0Nδ ′ =  and 0Gδ = , we obtain 
after some manipulation  

1 e ,
n gnn

n kTN N
N N

φ µ−
− =  

 
                        (4.6) 

or  

1 e .
n gn

n kT
nc c

φ µ−
−

=                            (4.7) 

This is the equation that determines the distribution of (n)-clusters first derived by 
Frenkel [98]. 

This is the distribution of concentrations of (n) clusters in the equilibrium state in 
the saturated and the supersaturated vapors. It means as follows: When some part of 
the gas conforms the mixture of (n)-clusters and when the mixture is included in the 
system, the entropy becomes larger than the one when all the molecules stay as single 
molecules in the vapor. If we look into each molecule, n gnφ µ>  means that due to the 
effect of surface energy, the free energy of (n) cluster, nφ , is larger than gnµ , n × the 
free energy of each single molecule. However, if we look into the system as a whole, 
then the free energy of the whole system may be lowered by the mixing entropy of the 
distribution of the clusters of various sizes. Statistically speaking, the probability that 
the system lies in a state that groups of (n)-clusters are mixing exceeds the probability 
that all molecules remain to be single molecules. 

4.2. Supersaturated Vapors  

Next following the argument of Frenkel [98], let us consider the supersaturated vapor. 



K. Iguchi 
 

151 

When the vapor is supersaturated, since ( ) ( )liquid gasl gµ µ< , from Equation (4.1) we 
obtain  

( )

( )

2

2
3

4π

,

n g l g

l g

n n r

n n

φ µ µ µ σ

µ µ α

− = − +

= − +
                     (4.8) 

where if we denote by ν  the number of molecules in 1 cm3 in the liquid phase, then 
α  is given by  

2
3 33 4π4π , .

4π 3
r nα σ ν

ν
 = = 
 

                     (4.9) 

Considering Equation (4.8), as n becomes large, n gnφ µ−  becomes negatively large. 
Therefore, according to Equation (4.6) it results in that there exist only the clusters of 
large n. This means that an infinitely large singe cluster exists in the vapor. Hence, it is 
nothing but the liquid phase. 

Thus one can understand the behavior of the supersaturated vapor system pheno- 
menologically. If l gµ µ= , then both the vapor phase and the liquid phase are in 
equilibrium and the system is a supersaturated vapor; If l gµ µ> , then the system is a 
heating liquid; If l gµ µ< , then the system is stable for a liquid phase. However, since 
the changeover is disturbed, the system has to transiently exist as a vapor, i.e., the gas 
phase, which is the supersaturated vapor. If one treats the system as being in 
equilibrium, then one obtains the result of the liquid phase only. So, the supersaturated 
vapor phase has never been obtained by the standard approach of equilibrium 
thermodynamics. 

Motoyosi Sugita pointed out the following [3] [23]: As stated in the previous section, 
one can assume that even in the transient phenomena, the expression of nc  in 
Equation (4.7) holds true and one can apply the nc  to the expression for the Gibbs 
free energy G using Equation (4.4) in the midst of the transient phenomena. This 
means that one cannot take the partition number over the entire space. If we do such a 
thing, then the supersaturated state never appears theoretically, as mentioned in the 
above. In this case we are considering of cutting off the clusters larger than a certain 
size and freezing the present nc  temporarily. 

Now, the cause that interrupts the changeover from the vapor phase to the liquid 
phase is the lack of the surface area which leads to the condensation. In order that the 
liquid phase emerges in the supersaturated vapor phase, it has to pass through the state 
of extremely small liquid drops in the midst of the process. Large clusters are not 
included in the midst of the growth. Very small is the rate that clusters gradually grow 
as the condensation occurs at the surface of small (n) clusters. Therefore, the system is 
at a standstill as a vapor. According to Frenkel [98], this is the metastable state. The 
distribution of nN  with small n reaches the equilibrium and it is described by 
Equation (4.6). 

Motoyosi Sugita noted here the following: When the Gibbs free energy for the entire 
system G is decreasing as the second law of thermodynamics shows, there appears some 
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part which has larger Gibbs free energy, and this supports the place where con- 
densation occurs, and it determines the rate of the change in the transient phenomena. 

The reason why clusters have large nφ  is due to the fact that the arrangement of 
molecules is very crowded almost same as in liquid, while the position energy between 
molecules is larger than that in the part of the same volume in the normal liquid. It has 
a small entropy corresponding to the order of the arrangement, which is also important 
when we consider life or life being. While n is smaller than some size of nuclei, since 
there exist the intermolecular forces, the probability that n molecules get together to 
make a group of n molecules is much larger than the probability of the chance of 
n-tuple collisions of molecules in an ideal gas where molecules move freely. This is also 
important when we consider life or life being. It states that when the volume of phase 
space, that is, the thermodynamical probability, corresponding to the existence of a 
complex coacervate (the phase space when we consider only the molecules that con- 
struct a coacervate) is small enough, its entropy is also small correspondingly. 

Next, let us differentiate Equation (4.8) with respect to n and evaluate the maximum.  

Substituting the value of α  into it, and taking aN
M

ν ρ=  where ρ  is the density of  

the liquid, M the molecular weight and aN  is the Avogadro number given by 
236.02 10aN = × , respectively, we have  

1
22 2 1 2 .

3g l
a

Mn
r N r

σ σµ µ α
ν ρ

−
− = = =                  (4.10) 

On the other hand, let us denote by ap  the pressure of the saturated vapor over the 
horizontally flat interface and by p the pressure of the supersaturated vapor. Now we 
have  

log .g l
a

pkT
p

µ µ− =                         (4.11) 

From this we find the Kelvin’s equation:  

2log .
a

p M
p RT r

σ
ρ

=                          (4.12) 

And if the maximum of n gnφ µ−  is taken as K K gnφ µ− , from Equation (4.10) we 
obtain  

24 π ,
3K K g Kn rφ µ σ− =                         (4.13) 

where K is the maximum size of the clusters. According to Frenkel [98], the cluster of 
this size is the nucleus of condensation. The range that n gnφ µ−  is increasing as n is 
increasing is the region of Kn n< . At Kn n=  the saturated pressure p in equilibrium 
with nuclei is equal to the supersaturated pressure ap . Hence, (due to the fact that 

n gnφ µ−  becomes the maximum) the unstable equilibrium is realized between the 
small liquid drops which becomes the nuclei and the vapor. Here it is not until many 
clusters exist in the vapor that the clusters can become in equilibrium with single 
molecules in the vapor. In the nuclei only one nucleus can keep equilibrium although it 
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is unstable. 
In the above argument, we have assumed that in the metastable state the rate of 

growth of cluster is small enough. And although the system is not in equilibrium, we 
have treated it as if it were in equilibrium. This provides the variation principle 0Gδ = . 
This led to the distribution of clusters nN  that is given by Equation (4.6) or Equation 
(4.7) for n small. Let us next discuss the rate of cluster growth in order to understand 
the essence of the metastable (quasi-static) state or the transient state. This concept 
seems common in fundamental aspects of the problem when we consider ther- 
modynamics of life or life being, although theoretical appearance seems rather 
different. 

4.3. Kinetics of Cluster Growth  

According to Becker and Döring [96], the growth of the cluster is carried out in the 
following process:  

( ) ( )1 1 .n n+ → +                             (4.14) 

Here 1 stands for a single molecule and it collides with (n), the cluster consisting of n 
molecules and condensates into ( )1n + , the cluster consisting of 1n +  molecules. 
Although there may exist possibly many other process such as  

( ) ( )
( ) ( ) ( )

1 1 1 1 ,

3 3 1 1 ,

n n

n n

− + + → +

− + + → +
                       (4.15) 

and so on, the probability of these processes must be very small enough compared with 
that of the collision process of Equation (4.14), since triple collisions or the collision 
between (3) and 1 are molecular dynamically very few events such that they loose the 
meaning to form ( )1n + . Thus, in the kinetics or the rate theory one has to pick up the 
rate-determining process only, while one ignores the other not-rate-determining pro- 
cesses. This way of thinking is also helpful when we investigate the life phenomena. 

Volmer [97] slightly improved the calculation of Becker and Döring [96]. In his 
calculation he denotes by J the rate of the process of Equation (4.14), which is the total 
number of clusters per time from ( ) 1n +  to ( )1n + . Then he writes it as  

( )( )1 1 ,n I n nII nJ N W N W O+ + ′= −                     (4.16) 

where nN  is the number of the clusters of (n), IW  is the condensation rate per unit 
area, and ( )1II nW +  the evaporation rate per unit area and nO′  means the surface area 
of sphere with the radius which is given by the sum of the radius of cluster (n) and the 
radius of a single molecule. 

Now in equilibrium of the growth process, both the forward and backward processes 
are attained such as  

( ) ( )1 1 .n n+ +                          (4.17) 

This provides 0J = . From Equation (4.16) together with this condition, it yields the 
following relation:  
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( )
1

1

1 1

e ,
n n g

II nn kT

n I

WN N
N W N

φ φ µ+ − −
+

+

= =                      (4.18) 

where N is the total number of molecules in the system such that nnN nN= ∑ . This 
can be also derived directly by applying Equation (4.6) to nN  and 1nN + . Hence this is 
nothing but the law of mass action for the chemical process of Equation (4.17). 

In the saturated vapor, it is no wander that Equation (4.18) must hold valid as well. 
However, even in the supersaturated vapor, the rate J is expected to be small such that 

0J ≈ . Therefore, in the latter case we expect that both Equation (4.17) and Equation 
(4.18) hold valid approximately. This is very important when we consider the transient 
phenomena in the stationary state. On the one hand there exist main processes and 
under current processes, on the other hand the processes of ( ) ( )1 1n n+ → +  and 
( ) ( )1 1n n+ → +  are performed and the equilibrium between them is attained. This 
point is very important when we investigate the dynamic equilibrium. 

In summary the above theory is the theory of condensation in the supersaturated 
state originated by Becker and Döring [96] and completed by Volmer [97] and Frenkel 
[98] in the Western countries before WWII. 

4.4. Thermodynamics of Kinetics of Cluster Growth  

Motoyosi Sugita investigated the above theories of Becker and Döring [96], Volmer 
[97] and Frenkel [98] very carefully. 

In considering the kinetics of the cluster growth thermodynamically, since the half of 
Equation (4.18) could be valid even for the non-equilibrium state and then it holds as 
well, he rewrote Equation (4.18) as follows:  

( )
1

1

1

e .
n n g

II n kT

I

W N
W N

φ φ µ+ − −
+ =                         (4.18’) 

Denote now by n
n

Nc
N

=  and 1
1

Nc
N

=  the concentration of cluster (n) and the  

concentration 1, respectively. Then J is given as  

( )

1

1

1
1

1

2

1 1
1

,

e

e e e .

n n g

n g n g n

II n
I n n n

I

n kT
I n n

n

I n kT kT kT
n n

W
J W O N N

W

cW NO c
c

W N O c c c
N

φ φ µ

φ µ φ µ φ

+

+

+
+

− −
+

+ +
−

+

 
′= −  
 
 
′= −  
 

 ′
= −  

 

               (4.19) 

Let us introduce the concept of the chemical resistance cR  such as  
2

1

1 e ,
n g

I n kT

c

W N O
R N

φ µ+
−′

=                         (4.20) 

and let us define the chemical potential for a single molecule in cluster (n) in the midst 
of the growth process by  
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log .n n n
n

G kT c
N

µ φ∂
= = +
∂

                     (4.21) 

Then Equation (4.19) can be rewritten as  

11 e e .
n g n
kT kT

c

J
R

µ µ µ ++  = − 
  

                      (4.22) 

The above equation looks like the Ohm’s law of 
1

c

J
R

µ= ∆ , where  

1n g nµ µ µ µ +∆ = + − . The quantity in {}  of Equation (4.22) represents the field of 
force. It is a kind of force that promotes the growth of clusters such that the change in 
the Gibbs free energy G goes towards its minimum. It corresponds to the Chemical 
force of Ostwald and hence it was called the chemical resistance [121]. 

Now, from this point of view the growth process of clusters  

( ) ( ) ( )1 2n n n→ → + → + →                    (4.23) 

can be regarded as a system of resistances in series in an electrical circuit following the 
Ohm’s law. In the nucleation process the resistance cR  at the size of nucleus is the 
largest, and indeed the rate J of the process is determined by it. 

Motoyosi Sugita noted the following: The mathematical form of Equation (4.22) is 
much more convenient than that of Becker etc. It is not the equation to show the 
destiny of the growth and the decomposition of clusters. Each cluster emerges as a 
result of statistical and thermal fluctuations and the system moves towards its dynamic 
equilibrium by following the field of force as the needles of a clock move. This idea 
becomes very important when we think of crystal growth and life being. What is 
important here is not the quantitative treatment but the qualitative treatment of the 
theory. In order to introduce the concept of the field of chemical potential, i.e., the 
µ-field, the expression of J was written in the form of Equation (4.22) in terms of the 
chemical potentials nµ  and the chemical resistance cR . Here cR  has been assumed 
to be determined empirically by an experiment. Thus, the above theory of the Ohm’s 
law like theory is a phenomenological one or a rough preparation for the more exact 
and detailed theory that will appear in the future. When cR  will be calculated 
mathematically using molecular statistics, one has to take into account fluctuations and 
improve the mathematical method of statistical mechanics. But at this stage we 
restricted ourselves within the phenomenological or rough preparation theory.  

5. Thermodynamics of Transient Phenomena of Motoyosi Sugita  

As is noticed in the above, the theoretical framework of the above theory is very general. 
Becker and Döring [96] as well as Volmer [97] applied it to the two-dimensional crystal 
growth on the surface of crystal. Indeed Motoyosi Sugita applied it to many physical 
systems in the broad quasi-static change or in the metastable state from physics to 
biology [4] [5] [6] [41]-[91]. In this section, I would like to focus our attention on the 
application to chemical reactions.  
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5.1. Motoyosi Sugita’s Theory of Chemical Reactions  

Let us consider the chemical reaction of the following form [104]:  

1 1 2 2 1 1 2 2 ,a A a A b B b B+ + → + +                     (5.1) 

where iA  ( jB ) stand for the reacting (produced) molecules and ia  ( jb ) are positive 
integers representing stochiometry of the reaction. For example, a simple reaction case 
looks like the following:  

.aA bB cC dD+ → +                           (5.1’) 

On the other hand, Motoyosi Sugita [3] [60] frequently used the following expression 
for it:  

,i i j j
i j

A Aν ν→∑ ∑                            (5.2) 

where iA  ( jA ) stand for the reacting (produced) molecules and iν  ( jν ) are positive 
integers representing stochiometry of the reaction. He distinguished the reacting or 
produced molecules by i or j. 

Denote by iN  ( jN ) the number of reacting (produced) molecules of ith (jth)  

species in mole (simply called the mole numbers). Let us denote by [ ] i
i i

Nc A
N

≡ =  and 

j
j j

N
c A

N
 ≡ =   the concentrations per mole of molecule iA  and jA , where  

i ji jN N N= +∑ ∑ . The changes in mole numbers of the reacting and produced 
molecules are represented by  

1 2 1 2

1 2 1 2

d dd d d d
d ,A BA A B Bn m

n m

N NN N N N
a a a b b b

ξ= = = = = = = =
− − −

          (5.3) 

where ia  and ib  are all positive integers. Here dξ  and 
d
dt
ξ

 are called the extent of  

reaction or degree of achievement and the reaction rate by Theophile De Donder [102] 
[103] [104], respectively. 

On the other hand, Motoyosi Sugita used n∆  instead of dξ  and regarded it as the 
increment in molecular numbers such that  

dd ,ji

i j

NN n
ν ν

− = = ∆                         (5.4) 

where i and j stand for the reacting and produced molecules. In this way Motoyosi 
Sugita emphasized the change of molecular numbers in molecular statistics [3] [5] [60], 
while the De Donder’s school emphasized the change in the reaction equations [102] 
[103] [104]. 

Following Motoyosi Sugita’s theory [5], let us define the Gibbs free energy G as  
,k k

k
G Nµ≡ ∑                            (5.5) 

where kN  and kµ  are the number and the chemical potential of the molecule kA , 
respectively, and all indices for reacting (i) and produced (j) molecules have been 
included in the same index k. Equivalently, this induces to the following definition of 
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the chemical potential:  

.k
k

G
N

µ ∂
≡
∂

                             (5.6) 

It means that if the amount of kN∆  of the kth molecules is added to the system 
from outside, then the work of  

k kG Nµ∆ = ∆                             (5.7) 

is done such that the Gibbs free energy increases. Since the sum in the Gibbs free 
energy G is linear in iN , it shows a homogeneous equation. Hence, we have  

.k k
k

dG dNµ= ∑                            (5.8) 

Using the reaction equation of Equation (5.4), we have  

, ,i i j jN n N nν ν∆ = − ∆ ∆ = ∆                        (5.9) 

where if 0n∆ >  then the reaction moves from the left to the right. Substituting 
Equation (5.9) into Equation (5.8), we can derive the following:  

,i i j j
i j

G n nν µ ν µ µ
 

∆ = − − ∆ = −∆ ∆ 
 
∑ ∑                 (5.10) 

where µ∆  is defined by  

.i i j j
i j

µ ν µ ν µ∆ ≡ −∑ ∑                        (5.11) 

This is nothing but the Affinity introduced by De Donder [102] and Progogine [103] 
[104] before WWII as well as Marcelin [122] and Jouguet [123] even before WWI in 
Western countries. 

From the knowledge of thermodynamics, G becomes the minimum when the system 
goes to chemical equilibrium. Hence, in chemical equilibrium, minG = ; in other 
words 0Gδ = . Therefore, if we regard G∆  as a variation, then we find  

0.G∆ ≥                              (5.12) 

This yields the following criterion for the direction of the reaction of Equation (5.2):  

0 left right,
0 chemicale quilibrium,
0 left right.

µ
µ
µ

∆ > ⇒ → 
∆ = ⇒ 
∆ < ⇒ ← 

                  (5.13) 

This is the criterion given through the concept of affinity. 
Let us denote by MS  the mixing entropy [see Equation (3.23)] of the system of 

chemical molecules. The Gibbs free energy G can be written as  

0 .k k M
k

G N TSµ= −∑                         (5.14) 

Simply suppose that the mixing entropy is approximately given as  

log ,M k k
k

S R N c= − ∑                         (5.15) 

where aR N k=  is the gas constant as before. Substituting Equation (5.15) into 



K. Iguchi 
 

158 

Equation (5.14), the chemical potential kµ  is given by  

0 log .k k kR cµ µ= +                          (5.16) 

Substituting these into 0µ∆ =  in Equation (5.11), we obtain  

0 0log log .ji
i i i j j j

i ji j
RT c RT cννν µ ν µ+ = +∑ ∑∏ ∏              (5.17) 

This yields  

0log ,
i

j

i
i

j
j

c
RT

c

ν

ν µ

 
 

= ∆ 
 
 

∏

∏
                        (5.18) 

where we have defined as  

0 0 0.i i j j
i j

µ ν µ ν µ∆ ≡ −∑ ∑                        (5.19) 

Rewriting Equation (5.18), the law of mass action in the chemical equilibrium is 
given by  

( )
0

e ,
i

j

i
i RT

j
j

c
K T

c

ν
µ

ν

∆

= =
∏

∏
                        (5.20) 

where ( )K T  is called the equilibrium constant at temperature T. 
Now let us consider when the system is not in equilibrium. In this case, Equation 

(5.4) yields the rate equation:  

d ,
d

ji
f i b j

i j

n k c k c
t

νν= −∏ ∏                       (5.21) 

where fk  means the reaction coefficient for the forward (from the left to the right) 
process while bk  means the reaction coefficient for the backward (from the right to 
the left) process. We now define the relationship between fk , bk  and K as  

( ).f

b

k
K T

k
=                            (5.22) 

Here if we may follow the argument of Prigogine et al. [103] [104], then we may 
define as  

d ,
d f bR R

t
ξ
= −                           (5.23) 

where  

, .ji
f f i b b j

i j
R k c R k cνν= =∏ ∏                    (5.24) 

5.2. Motoyosi Sugita’s Concept of the Generalized Nonlinear Ohm’s Law  

Following the theory of Motoyosi Sugita [5], let us define the chemical resistance cR  
to the chemical reaction by  
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00

1 e e .
j ji i

ji
RT RT

f b
c

k k
R

ν µν µ
− −

∑∑

= =                     (5.25) 

Here I would like to note the following: If we rewrite as  

00

, ,

e , e ,
j ji i

ji

f i j b j i

RT RT
i j

k P k P

P P

ν µν µ

→ →

− −
∑∑

≡ ≡

≡ ≡
                    (5.26) 

respectively, then we can derive the relation of detailed balance:  

1 .i i j j j i
c

PP P P
R → →= =                        (5.27) 

Thus, the equation for cR  (Equation (5.25)) indicates a kind of the detailed balance 
equation. 

Motoyosi Sugita jumped over the standard way of thought and he assumed that the 
chemical potential is meaningful even when the system is not in equilibrium yet. 
Therefore, he assumed for all components of the molecules  

0

e .
k k
RT

kc
µ µ−

=                           (5.28) 

Using Equation (5.28) together with Equation (5.25), he was able to rewrite Equation 
(5.24) as follows:  

0

1e e e
i i i i i

i i i
i RT RT RT

f f i f
i c

R k c k
R

ν µ ν µ µ

ν −
∑ ∑ ∑

= = =∏               (5.29) 

0

1e e e
j j j j j

j j j
i RT RT RT

b b i b
i c

R k c k
R

ν µ ν µ µ

ν −
∑ ∑ ∑

= = =∏               (5.30) 

Applying these into Equation (5.21) or Equation (5.23) and rewriting 
d
d
nJ
t

= , he  

was able to derive the following:  

d 1 e e .
d

j ji i
ji

RT RT

c

nJ
t R

ν µν µ ∑∑ 
 = = − 
  

                  (5.31) 

This expression has the generalized nonlinear form of the Ohm’s law:  

d
d
1 1 .i i j j

i jc

nJ
t

R RT
ν µ ν µ

=

 
= − 

 
∑ ∑

                 (5.32) 

Now we are able to know the following relation:  

0 0,Jµ∆ ⇔                         (5.33) 

where ⇔  means that the left hand side is equivalent to the right hand side. Thus we 
can have the same criterion as that in Equation (5.13) by considering Equation (5.32):  
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> 0 left right,
0 chemicale quilibrium, .

< 0 left right

J
J
J

⇒ → 
= ⇒ 
⇒ ← 

                  (5.34) 

5.3. Motoyosi Sugita’s Concept of the Field of Chemical Potential  

Equation (5.31) was first introduced by Motoyosi Sugita long long time ago [23] [29] 
[60]. He was inspired by the expresson of Equation (4.22). It was derived by Becker and 
Döring [96], Volmer [97] and Frenkel [98] (shortly represent BDVF). They studied the 
theory of condensation considering the nucleation of clusters in the supersaturated 
state. Therefore, it describes the non-equilibrium state in the irreversible process of 
condensation. 

Motoyosi Sugita recognized that when chemical equilibrium is slightly broken or 
when chemical reactions are going on, the physical conditions in chemical reactions are 
the same as those in condensation as well as nucleation. Thus I would like to express 
schematically the relationship between the Sugita’s J and the BDVF's J in the following:  

( )

( )

11BDVF e e

1Sugita e e .

n g n

j ji i
ji

kT kT

c

RT RT

c

J
R

J
R

µ µ µ

ν µν µ

++

∑∑

  = − 
  

↓

 
 = − 
  

                   (5.35) 

The mathematical form in {}  in the above represents a kind of chemical force. This 
concept is different from another concept of chemical force, Affinity of De Donder 
[102] [103] [104]. The affinity is defined as µ∆  in Equation (5.11). On the other 
hand, the Sugita’s concept of a kind of chemical force is related to the change in 
molecular numbers n∆  in Equation (5.10). Motoyosi Sugita called it the µ-field or the 
filed of chemical potential [3]. Both types of chemical forces acting on either µ∆  or 

n∆  ( J∝ ) take place in the irreversible processes. Thus, he emphasized the use of the 
concept of the filed of chemical potential to most of all transient phenomena. 

As was discussed before in the previous section, in Equation (5.35) one can derive the 
above expression for J without any problem. However, the expression for cR  cannot 
be derived from the theoretical framework of equilibrium statistical mechanics. It is a 
phenomenological expression that is supposed to be determined in experiment. Never- 
thless, later some kind of its justification was performed by Eyring et al. [124] [125] 
using the statistical method. And Becker and Döring [96] and Volmer [97] required the 
kinematical treatment in the theory. Therefore, Motoyosi Sugita called cR  in this 
situation kinematical situation. On the other hand, he stated that when one went deep 
into the details, one became stuck without stepping forward any further since one met 
very difficult problems lying down in statistical mechanics. In order to escape these 
difficulties, one has to be satisfied with only considering the so-called the quasi- 
thermodynamics. It is slightly generalized to adjust with the transient phenomena, 
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using the concept of µ-field. By this approach, one becomes able to apply the idea and 
concept to many biological systems. He called this situation the equilibrium theoretical 
situation. 

As an example, let us apply the concept to the condensation on the surface (of either 
liquid or solid). Denote by J the number of molecules per second that collide with the 
surface. Denote by µ′  the chemical potential for the phase I and µ′′  that for the 
phase II. This is given by  

( ) 0 1 e e .
2π

a kT kT

c

P P S
J

RMRT

µ µα ′′ ′ −  = = − ′   
                 (5.36) 

Here P  ( aP ) means the pressure of the phase I (II), where logkT Pµ′′ =  
( log akT Pµ′ = ). T  is the temperature of the system. M means the molecular weight of 
a molecule. 0S  is the total area of the surface. And α  stands for the permeability 
coefficient, which means that molecules colliding with the surface of phase II can be 
easily absorbed in the phase. Therefore, if µ µ′ ′′=  then both phases are in equilibrium, 
if µ µ′ ′′>  then the phase I goes to the phase II, and if µ µ′ ′′<  then the phase II goes 
to the phase I. 

Motoyosi Sugita recognized that this kind of rule for phase change seems very similar 
to that of the Gibbs’ phase rule for the equilibrium state [126]. In the former phase 
change occurs as a consequence of the broad quasi-static change in the irreversible 
process of transient phenomena, while in the latter phase change occurs as a con- 
sequence of the realization of equilibrium state. Thus there is a conceptual difference 
between them such as the former is time-dependent and the latter is not time- 
dependent. However, Motoyosi Sugita postulated the validity of the application of the 
concept of the field of chemical potential to many biological nonuniform systems such 
as polymers or macromolecules in protoplasm in cells. 

Denote by K a part in a nonuniform system and denote by K
iµ  its chemical 

potential for component i in K and so forth. If there are three parts K, K ′  and K ′′  in 
the biological nonuniform system, then we can assign chemical potentials K

iµ , K
iµ
′ , 

and K
iµ
′′ , respectively. Now if the system is in the equilibrium, then the chemical 

potentials satisfy the following condition:  

,K K K
i i iµ µ µ′ ′′= =                           (5.37) 

and if the chemical reaction in equilibrium in the part K is given by  

,K K
i i j j

i j
A Aν ν∑ ∑                         (5.38) 

then the condition  
K K

i i j j
i j
ν µ ν µ=∑ ∑                          (5.39) 

must be satisfied. On the other hand, if the equilibrium is not yet attained, then the 
kinetic rate equation like Equation (5.35) and Equation (5.36) should be applied to 
describe the system. Even for dynamic systems such as the system of life or life being, if 
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the system is in dynamic equilibrium such as fluid equilibrium or chemical equilibrium, 
then we may assume that Equation (5.39) is approximately satisfied in the sense of 
broad quasi-static change and of local equilibrium. This is the concept of the field of 
chemical potential introduced by Motoyosi Sugita long ago. 

Now, let us turn back to the reason how Motoyosi Sugita noticed the concept of field 
of chemical potential, for a while. As mentioned in the previous sections, he studied the 
the quasi-static change in classical thermodynamics in Japan before WWII, where 
Japan was very isolated from Western countries occasionally dashing to the war. He 
found the way of exceeding it and called it the broad quasi-static change in quasi- 
thermodynamics. He understood that chemical potential µ  has to be defined locally 
as a function of a field of the coordinates of the system such as ( ),x tµ . Otherwise he 
was not able to derive the Kelvin’s relation for the thermoelectric effect. 

In my opinion, it is obvious that his way of thought came from this experience in his 
physics study, and then he applied the concept to other physical and chemical examples 
such as chemical reactions. The first look of Motoyosi Sugita for this discovery seems to 
be the following simple equation:  

( ) ( ) ( )0 log ,i i i ix x kT c xµ µ φ= + +                   (5.40) 

where ( )i xφ  means the electric potential acting on the molecule of species i and 
others are the same as before. Then he extended his way of thinking so that even if no 
electric potential exist, then the chemical potential as a field is meaningful. Onsager 
[100] [101], Debye-Hückel [127] and Onsager-Samaras [128] used the similar ideas 
before. Why not for other systems? What’s wrong with this? 

So, Motoyosi Sugita stepped forward to go beyond the equilibrium thermodynamics 
to the quasi thermodynamics of transient phenomena. Thus, although we think of 
chemical potential such as a numerical value for the equilibrium state in the standard 
point of view of thermodynamics, Motoyosi Sugita never thought like this but he 
always thought that chemical potential is a field defined on space-time such as the field 
in field theory even for dynamic, nonuniform, irreversible, non-reproducible and 
transient phenomena. This is his philosophy on the field of chemical potential. 

5.4. Relationship between Cooperative Phenomena and Chemical  
Potential  

Motoyosi Sugita further mentioned that the chemical potential plays an important role 
when the system undergoes phase change. It is not well-known in the recent modern 
text books in thermodynamics [103] [104] [105] [106] [108] [116]. This is the 
cooperative effect when the system undergoes a phase change in the irreversible process 
in transient phenomena. In other words, it can be dubbed the much more modern 
word, induction-association principle for the phenomena. The word inducetion- 
association principle was first introduced by Gilbert N. Ling [129] [130] and has been 
advocated by Gerald H. Pollack [131] [132] for a long time. 

This very particular aspect of the phenomena is the following: When the system faces 
a phase change, if it undergoes the phase change, then it cannot occur so literally, 
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however. Rather, it never occurs even when the temperature of the system already goes 
below the critical temperature at which the phase change is supposed to occur. This is 
the supersaturation phenomena, discussed before. At this moment, in order to make 
the system undergo the phase change, a nucleus or a stimulus, i.e., a kind of trigger is 
needed for the phase change. Otherwise, it stays still. Conversely speaking, even if the 
stimulus of a trigger is very very small or microscopically small, the entire system 
undergoes the phase change. Hence, the effect is very cooperative. This phenomenon is 
not perfectly understood yet even nowadays. 

In order to understand this type of phenomenon, Motoyosi Sugita emphasized the 
importance of the concept of the field of chemical potential, namely the µ-field. 
According to Frenkel [98], even in solid, partially melt parts are included near melting 
point. But the parts do not develop so easily even below the melting point. He put it the 
name pre-melting. Motoyosi Sugita postulated that in such a case the µ-field plays an 
important role. He imagined that the µ-field is always fluctuating thermally or locally 
under various conditions. One good example is the cluster growth in the previous 
section. Local raise of the value of µ-field promotes the local phase change in the system 
until the system goes to equilibrium. A local variation of µ-field initiates the action at a 
distance to another point in the system. It is long-range interaction. Thus, local 
variation of µ-field acts as a trigger for the phase change through the long-range 
interaction of µ-field. This is the nucleation in the supersaturated phases. 

In this way, the system can communicate through the µ-field in the system just like 
when the electrical potential does. This means that µ-field extends the lines of force as 
an induction of the generalized potential, the µ-field. Mathematically, it may be con- 
sidered as the gradient of the µ-field. Therefore, the idea of induction-association 
principle of Gilbert N. Ling seems very similar to that of cooperativeness of µ-field of 
Motoyosi Siguta. 

The cause of such lines of force comes from the µ-field. The µ-field consists of the 
mixing entropy term. Hence, the lines of force or the long-range interaction between 
the parts in the system appears as the consequence of the mixing entropy, e.g., the last 
term in Equation (5.40). In the standard viewpoint this nature of long-range interaction 
emerges as a consequence of electric effect. However, Motoyosi Sugita extended the 
concept such that so is true for the µ-field as well. On the other hand, the action of 
energy is not long-range but local or short-range. Thus, the induction-action principle 
of Gilbert N. Ling and the cooperative effect of Motoyosi Sugita comes from the mixing 
entropy, not from the energy of the system. 

Can one think of the field in life being as the µ-field? He sometimes asked such a 
question. In such biomaterial or life or life being, the µ-field is not made of a single 
component but is constructed by a huge number of components. Obviously, the 
structure of the µ-field becomes very complex. If so, then it would be very very difficult 
to calculate the entropy term, calculating the partition number such as in Equation 
(3.23), since no simple formula exist for such complicated molecular systems. However, 
in principle and ideally, we can think of the Gibbs free energy G, the number of 
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partition W and the sum of states Z, etc. Then we can expect that the system can move 
towards the direction of 0Gδ <  and the motive force for it is related to the µ-field 
from the point of view of quasi-thermodynamics. 

His conclusion is as follows: The µ-field is very long-range enough to affect each 
other. A slight variation such as temperature fluctuation can be eliminated by the 
cooperativeness of the entire system. Therefore, when one has to apply thermo- 
dynamics to the system in considering the entire system as a whole. Especially the 
second law of thermodynamics is such a law. One must be very careful when he applies 
the second law of thermodynamics to the partial systems. It is sometimes said the 
following: Since life is not a closed system, we cannot apply the second law of 
thermodynamics to life. This seems a ridiculous idea, since it misses the point. While 
one takes into account the Gibbs free energy, one may consider the partial systems, 
under the condition that temperatue is constant, one may consider the other parts as 
thermal sources by which some parts can be affected with other parts through the 
thermal communication to each other. 

5.5. The µ-Field, as an Invisible Force  

In the previous example of the cluster growth in the supersaturated phase, the clusters 
grow like this:  

( ) ( ) ( )1 2 .n→ → → →                       (5.41) 

Here in between the nearest states of clusters ( )1n −  and ( )n  Equation (4.22) 
holds  

1

1,
1,

1 e e .
n g n

kT kT
n n c

n n

J
R

µ µ µ− +

−
−

  = − 
  

                     (5.42) 

The field of chemical potential of {}  in the above expression acts as an invisible 
force and statistically dominates this cluster growth. It has a tendency of action that the 
mixing entropy is increased as large as possible and the Gibbs free energy is decreased 
as small as possible. This tendency appears to be the hidden invisible force to make 
clusters grow. As seen in Equation (5.41), the 1,n nJ −  is acting in series, which 
corresponds to the current between the nodes in electrical circuit. On the other hand, 
chemical resistance 1,

c
n nR −  is in series as well, where chemical resistance corresponds to 

resistance in electrical circuit. The current J is stuck to be very small right before the 
nucleation size, being disturbed by the very large chemical resistance cR . Therefore, 
the cluster with maximum size (n) near the critical size of nucleus ( )Kn  has its 
maximum resistance and hence the rate , 0

Kn nJ ≈  (although , 0
Kn nJ ≠ ). The system 

wants to go to the nucleus but cannot exceed; this means quasi-stability. This nearly 
equilibrium state in the supersaturated phase right before the phase change is 
sometimes called false equilibrium. 

In Equation (4.8) as n becomes large, n gnφ µ−  becomes negatively large such that 
the entropy becomes locally small. The reason why such a state appears is that if such 
singular parts (i.e., large clusters) are included in the system, it becomes more 



K. Iguchi 
 

165 

convenient to make the total G small. Such an action that makes entropy small is also 
due to the invisible force, the µ-field. Apparently the second law of thermodynamics 
seems to be broken, but it is not so. Once we see the entire system, the second law of 
thermodynamics has never been broken. 

After the growth processes of non-equilibrium thermodynamics are finished, once 
such clusters or complicated life being develop their structures, the fully developed 
structures of such clusters or fully developed complicated structures of life being consist 
of very large Gibbs free energy by definition. This complicated situation seems to 
contradict the laws of thermodynamics. 

Thus, Motoyosi Sugita noticed that there might exist some kind of hidden law of 
thermodynamics in addition to the three laws of thermodynamics. He postulated that 
there might exist the 4th law of thermodynamics which dominates the speed of the 
transient phenomena as mentioned in the introduction.  

6. Motoyosi Sugita’s Concept of the Maximum Principle in  
Transient Phenomena  

In this section, let us consider the most important contribution of Motoyosi Sugita in 
my viewpoint. As discussed in the previous section, the concept of the filed of chemical 
potential is quite important when we considerate the non-equilibrium processes. 

6.1. Motoyosi Sugita's G  = Max Conjecture and the 4th Law of  

Thermodynamics  

As early as in 1950 Motoyosi Sugita wrote a paper entitled in Japanese, Biological 
Thermodynamics and its Method, which was published one year later from the Annals 
of the Hitotsubashi University, entitled in English Thermodynamical Method in 
Biology [60]. He stated in Japanese on the existence of the 4th law of thermodynamics 
[29] as the paragraph quoted in Introduction. And also he first applied his theory of 
thermodynamics in the transient phenomena to the theory of metabolism. 

For the reason why Motoyosi Sugita believed the existence of the 4th law of 
thermodynamics, he listed several examples that seem to be related to this 4th law as 
follows:  

Here let us see many instances suggesting this large principle of thermodynamics. 
1) The cascade principle(Stufenregel) found by W. Ostwald [97] shows that the 

nature has the tendencies as if it wanted to take the pass of smaller resistance or make a 
de tour and want to establish the equilibrium as fast as possible. 

2) Generalizing further the rule described above, it might be said that the nature 
prefers the line of the least resistance, if there are ways side by side for the equilibrium. 

a) According to Volmer [97], for instance, the crystal formation shows that such a 
pass is taken actually. 

b) Eyring and others [124] [125] called such a process rate determining. 
c) Electric current in conductor takes the distribution that heat loss is minimum if 

the total current takes a given value. Therefore the heat generation must be maximum if 
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the potential difference will be taken as constant. Therefore, if a cell is applied to drive 
the current, it will take the distribution to dissipate the free energy of the cell as fast as 
possible. 

d) Onsager [100] [101] has derived his reciprocal relation from the principle of least 
dissipation function. This principle might be considered to the maximum velocity of 
entropy increase which will be discussed later. 

3) If a new passage is built independently which has less resistance than others 
already existing, then the circumstance above described, that might be the 4th law of 
thermodynamics, may also be seen from our common sense. 

a) The new way may be considered having delicate catalytic action, therefore, large 
free energy of activation or small entropy. The free energy of activation determines the 
rate of development of such a passage acting as if the initial cost is to construct a 
highway. That is why the construction of the way of small resistance is retarded. 
Nevertheless, it becomes rate determining when it is performed and the old ways 
become only bypass or will be ruined. 

b) The idea of natural selection or struggle for life of biology may be considered as 
having the relation to this principle. That is the free energy discharged through the old 
passage is used to the free energy of activation of new way, and the material itself 
constituting the old way may be useful also as the material of construction (see (v) of 
VI). 

c) Such a circumstance like natural selection can be seen also in the inorganic worlds. 
For instance, let us observe the nuclear formation of ice in supersaturated water vapor 
under freezing point, and containing super-cooled water droplets. If the crystal nucleus 
is formed, not only the condensation occurs on this nucleus, but the super-cooled 
droplets vaporize and disappear. This is the consequence of the 4th law and the same 
phenomena can be seen on the discharged plate of PbSO4 of battery and also in the case 
of recrystallization of metals and others, and they are playing a role to promote the 
tendency to the thermodynamic equilibrium.  

Thus from the early beginning of his research he recognized and imagined the 
existence of the 4th law of thermodynamics, where he expected that some kind of the 
generalization of the least dissipation of energy of Onsager could be necessary. 
Therefore, I would like to call his expectation the Motoyosi Sugita’s G  = max 
conjecture. 

In the next section of that paper [29] [60], VI. Mathematical Theory and Conclusion, 
he sketched the outline of the 4th law of thermodynamics as follows: 

1) First, on the base of microscopic reversibility, Onsager [100] [101] has shown that 

( ) 0S∆ −Φ ≥ . Exactly speaking, it is given by  

( ) 0, equivalently Max,S Sδ −Φ = −Φ =                  (6.1) 

where S  is the velocity of entropy increase of the total system and Φ  is the 
dissipation function in the sense of Rayleigh [133] as usual or such. 

2) On the same base as Onsager, Landau and Lifshitz have shown that  



K. Iguchi 
 

167 

2 .G = − Φ                               (6.2) 

in their statistical physics [134]. 
3) Let us denote by kN  the parameter expressing the transient state, and let us 

assume that G is expressed by kN  using the cut off method, then  

,k k
k

G Nµ= ∑                              (6.3) 

0 log , k
k k k k

k

NG kT c c
N N

µ µ∂
= = + =
∂

                   (6.4) 

where kµ  is the chemical potential of the kth component, 0kµ  is its constant part, 

kc  is its concentration and kN  is the reaction velocity. 
4) Let us consider quasi-chemical processes  

, 1, 2,is is js js
i j

A A sν ν =∑ ∑ 

                     (6.5) 

between the components. This describes a set of chemical reactions such as chain 
reaction, whose set is denoted by s. It means that there are many chemical reactions 
that consist of a finite number set of molecules iA  and jA  labelled by i and j. 

5) Let us denote by sn  the reaction velocity of the process s from the left to the right. 
The reaction velocity kN  can be written in the form:  

, .i is s j js s
s s

N n N nν ν= − =∑ ∑ 

                        (6.6) 

Through this linear transformation, the variables iN  can be transformed to sn . 
The number of new parameters sn  may be less than iN  and they may be inde- 
pendent variable. 

6) Substituting Equation (6.6) into Equation (6.3), we find  

js j is i s s s
s j i s

G n nν µ ν µ µ
 

= − = − ∆ 
 

∑ ∑ ∑ ∑

                 (6.7) 

where we have defined the affinity sµ∆  of the reaction s as  

.s ks k is i js j
k i j

µ ν µ ν µ ν µ∆ ≡ = −∑ ∑ ∑                   (6.8) 

I would like to note here that there is a sign mistake for Equation (6.79) in the 
English version of this paper [60]. 

7) From the rate theory of chemical reaction, sn  can usually be written in the form:  

1 e e ,
js jis i

ji
kT kT

s s
s

J n
R

ν µν µ ∑∑ 
 ≡ = − 
  

                    (6.9) 

where sR  is the chemical resistance of the process s, which corresponds with the 
circumstance of the theory of rate process, and the quantity in the bracket represents 
the µ-field, that corresponds with the circumstance of the theory of equilibrium. 

8) Inserting Equation (6.9) into Equation (6.7), we can see that G  is equal to kTH , 
where H is the Boltzmann’s H-function. If the mean value of H is taken in the 
momentum space and if it is assumed that s represents only the rate determining 
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precesses in the individual processes and that the higher term of H  is negligible, then 
we obtain  

e e

.

js jis i
jiks k

k kT kT

s s

s s
s

G kTH
R

J TS

ν µν µν µ

µ

∑∑ 
 = = − − 
  

= − ∆ = −

∑
∑

∑

 



              (6.10) 

The procedure, which neglected the higher term, corresponds with the cut off 
method discussed in Section 2. The summation of the right hand side of Equation 
(6.10) may be interpreted as 2Φ , where Φ  is the dissipation function of the quasi- 
chemical processes, and it may be considered as the virtual heat source discussed in 
Section 2. 

9) The reversal of the µ-field can be interpreted if we consider the transition from the 
stage  

.is i js j is i js j
i j i j
ν µ ν µ ν µ ν µ> → <∑ ∑ ∑ ∑                (6.11) 

In the above paper [29] [60] Motoyosi Sugita was not able to present the detail of the 
proof of the conjecture. It was limited to suggest the existence. However, in the 
succeeding papers [40]-[46] [48] [61] [75] [77] [78] [79] he argued the sketch of the 
conjecture and frequently tried to prove it.  

6.2. Relationship between the Boltzmann’s H-Function and the µ-Field  

In order to investigate the Motoyosi Sugita’s conjecture, the so-called Boltzmann’s 
H-function plays an important role. So, let us first consider the relationship between 
the Boltzmann’s H-function and the µ-Field for the molecular statistics. For this 
purpose I would like to restrict ourselves to consider the system of chemical reactions 
only. However, this way of thinking can be generalized to other physical, chemical and 
biological systems as well. 

Since there is a basic idea for proving the conjecture in [75], I would like to follow it 
here. Motoyosi Sugita first defines the Boltzmann’s H-function for chemical reactions 
by  

( )
1

ln ,
n

i
i i i

i i

cH c c c c
c=

 
≡ − + 

 
∑                    (6.12) 

where ic  are defined by Equation (6.4) and ic  stand for its chemical equilibrium 
values. The above form of the H-function is justified as long as one adopts the formula 
for the partition function W such as Equation (3.23) by the cut-off method of Motoyosi 
Sugita. It obviously satisfies the following:  

( ) 0 for .i iH c c c= =                       (6.13) 

And if we write i i ic c c∆ = −  then  

( ) ( )
1 1

ln ln 0.
n n

i i
i i i

i ii i

c cH c c c c
c c= =

∆ = ∆ = − ≥∑ ∑              (6.14) 
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where the equality holds true only when i ic c= . This means that the H-function in the 
equilibrium state is always minimum. 

Next, let us consider the derivative of H-function with respect to time along the 
course of time development. Then, Motoyosi Sugita considers the following:  

( )
1

d d ln .
d d

n
s s

s s

H c c c
t t c=

= ∑                        (6.15) 

Let us consider the chemical reaction equations such as Equation (5.21) for chemical 
reactions of Equation (6.5), for our case here. Associated with the choice of the reaction 
Equation (6.6), we can write the chemical reaction equations in the following:  

( ) ( ){ }d ,
d

k
ks ks sP R

s

c J
t

ν ν= −∑                    (6.16) 

where P and R mean production and reduction in the chemical reactions, respectively, 
and sJ  is defined by  

1 1e e ,

jsisjs jis i
ji

jsis
is js

ji
jikT kT

s fs i bs j
i js s i j

i j

cc
J k c k c

R R c c

ννν µν µ

νν
ν ν

∑∑   
  ≡ − = − = −   

      

∏∏
∏ ∏ ∏ ∏

 (6.17) 

where sR , ic  and jc  are defined by  

1 e e ,
js jis i

ji
kT kT

fs bs
s

k k
R

ν µν µ
− −

∑∑

= =                     (6.18) 

and  
00

e , e ,
ji

kT kT
i jc c

µµ
− −

= =                        (6.19) 

respectively. On the other hand the affinity for each chemical reaction is defined by 
Equation (6.8). The chemical equilibrium values sc  are obtained by  

d 0.
d

sc
t
=                             (6.20) 

Obviously this produces the law of mass action such as Equation (5.22) for each 
chemical reaction:  

( ) .
is

js

i
fs i

s
bs j

j

ck
K T

k c

ν

ν= =
∏

∏
                       (6.21) 

Substituting all into Equation (6.15) using the definition of chemical potentials 
Equation (6.4), finally Motoyosi Sugita ends up with  

( ) ( ) ( ){ }
1 1

d
ln .

d

n n
k s

s ks ks sP R
s k sk

H c cJ J
t c kT

µν ν
= =

∆
= − = −∑ ∑ ∑           (6.22) 

This is nothing but Equation (6.10), where s sJ kµ∆  can be regarded as the virtual 
heats in the transient chemical reactions. Motoyosi Sugita shows that this satisfies the 
following theorem:  
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Theorem 1 (Boltzmann’s H-theorem).
  

( )d
0.

d
H c

t
≤                              (6.23) 

Let us now prove the H-theorem. Following the similar argument of Motoyosi Sugita 
[75], we find the following:  

( ) ( ) ( ){ }
1 1

1

1

d
ln ln ln

d

ln ln

1

js is

js is

js is

jsis
js is

jsis

is js

j in n
jk i

s ks ks sP R
s k sk ij

ij

j in
j i

fs i bs j
s i j ij

ij

jin
ji

s s i j
i j

c cH c c
J J

t c cc

c c
k c k c

cc

cc

R c c

ν ν

ν ν

ν ν

νν
ν ν

νν

ν ν

ν ν
= =

=

=

 
 

= − = − 
 
 

 
   

= − × −   
   

 




= −



∏ ∏
∑ ∑ ∑ ∏∏

∏ ∏
∑ ∏ ∏ ∏∏

∏∏
∑ ∏ ∏

ln ln ,

js is

js is

j i
j i

ij
ij

c c

cc

ν ν

ν ν

  
  
× −  

   
  

∏ ∏

∏∏

     (6.24) 

where sJ  is given by Equation (6.17). Now if we denote as  

, ,

jsis

is js

ji
ji

s s
i j

j j

cc
A B

c c

νν

ν ν= =
∏∏

∏ ∏
                      (6.25) 

then the summand looks like  

( ) [ ]
1

d 1 ln .
d

n
s

s s
s s s

H c BA B
t R A=

= −∑                    (6.26) 

Since [ ] ln 0s
s s

s

BA B
A

− ≤ , the last expression is identically less than or equal to 0.  

The equality holds only for the equilibrium. Hence, the theorem is proved. 

6.3. Motoyosi Sugita’s Idea for the Proof of the Conjecture  

Motoyosi Sugita also considered more general case of the nonlinear processes, which 
may be represented by the following equations:  

( ) ( ), 1, , ,i ix f x i n= =
                      (6.27) 

where x means a vector of ( )1, , nx x x=   and ( )if x  stands for any function of x. 
The stationary state ( )1, , nx x x=   of these equations are assumed to be given by  

( ) ( )0, 1, , .i ix f x i n= = =

                    (6.28) 

The stability of this system is investigated by the Lyapunov theorem. Denote by 
x y= . Let us discuss the stability around the stationary state 0y = . The equation of 
motion for y is given by  
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( )

( )

1

1

,

,

n
i

i i j
j j

n

i ij j
i

f x
y x x

x

y J y y

=

=

∂ 
= = ∂ 


= 

∑

∑

  



                     (6.29) 

where we have assumed that ( )i

j

f x
x

∂
∂

 

can be represented in terms of yi such that 

( ) ( )i
ij

j

f x
J y

x
∂

≡
∂

. 

Now the simplest Liapunov function is defined as  

( ) ( )2

1

1 0, 0 0.
2

n

j
j

V y y V
=

= > =∑                   (6.30) 

By differentiating this with respect to t, we obtain  

( ) ( )
1 1 1

.
n n n

j j ij i j
j i j

V y y y J y y y
= = =

= =∑ ∑∑

                 (6.31) 

If all real parts of the eigenvalues of the Jacobian matrix ( ) ( )( )ijJ y J y≡  are 
negative, then the stationary state 0y =  becomes asymptotically stable. This is a 
satisfactory condition for the theorem. Here if Jij = Jji, then the theorem is always true. 

Motoyosi Sugita applied this theorem to the Boltzmann’s H-function. And he proved 
the H-theorem is valid if the Lyapunov’s theorem holds. 

Let us define the general Boltzmann’s H-function:  

( )
1

ln .
n

i
i i i

j i

xH x x x x
x=

 
= − + 

 
∑                   (6.32) 

By differentiating the above equation, we immediately obtain  

( ) ( )
1 1

ln ln .
n n

i i
i i

j ji i

x xH x x f x
x x= =

= =∑ ∑

                 (6.33) 

Motoyosi Sugita proved a mathematical theorem:  
Theorem 2. If ( )if x  can be Taylor expanded around the stationary state x , then 

it can be rewritten as  

( ) ( ) ( )
1

,
n

i ij j j
j

f x x x xλ
=

= −∑                   (6.34) 

where ( )ij xλ  are the parameter integrals defined by  

( ) ( )( )1

0
d .ij ijx J x s x x sλ = + −∫                 (6.35) 

Let us follow his proof, which is short. By assumption, we expand ( )if x  around the 
stationary state jx x=  in Taylor series. We obtain  

( ) ( ) ( )1

1
1, , 0 1 1

.
!

l n

n
n

n
l l i

i
l l n x x

x x f x
f x

x x

ν ν ν

νν
ν ν ν

+ +∞

= = =

 − ∂ =  
∂ ∂  

∑ ∏






        (6.36) 

Let us define 
1, ni ν νΛ


 and 
1, nif ν ν  as  
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( ) ( )
1

1

,
, , 0 1

l

n
n

n

i i l l
l

f x x x ν
ν ν

ν ν

∞

= =

= Λ −∑ ∏




                 (6.37) 

1
1

,
, , 0

.
n

n
if ν ν

ν ν

∞

=

= ∑




                         (6.38) 

Using Equation (6.37), the Jacobian can be Taylor expanded in the following:  

( ) ( ) 1
1

1
,

, , 0
.

n
n

ij j j j iJ x x x f ν ν
ν ν

ν
∞ −

=

= −∑




               (6.39) 

The remained procedure is to use Equation (6.35) and Equation (6.39) and to derive 
the right hand of Equation (6.34).  

( ) ( ) ( )( ) ( )

( )

( ) ( )

1
1

1

1
1

1

0
1 1

1 1
,0

, , 0 1

,
, , 0

d

d

.

n
n

n

n
n

n n

ij j j ij j j
j j

n

j i
j

i i

x x x J x s x x x x s

s s f x

f x f x

ν ν
ν ν

ν ν

ν ν
ν ν

λ

ν

= =

∞
+ + −

= =

∞

=

− = + − −

=

= =

∑ ∑∫

∑ ∑∫

∑











       (6.40) 

Hence, the theorem is proved. This is nothing more than the mean value theorem in 
the analysis for the analytic functions with many variables. 

Using this theorem, Equation (6.33) turns out to be the following:  

( ) ( ) ( )
1 1

ln .
n n

i
ij j j

i j i

xH x x x x
x

λ
= =

= −∑∑                 (6.41) 

Now if all the real parts of ( )ij xλ  are negative, then since ln i

i

x
x

 and ( )j jx x−   

have the same sign. Therefore, we can obtain the following:  

( ) ( )
( )

0

0.

H x x x

H x

< ≠

=





                      (6.42) 

By differentiating Equation (6.33) with respect to t, we obtain  

( ) ( )2

1 1
ln .

n n
ii

i
i ii i

xxH x x
x x= =

= +∑ ∑




                   (6.43) 

The second term in the above is always positive. Let us now substitute Equation (6.29) 
into the first term, we find  

( )
1 1 1

ln ln .
n n n

i i
i ij j

i i ji i

x x
x J x x

x x= = =

=∑ ∑∑                  (6.44) 

By definition ln 0i
i

i

x x
x

< . And in our assumption that ( )ijJ x  is diagonalizable and  

the Liapunov theorem is valid, all the real parts of eigenvalues of the Jacobian are 
negative. Hence, by multiplication, Equation (6.44) is always positive. From this fact, 
we obtain the following property of the H-function:  

Theorem 3.  

( ) ( ) ( )0 , 0.H x x x H x> ≠ =                  (6.45) 
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Let us define the entropy production ( )xσ  of the system by  

( ) ( ) ,x kH xσ = −                       (6.46) 

where k is the Boltzmann constant. Therefore, from Theorem 3 we immediately yield 
the following theorem:  

Theorem 4.  

( ) ( ) ( )0 , 0.x x x xσ σ< ≠ =                    (6.47) 

This is nothing but the theorem of the minimum entropy production or the 
Prigogine’s principle of minimum entropy production [103] [104]. 

In summary, this is the outline for the proof of the conjecture proposed by Motoyosi 
Sugita [75]. He tried again and again to prove this conjecture from various point of 
view. However, the general proof has never been done in his life time.  

7. The Ideas of Motoyosi Sugita as a Specific Development of Lars  
Onsager’s Lifework  

In 1951 Motoyosi Sugita first presented the theory of the maximum principle in 
transient phenomena such as those discussed in the previous section [38]. This paper 
was entitled as The Maximum Principle in the Transient Phenomena and the 
Application to Biology in Japanese. In this paper he first stated his vision and idea on 
the maximum principle in the transient phenomena. He argued the relationship 
between his idea of maximum principle and the existing old ideas such as the 
maximum-minimum principle in the Joule heat, the Boltzmann’s principle in the 
theory of gases, and the Onsager’s principle of the least dissipation of energy in the 
theory of irreversible processes [100] [101]. He finally applied his idea to many 
biological systems such as the thermodynamics of metabolism, the relationship between 
the maximum principle and the metabolism, the origins of life, and the dynamic 
equilibrium, the relaxation oscillations, the wholeness of life, etc. 

In the succeeding paper in 1952, he further studied the maximum principle in 
relation to the Boltzmann’s H-theorem [40]. This paper was entitle as The Relationship 
between the Boltzmann’s H-Theorem and the Dissipation Function in Japanese. This 
paper is a really instructive one. As is discussed in the previous section, his theory 
preceded the times of Prigogine [103] [104]. So, in this section I would like to present 
his comparison between the Motoyosi Sugita’s theory and the Prigogine’s theory as well 
as Onsager’s theory [100] [101] and Katchalsky’s theory [105] [106] [108]. Fortunately 
for the Western people, these Japanese papers were summarized as the English versions 
[77]-[79].  

7.1. Relationship between the Boltzmann’s H-Function and the  
Irreversible Work  

As is shown in the previous section, we have obtained the Boltzmann’s H-function, 
especially for the case of chemical reactions. Motoyosi Sugita first applied his idea of 
the virtual heat that has been discussed in the section II to the irreversible work of the 
system. 
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In order to see the difference between the method of Motoyosi Sugita and that of Ilya 
Prigogine more easily, let us change the notation of Motoyosi Sugita to adjust with that 
of Prigogine. Let us denote by i the internal system which is doing the irreversible work. 
Let us denote by e the external thermal reservoir, where we assume that no irreversible 
work has been done. By definition, we have  

.i i i iG U PV TS= + −                            (7.1) 

If the process is the broad quasi-static change (under the isothermal and isopressure), 
then we have  

,i i iTS dU PdV= +                             (7.2) 

which is equivalent to  

0.iG =                                  (7.3) 

This is not satisfied when the irreversible work exists. In this case we have  

,i i i iG U PV TS= + −                              (7.4) 

which is the isothermal irreversible work. Or equivalently,  

.i i i
i

U PV GS
T T
+

= −
 

                            (7.5) 

On the other hand, since the heat i iU PV+   comes out from the reservoir e, we have 
for the reservoir e  

.i i
e

U PVS
T
+

= −
 

                             (7.6) 

Now we assume that there is no heat exchange otherwise, the total entropy of the 
system is given by  

0.i
i e

GS S S
T

= + = − >


                           (7.7) 

Since there is no irreversible work in the reservoir e, 0eG = . And since G is always 
decreasing, we can state that 0iG < . This iG  is the irreversible work for the entire 
system and it is nothing more than "virtual heat" introduced by Motoyosi Sugita long 
ago. Then we have  

.iG TS kTH= − =                             (7.8) 

This suggests that there exists the maximum principle in the transient phenomena in 
terms of the Boltzmann’s H-function. Hence, his conjecture is crucially important in 
the theory of non-equilibrium thermodynamics in the irreversible processes in the 
transient phenomena such as life. It also suggests the existence of the 4th law of 
thermodynamics. 

On the other hand, Prigogine only showed that for the internal system  

0.iS ≥                              (7.9) 

This means that the entropy of the internal system iS  is always increasing. There is 
no explicit expression like Equation (7.5) in the theory of Prigogine based on and 
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tracing the origin back to the school of De Donder [102] [103] [104]. As was discussed 
in the section II, the above Prigogine’s equation leads to a confusion and a mistake 
when one considers the irreversible cyclic processes. Because in the viewpoint of De 
Donder’s school the entropy of the cycle can vanish only when the cycle is reversible; 
otherwise it must be positive such that  

d 0.iS ≥∫                            (7.10) 

However, as Motoyosi Sugita discussed long long ago, no matter what the irreversible 
process is taken into account, the following must be satisfied when the internal process 
is cyclic since the final state must come back to the initial state after one cycle:  

d 0.iS =∫                            (7.11) 

On the other hand, as is shown in Section 2 [see Equation (2.19) and Equation 
(2.23)], we must have for the external reservoir after one cycle  

d 0.eS >∫                           (7.12) 

This is the advantage of the Motoyosi Sugita’s concept of the virtual heat for the 
irreversible processes in the transient phenomena.  

7.2. Relationship between the Boltzmann’s H-Function and the  
Dissipation Function  

This argument can be generalized to the systems of flow dynamics or fluid dynamics. In 
this case there is matter exchange between the reservoir e and the system i. Let us 
denote by eG  the external part of G and by iG  the internal part of G, respectively. In 
the stationary state of the internal system i, the time derivative of iG  vanishes (i.e., 

0iG = ). So, we have  

( ) dd d 0.
d d d

e
e i i

GG G G G
t t t

 = + = = < 
                (7.13) 

This iG  
  must have the same form as kTH , which becomes the dissipation 

function of the system; that is 2iG  = − Φ 
 . Hence, we must have  

d 2 ,
d
G kTH
t
= = − Φ                        (7.14) 

or equivalently  

d 2 0.
d
G
t
+ Φ =                          (7.15) 

This simple looking but very important relation was independently rediscovered by 
Katchalsky much later [105] [106] [108]. What is important here is that the above 
equation is valid even for open systems such as the flow or fluid dynamics as well as life 
systems. 

Now Motoyosi Sugita imposes the maximum principle for this relation as follows: 

Suppose that 
d
d
G
t

 (or 2− Φ ) represents the dissipation processes in the transient 
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phenomena. For example, let us consider the metabolic system. Then, 
d
d
G
t

 (or 2− Φ ) 

represents the reduction processes in the metabolic system. Then denote by M the 

amount of creation per second, while denote by 
d
d
G
t

 the dissipation per second. Let 

us define 
d
d
GM
t

= . Then, we seek the extremum such that 
d
d
G
t

 becomes the  

maximum under the restriction that constM = . This is the content of Motoyosi 
Sugita’s variation principle of the maximum in the transient phenomena [40]. Thus, I 
would like to summarize the Motoyosi Sugita’s maximum principle as follows:  

Theorem 5 (Motoyosi Sugita’s Maxmum Principle) Under the constraint constM = , 
find the maximum of the following equation:  

d .
d
GM
t

=                             (7.16) 

Thus Motoyosi Sugita challenged us who can prove this principle in general. 
Whoever can do so, then the 4th law of thermodynamics is proven.  

7.3. Relationship between Motoyosi Sugita’s Theory and Lars Onsager’s  
Theory  

Following the idea of Lars Onsager [100] [101] [118] [119], the entropy change dS  
can be divided into two parts such as  

d d d ,e iS S S= +                           (7.17) 

where d iS  means the entropy change inside the system and d eS  means the entropy 
change due to the interaction between the system and the environment. 

Let us define the state variables, ( )1, , nx x x≡  . And the changes in entropy are 
supposed to be represented in terms of x's. If one can expand the stationary entropy 
around the equilibrium entropy inside the system with respect to x’s, then we must 
have  

d ,
d

i
i i i

SS S S
t

τ τσ′ = + = +                      (7.18) 

where σ  stands for the entropy production in the system at time t and τ means an 
infinitesimal time. If the process that we are considering is an irreversible process of the 
states ix ’s, then the total derivative in time of iS  provides  

d d 0.i
i k

k k

SS x
x

 ∂
= ≥ ∂ 
∑                       (7.19) 

Equation (7.19) together with Equation (7.18) yields  

( )1, , ,n k k
k

x x J Xσ = ∑                      (7.20) 

where  

d , .
d

i i
k j

k

x SJ X
t x

∂
= =

∂
                      (7.21) 
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Here kJ  are called the generalized flows, while kX  are called the generalized 
forces. 

Considering Equation (7.20) together with Equation (7.19), Onsager postulates the 
following variation principle:  

( )1
1

, , Min.
n

n k k
k

J J J X
=

Φ − =∑                    (7.22) 

Or equivalently,  

( )1
1

, , Max.
n

k k n
k

J X J J
=

− Φ =∑                    (7.22') 

Here Onsager assumes that the quadratic dissipation function Φ  is given by  

( ) ( )
1

,

1, , ,
2n ij i j

i j

J
J J R J J

T T
φ

Φ = ≡∑                (7.23) 

where φ  is called the Rayleigh’s dissipation function. 
By the variation principle for Equation (7.22) or Equation (7.22'), we have to 

consider the following variational equation:  

( )1
1

, , 0.
n

k k n
k

J X J Jδ
=

 − Φ =  
∑                    (7.24) 

From this, we obtain  

( )1, ,
.nk

k

J JX
T J

∂Φ
=

∂


                      (7.25) 

Substituting Equation (7.23) into Equation (7.25), we obtain the famous linear 
relation:  

,i ij j
j

X R J= ∑                           (7.26) 

where the coefficients ijR  satisfy  

.ij jiR R=                             (7.27) 

This is the Onsager’s reciprocal theorem. Solving Equation (7.26) for iJ , we obtain  

,i ij j
j

J L X= ∑                           (7.28) 

where 1
ij ij jiL R L−= = ; the reciprocity holds true for ijL . This yields for the dissipation 

function:  

( ) ( )
1

,

1, , .
2n ij i j

i j

X
X X L X X

T T
φ

Φ = ≡∑               (7.29) 

The variational principle of the above equation is given as  

( )1
1

, , 0.
n

k k n
k

J X X Xδ
=

 − Φ =  
∑                   (7.30) 

Apart from the energy dissipation ( )*
nS J  through the surface, we finally obtain  

( ) ( )1 12 , , , 2 , , .i n i nS J J S X X= Φ = Φ 

              (7.31) 
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Since for the isothermal system the internal energy is kept constant, the rate of the 
Gibbs free energy G  is related to the entropy change iS  such that iG TS= −  . Hence, 
we obtain  

2 0G φ+ =                            (7.32) 

as expected, where φ  is the Rayleigh’s dissipation function. 
Now I would like to note that the variational principle of either Equation (7.24) or 

Equation (7.30) falls into the Motoyosi Sugita’s maximum principle discussed before 
[see Equation (7.16)]. In the above case of Onsager’s minimum or maximum principle, 
Onsager implicitly assumed that there exists a constant M such that M G=  . Instead 
of showing that, Onsager also implicitly assumed that const.kX =  for the variation of 
Equation (7.24) and const.kJ =  for the variation of Equation (7.30), respectively. 
Since the constraint either const.kX =  or const.kJ =  is assumed, the extremum of 
either extremumkJ =  or extremumkX =  after the variation is also constant. Hence, 

2M G φ= =  is constant as well. Thus, Onsager’s principle of the least dissipation of 
energy falls into the Motoyosi Sugita’s maximum principle as a special case. 

Next let us consider the relationship between the Motoyosi Sugita’s µ-field and the 
the above Onsager’s theory. As is shown in the above Onsager’s relation between the 
generalized forces and the generalized flows(or currents) are linear [see Equation (7.26) 
and Equation (7.28)]. However, in the Motoyosi Sugita’s theory it is not so but it is 
nonlinear. Going back to Equation (6.10), we hold the following relation:  

e e ,
js jis i

ji
s s kT kT

s
s s s

S J
T R T

ν µν µ

µ µ
∑∑ 

∆ ∆  = = − 
  

∑ ∑               (7.33) 

where from Equation (5.31) or Equation (6.17), sJ  is given by  

1 e e .
js jis i

ji
kT kT

s
s

J
R

ν µν µ ∑∑ 
 ≡ − 
  

                    (7.34) 

Let us suppose that the system is nearly in the thermodynamic equilibrium as was 
considered by Onsager. If we assume  

0 ln ,i i ikT cµ µ= +                        (7.35) 

where 0iµ  is the enthalpy and ic  the concentration (or activity) of the component i, 
then  

( ) ( ) ( ) ( )
00

1 e e ,
js jis i

ji
js jsis iskT kT

s i j fs i bs j
i j i js

J c c k c k c
R

ν µν µ
ν νν ν

∑∑ 
 ≡ − = − 
  
∏ ∏ ∏ ∏  (7.36) 

where fsk  and bsk  are the reaction constants for the forward and backward 
processes given by  

00

1 1e , e ,
js jis i

ji
kT kT

fs bs
s s

k k
R R

ν µν µ ∑∑

= =                   (7.37) 
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respectively. Then,  

( ) ( )
1

11 e .
!

s
is is

n
skT

s fs i fs i
ni i

J k c k c
n kT

µ
ν ν µ∆ ∞−

=

  ∆ = − = − −   
   

∑∏ ∏         (7.38) 

Or inversely,  

( )1

1 .
! is

n
s s

n fs i
i

J
n kT k c ν

µ∞

=

∆−  − = 
 

∑
∏

                    (7.38') 

Formally solving the above for s

kT
µ∆ , we obtain  

( )1
,

is

l

s s
sl

l fs i
i

JC
kT k c ν

µ ∞

=

 
∆  

=  
 
 

∑
∏

                     (7.39) 

where slC  are the expansion constants. On the other hand, following the expansion,  

( ) ( ) ,is is n
i i n s

ni i
c c K Jν ν= +∑∏ ∏                     (7.40) 

might be obtained if ic  is the equilibrium value and nK  is the constant. Now 
Equation (7.33) can be rewritten in the following form:  

( ) ( )

( )
( )

2 3

1 2 2

2
3

1 ,

is
is

is

s s
s s

s sfs i
fs ii

i

s
s s

s fs i
i

J JS k C k C
k c

k c

Jk C O J
k c

ν
ν

ν

= + +
 
  

= +

∑ ∑
∏ ∏

∑
∏





           (7.41) 

which can be written in the quadratic form like Equation (7.23) if the terms of the 
higher order of sJ  are neglected and sJ  is transformed into kX  by  

,s ks k
k

J xγ= ∑                              (7.42) 

where ksγ  are constants. Then the reciprocal relation of the coefficient of i jx x   is 
easily derived. Thus, Onsager’s functional and the linearity can be derived from the 
Motoyosi Sugita’s µ-field theory as a special limit [77] [78] [79].  

7.4. Relationship between Motoyosi Sugita’s Theory and Ilya  
Prigogine’s Theory  

Following the idea of Prigogine [102] [103] [104], Prigogine assumes that the entropy 
increase of the system iS  is given by  

0,k
i k

k

AS
T
ξ= ≥∑                            (7.43) 

where Prigogine’s kA  and kξ  are the affinity and the degree of the rate of the process 
of De Donder [102] and they correspond to the Motoyosi Sugita’s kµ∆  and n∆ , 
respectively. Generalizing this idea to more general chemical reactions, Prigogine [104] 
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formulated almost the same method as that Motoyosi Sugita did long ago. Prigogine 
wrote as  

( ) ( )1
k fk bk kR R v

V
ξ ξ ξ= − ≡                        (7.44) 

while the affinity kA  can be rewritten by  

ln ,fk
k

bk

R
A RT

R
=                              (7.45) 

where aR N k=  is the gas constant as before and T the temperature of the system. 
Substituting Equation (7.44) and Equation (7.45) into Equation (7.43), we obtain  

( )1 1 ln 0.fkk k
i k k fk bk

k k k bk

RA AS v R R R
V V T T R

ξ= = = − ≥∑ ∑ ∑            (7.46) 

This looks different but it is equivalent to Equation (7.33). The correspondence 
between the Motoyosi Sugita’s theory and the Ilya Prigogine’s theory is as follows:  

Sugita (1951) [38]      Prigogine (1999) [104] 

ln

1 e e
js jis i

ji

fk
s is i js j k

i j bk

kkT kT
s i k

ks

s
i s k fk bk

s

R
A RT

R

A
J S v

R T

S J v R R
T

ν µν µ

µ ν µ ν µ

µ

∑∑

∆ = − =

 
 = − = 
  
∆

= = −

∑ ∑

∑

∑





             (7.47) 

Thus I can conclude that Motoyosi Sugita succeeded in formulating the theory of 
non equilibrium thermodynamics long before it was reformulated again and intensively 
applied by the Prigogine’s school. Unfortunately, since such papers were written first in 
Japanese and published in Japanese journals such as the Bulletin of Kobayasi Institute 
and the Journals of the Hitotsubashi University, the contents of his theory have never 
been appreciated worldwide. This was really unfortunate for us to study his theories. 
This is one of the reasons why I am writing this paper.  

8. The Relationship between the Motoyosi Sugita’s Maximum  
Principle and the Pontryagin’s Maximum Principle  

Now I would like to prove the conjecture of Motoyosi Sugita’s Maximum Principle, 
using the optimal control theory [135]-[141]. From this, the relationship between the 
Motoyosi Sugita’s maximum principle and the Pontryagin’s maximum principle 
becomes clear. I would be able to conclude that the Motoyosi Sugita’s Maximum 
Principle is nothing but the Pontryagin’s maximum principle in the theory of optimal 
control. 

As I have written in the introduction, I became aware of Motoyosi Sugita’s work in 
this Spring in 2016. Two years before this year, I have written a couple of papers on the 
application of the optimal control theory to thermodynamics [142] [143]. Therefore, at 
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that time I did not know the research work of Motoyosi Sugita at all. However, once I 
became familiar with his work on the maximum principle that is given in Equation 
(7.16), I became sure that his maximum principle is nothing more than that of 
Pontryagin [135] [136] such that I can prove it using the theory of optimal control. This 
approach will be a generalization of the Motoyosi Sugita’s proof given in Section 6. And 
it will fill in the lack of proof for the conjecture of Motoyosi Sugita with a rigorous one. 

Before doing so, I would like to present my philosophy for the problem, since my 
motivation has come from the very different viewpoint from that of Motoyosi Sugita. I 
would like to show it in the next subsection first. 

8.1. Attractiveness of the Formulation of Classical Mechanics  

What is most attractive in the theoretical framework of classical mechanics is as 
follows: 

We believe that the energy is conserved in any mechanical problem, unless there is 
no dissipation of energy. This is the concept of energy conservation law. Based upon 
this energy conservation law, we assume that the initial energy is given in the problem 
for the mechanical system such as a pendulum or a spring. So, as long as there is no 
dissipation of energy, once the initial energy is given to the system, then it moves 
automatically and forever. This is our understanding on the physics of macroscopic 
mechanical objects. 

As we know in classical mechanics, all variables in the system are mechanical 
variables such as the coordinates whose vector is given as x  and its momenta whose 
vector is given as p . The set of the vectors ( ),x p  forms so-called the phase space for 
the Hamilton dynamics which is given by the Hamilton equations of motion. 

On the other hand, in our problem of non-equilibrium thermodynamics for the 
systems of life or living things, the system is described by dynamical change of the 
densities of ions, atoms, molecules, etc. under chemical reactions. So, the densities are 
given as a sum of the sets of classical particles or objects. At a given time the system is 
determined by the instantaneous values of the densities in the system. Since the system 
is dominated by the densities, we may call them the state variables. Thus, we have to 
treat the macroscopic state variables as the new type of mechanical variables in the 
dynamical systems. 

This means that we regard the biologically living macroscopic system as a classical 
mechanical system given by regarding the state variables as the mechanical variables. 
This point of view is interesting, since we can regard the living objects as classical 
mechanical objects. As if a pendulum moved automatically following the energy 
conservation law, the macroscopic biological system would move automatically 
following some unknown law of physics. If such a new type of law exists, it will be very 
nice. I would like to find such new principle of conservation law. This is our goal here.  

8.2. Modern Control Theory and Pontryagin’s Maximum Principle  

The above vision of mine seems quite similar to that of Motoyosi Sugita. What I stated 
as the unknown law of physics is absolutely what Motoyosi Sugita stated as the 4th law 



K. Iguchi 
 

182 

of thermodynamics long ago. Since there are many detailed mathematical proofs for the 
Pontryagin's maximum principle, I would like to skip such proofs in this paper, but 
only show the essence of the proof. If you want to see such proofs, then I would like to 
recommend you to consult other books [135]-[141] and my papers [142] [143]. 

In this section, we are going to consider the essential concepts and the formalism of 
the so-called Pontryagin’s theory of optimal control [135] [136] for the later purposes. 
This theory is the totally new type of extensions of the standard control theory [144] 
which is based upon the negative feedback mechanisms before 1960. Since then, the 
Pontryagin’s theory was called the modern control theory, while the old control theory 
was called the classical control theory. This reminds us of what happened in the 
discovery of quantum mechanics. 

On the other hand, theoretically speaking, the Pontryagin’s theory of optimal control 
is the natural extension of the formalisms of Hamilton’s principle and the least action 
principle in classical mechanics [134]. It was totally a revolution in theoretical physics 
as well. However, much has long been not so well-known in physics society. It seems 
because the revolution has occurred in the optimal control theory and the automatic 
control theory in engineering community around the year of 1960 and because the 
value of scientists of USSR was intentionally and absolutely ignored by the Western 
scientists at that time in the era of the cold war between USSR and USA. This was very 
unfortunate. 

8.3. Equations of Motion for the Open Dynamical System  

Let us denote by ( )1, , nx x x=   the n-dimensional state vector for the state variables 

ix . Let us denote by ( )1, , ru u u=   the r-dimensional control vector for the control 
variables iu . The equation of motion for the dynamical system is given by  

( ) ( )d , , , 1, ,
d

i
i i

x x f x u t i n
t
= = =

                     (8.1) 

namely,  

( )
( )

( )

1 1 1 1

2 2 1 1

1 1

, , , , , ,

, , , , , ,
.

, , , , , ,

n r

n r

n n n r

x f x x u u t

x f x x u u t

x f x x u u t

=


= 


= 


 


 




 

                     (8.2) 

As in the case of classical mechanics, once we regard the state variables x as the 
classical variables, we can define a Hamiltonian. Let us denote by ( )1, , nψ ψ ψ=   the 
adjoint vector for the adjoint variables iψ . Let us define the Hamiltonian:  

( )0
1 1

, , ,
n n

i i i i
i i

x f x u tψ ψ
= =

= =∑ ∑                      (8.3) 

According to the Pontryagin’s theory of the optimal control [135] [136], we can 
prove the Hamilton equation:  

0d ,
d

i

i

x
t ψ

∂
=
∂


                             (8.4) 
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0d .
d

i

it x
ψ ∂

= −
∂


                           (8.5) 

In order to escape from the confusion between the standard Hamiltonian in classical 
mechanics due to Hamilton and the Pontryagin’s Hamiltonian in the optimal control 
theory, we would like to use the Pontryaginian or Pontryagin’s Hamiltonian for the 
latter. This is because they are totally different from each other in a physical unit. 
Hamiltonian is given in units of energy [Joules], while Pontryaginian is given in units  

of work rate, 
d
d
E
t

=  [Joules/sec], or power,  , [Watts]. 

Equation (8.4) provides nothing but the original equations of Equation (8.1) by 
definition. Equation (8.5) is something else. But it can be regarded as a generalization of 
the speed of change in the Gibbs free energy, k kkG Nµ= ∑  . 

To understand this point, let us suppose that ( ), ,if x u t  does not depend upon ix  
such as ( ) ( ), , ,i if x u t f u t= . In this case, Equation (8.5) provides  

d 0, const. .
d

i
i it

ψ ψ µ= = ≡                       (8.6) 

Substituting this in the above original Pontryaginian of 0 , we obtain  

( )0
1 1

, .
n n

i i i i
i i

x f u tµ µ
= =

= =∑ ∑                      (8.7) 

This is nothing but the standard time-derivative of Gibbs free energy: Since 

j jjG Nµ= ∑ , if we rewrite the set ( )1, , nN N  as ( )1, , nx N N≡   and  
( )1, , nµ µ µ≡  , we obtain  

0
1

dd .
d d

n
j

j i i
j i

NG x
t t

µ µ
=

= = =∑ ∑                      (8.8) 

This expression means that the rate of Gibbs free energy is conserved under the 
time-development of the system. This proves the first part of the conjecture for the 
maximum principle of Motoyosi Sugita, where he assumed that M = constant for  

d
d
GM
t

=  [see Equation (7.16)]. Thus, I would like to first claim that M should be the  

absolute value of the Hamiltonian 0H  in the sense of Pontryagin. 

8.4. Proof of the New Conservation Law  

The general proof of the conservation of the Pontryagin’s Hamiltonian is quite complex. 
It is not so convenient to describe the detail in short here. Since the proof is given in the 
text book of Pontryagin et al. [135] [136], we skip the detail. Therefore, I would like to 
describe the essence of the proof. 

As before, we start with the dynamics given by Equation (8.1) [or Equation (8.2)]. Let 
us find the equilibrium state taking the variation ixδ  such as  

( ) ( ) ( ) ( ), 1, , ,i i iy t x t x t i nεδ= + =                   (8.9) 

where ε  is a small positive value and we assume that the initial condition for ixδ  
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such that it starts with the value:  

( )0 0.i ix tδ ξ=                            (8.10) 

Substituting the above into Equation (8.1), we can expand the original dynamical 
equations with respect to ε . Then, we can obtain the linearlized equations of motion:  

( ) ( ) ( )( )
1 1

,d
.

d

n n
ii

j ij j
j jj

f x t u tx
x J x

t x
δ

δ δ
= =

∂
= ≡

∂∑ ∑               (8.11) 

The matrix ( )ˆ
ijJ J≡  is called the Jacobian or Jacobi matrix in the linear stability 

analysis [103] [104] [see Equation (6.29) in Section 6]. 
Next, let us define the adjoint matrix, J :  

( ) ( )( ),
.j

ij ji
i

f x t u t
J J

x
∂

≡ − = −
∂

                     (8.12) 

And let us define the following dynamical equations for the new functions, iψ :  

( ) ( )( )
1 1

,d ,
d

n n
ji

j ij j
j ji

f x t u t
J

t x
ψ

ψ ψ
= =

∂
= − =

∂∑ ∑                 (8.13) 

where ˆ tJ J= − , t meaning transpose of Ĵ . We then define the Pontryagin’s 
Hamiltonian as  

( )0
1

, .
n

i i
i

f x uψ
=

= ∑                         (8.14) 

Let us prove that the above Pontryaginian is a constant of motion in the nonlinear 
dynamical systems for the state variables. Please do not confuse that this problem is a 
problem for mechanical variables in classical mechanics. Although the Pontryagin’s 
Hamiltonian is mathematically analogous to the Hamiltonian, it is not the same 
physical quantity; the former represents the work rate (i.e., the power) and the latter the 
energy in our choice, as was mentioned before. 

Differentiating with respect to time, we have  

( ) ( )0

1

d ,d d , .
d d d

n
ii

i i
i

f x uH f x u
t t t

ψ ψ
=

 
= + 

 
∑                (8.15) 

And we have 

( ) ( ) ( )
1 1

d , , ,
,

d

n r
i i i

j k
j kj k

f x u f x u f x u
x u

t x u= =

∂ ∂
= +

∂ ∂∑ ∑                (8.16) 

for 1, ,i n=  . Substituting this into Equation (8.15), we obtain  

( ) ( ) ( )

( ) ( ) ( )

0

1 1 1 1 1 1

1 1 1 1 1

,d d d, ,
d d d

dd , , , .
d d

n n n n n n
ii i

i i j i i ij j
i i j i i jj

n n n n n
ji

i i ij j ij i ij j
i i j i j

f x uH f x u x f x u J x
t t x t

f x u J f x u J f x u
t t

ψ ψψ ψ

ψψ ψ δ ψ

= = = = = =

= = = = =

∂
= + = +

∂

 
= + = + 

 

∑ ∑∑ ∑ ∑∑

∑ ∑∑ ∑∑

 

 (8.17) 

Here we have assumed that the extremum condition for ( ),if x u  with respect to 

ju  such that  
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( ) ( ),
0, 1, , .i

j

f x u
j r

u
∂

= =
∂


                     (8.18) 

By definition, this is equivalent to the following optimal condition:  

( )0 0, 1, , ,
j

j r
u

∂
= =

∂


                        (8.19) 

where the maximum condition [141] is also given by  

( )
2

0 0, , 1, , .
i j

i j r
u u

 ∂
≤ =  ∂ ∂ 



                        (8.20) 

If the condition is for the minimum then the inequality has to be reversed. 
Let us now impose  

1

d 0,
d

n
i

j ji
j

J
t
ψ

ψ
=

+ =∑                         (8.21) 

which is nothing but Equation (8.13), since if we take its transpose then we have  

1 1

d
d

n n
i

ji j ij j
j j

J J
t
ψ ψ ψ

= =

= − =∑ ∑                       (8.22) 

This equation is called the adjoint equation for the original nonlinear dynamical 
equations of Equation (8.11). The new set of variables ( )1, , nψ ψ ψ=   play the role of 
the dynamical chemical potentials of the system, which depend upon time such that the 
values are dynamically changing according to the control variables  
( ) ( ) ( )( )1 , , mu t u t u t=  . 

Substituting Equation (8.21) into Equation (8.17), we finally obtain  

0d 0.
dt

=
                             (8.23) 

This means that 0  is a constant of motion. Namely,  

0 0 const.= =                          (8.24) 

Hence, we have proven that the Pontryagin’s Hamiltonian (the Pontryaginian) is 
conserved in the course of time-development. Thus, the proof is obtained. 

This Pontryaginian in the nonlinear systems with the state variables plays an 
important role of the Hamiltonian in classical mechanics. Physically speaking, this 
means that as long as the Power is fixed as a conserved quantity, there exists an optimal 
process that preserves the power. 

8.5. Comparison with the Prigogine’s Method  

The above approach is quite analogous to the Prigogine’s method in the nonlinear 
systems [103] [104]. The Prigogine’s method for the stability of the nonlinear dynamics 
is nothing more than the Lyapunov’s method in mathematics. 

In this method, we first assume that the left hand sides of Equation (8.1) or Equation 
(8.2) are all zeros. This provides the following:  
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( )
( )

( )

1 1 1

2 1 1

1 1

0 , , , , , ,

0 , , , , , ,
.

0 , , , , , ,

n r

n r

n n r

f x x u u t

f x x u u t

f x x u u t

=


= 


= 

 

 



 

                     (8.25) 

Suppose that Equation (8.25) can be solved. Solving Equation (8.25) for 
( )1, ,ix i n=   under fixing as k ku u≡ , where ( )1, ,ku k r=   are constants, we 

obtain the dy- namically equilibrium states or stationary states:  

.i ix x=                                (8.26) 

Similar to Equation (8.9), we expand the state vector as  

( ) ( ).i i ix t x x tεδ= +                          (8.27) 

Substituting this into Equation (8.2), we similarly obtain  

( ) ( )
1 1

d ,
.

d

n n
i i

j ij j
j jj

x f x u
x J x

t x
δ

δ δ
= =

∂
= ≡

∂∑ ∑                  (8.28) 

For the special values of u , we define  

( ) ( ) ( )e , 1, , .t
i i in

x t x i nωδ δ= =                    (8.29) 

Then substituting the above into Equation (8.28), we obtain  

( ) ( )
1

.
n

i ij jin in
j

x J xω δ δ
=

= ∑                       (8.30) 

This yields the characteristic equation:  

det 0.ij ijJωδ − =                           (8.31) 

By investigating the characteristics of ω , we can find the stability condition of the 
equilibrium state such that if all real parts of the eigenvalues are negative, then the 
system is stable. This approach is the essence of the Pontryagin’s method. Therefore, it 
is nothing more than the Lyapunov method in the linear stability analysis in 
mathematics. This was also discussed by Motoyosi Sugita long ago such as in the 
subsection VI.C. 

In this way, we can understand that the Pontryagin’s method in the optimal control 
theory is a natural generalization of the Prigogine’s method in nonlinear theory. 

8.6. Generalization of the Pontryagin’s Hamiltonian to the System with  
a Constraint  

In the above, we have proven that the Pontryagin’s Hamiltonian with state variables in 
nonlinear dynamics plays the role of the Hamiltonian of mechanical variables in 
classical dynamics. And we have shown that the Pontryagin’s Hamiltonian is a constant 
of motion of the dynamical system, i.e., a conserved quantity. However, we have not yet 
proven that the Pontryagin’s Hamiltonian takes its maximum value in the region of the 
admissible control parameter vectors. And we have not yet show that the principle 
works as well, even when there is a constraint of the system. This constraint is an- 
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alogous to the constraint that we know as the least action principle through the 
Lagrangian L in classical mechanics. We are now going to consider these problems. 

Suppose that there is a constraint in the system such as  

( ) ( )( )1

0
0 , , d ,

t

t
f x t u t t t= ∫                        (8.32) 

where the time-development of the system obeys Equation (8.1) and ( )x t  is the 
n-dimensional state vector and ( )u t  the r-dimensional control vector. 

Let us now impose that this constraint takes the minimum value in the course of the 
time-development of the system in between 0t  and 1t . In other words, we expect that 
we are able to find the control parameter vector ( )u t  so that always the constraint is 
minimized in the course of the time-development of the system in between 0t  and 1t . 
This simply means  

0.δ =                               (8.33) 

The physical meaning of this is the following: We evaluate the functional   of the 
state variables ( )1, ,ix i n=   as if it were the action functional S in classical mechanics. 
Then, we expect that the value of the functional is always minimum possible in the 
course of the time-development. This constraint provides an extremum problem. In 
this context the functional   is sometimes called the evaluation functional or the 
performance index (PI) in the theory of optimal control [135] [136]. So, we have to find 
the orbit of the state variables that obey the nonlinear dynamics Equation (8.1) such 
that the PI-functional   must take minimum under the condition that the admissible 
control variables ( )1, ,ku k r=   provide the maximum for the Pontryagin’s Hamil- 
tonian. This is analogous to the least action principle for the Lagrangian under the 
Hamilton dynamics for mechanical variables in classical mechanics. 

In this more general case than the previous one, we can define Pontryagin’s 
Hamiltonian 1  as  

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 0 0 0
1

0
1

, , , ,

, , , , .

n

i i
i

n

i i
j

f x t u t t t x t f x t u t t

f x t u t t f x t u t t

ψ

ψ

=

=

≡ − = −

= −

∑

∑

 
       (8.34) 

Obviously this has the form of the Hamiltonian in classical mechanics such as 
H L= ⋅ −p x . Do not confuse this 1  of Equation (8.34) with 0  of Equation (8.7). 
Because the constraint of Equation (8.32) is included in the Pontryagin’s Hamiltonian 

1  in this case, while no constraint is included in the previous Hamiltonian 0 . 
Therefore, I put 0 and 1 to escape from confusion. Thus, in the previous Hamiltonian 
the maximum can take nonzero value for M, but in the above Hamiltonian, the 
maximum has to be always zero [see below]. 

Let us now suppose the following new variable ( )0x t  by  

( ) ( ) ( )( )
0

0 0 , , d .
t

t
x t f x t u t t t= ∫                       (8.35) 

By differentiation we find  
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( ) ( ) ( )( )0
0

d
, , .

d
x t

f t t t
t

= x u                       (8.36) 

Let us define a fictitious parameter  

0 1.ψ = −                               (8.37) 

Then we can represent the above Equation (8.34) more compactly such as  

( )1
0

, , .
n

j j
j

f x u tψ
=

= ∑                         (8.38) 

However, at this time the system must obey the following nonlinear dynamics:  

( ) ( ), , , 0,1, ,i ix f x u t i n= =
                     (8.39) 

As before, we then have the equations of motion similar to Equation (8.4) and 
Equation (8.5):  

1d ,
d

i

i

x
t ψ

∂
=
∂


                            (8.40) 

1d ,
d

i

it x
ψ ∂

= −
∂


                           (8.41) 

where ( ) ( ) ( ) ( )( )0 1, , , nx t x t x t x t≡  . Here we would like to note that the first 
equaltion of Equation (8.41) for 0ψ  reduces to 0 0ψ = , since ( )0 , ,f tx u  does not 
depend upon 0x  at all. We also have the following constraints as before:  

( )1 0, 1, , ,
j

j r
u
∂

= =
∂




                        (8.42) 

where the maximum condition [141] is also given by  

( )
2

1 0, , 1, , .
i j

i j r
u u

 ∂
≤ =  ∂ ∂ 



                     (8.43) 

If we take 0 1ψ =  then the condition becomes that for the minimum principle.  

8.7. Pontryagin’s Maximum Principle  

Now we can summarize the very important theorem which is known as the 
Pontryagin’s maximum principle in the optimal control theory [135] [136]. This 
theorem is described as follows:  

Theorem 6 (Pontryagin’s Maximum Principle) Let us suppose that the dynamical 
system is described by the nonlinear dynamical equations:  

( )1 1, , , , , , ,i i n rx f x x u u t=                       (M1) 

for 0,1, ,i n=  . 
Let ( )u t  be an admissible r-dimensional control vector in the admissible region of 

U given in the time interval 0 1t t t≤ ≤  such that the solution ( )x t  starts from the 
initial vector ( )0 0x t x=  at time 0t  and passes a point in the line Π  at time 1t . Here 
the line Π  is defined as a line that is parallel to the 0x -axis and passes the point 
( )10, x  in ( )1n + -dimensional phase space X. 



K. Iguchi 
 

189 

One necessary condition that control ( )u t  and trajectory ( )x t  are optimal is that 
according to the functions ( )u t  and ( )x t  there must exist the following non-zero 
continuous vectors ( ) ( ) ( ) ( )( )0 1, , , nt t t tψ ψ ψ ψ=  : 

(1) For all t in time interval 0 1t t t≤ ≤ , the function of variables u in the admissible 
region U ( u U∈ ), ( ) ( )( )1 , ,t x t uψ  takes the maximum at ( )u u t= ; namely,  

( ) ( ) ( )( ) ( ) ( )( )1 1, , , , , .t x t u t t t x t tψ ψ=                 (M2) 

(2) ( )tψ  also satisfies the following condition:  

( )0 const 0,tψ = ≤                           (M3) 

( ) ( )( ) ( ) ( )( ) ( )1

0
1

0

, ,
, , d .

nt

t

f x t u t t
t x t t t t

t
α

α
α

ψ ψ
=

∂
=

∂∑∫           (M4) 

In practice, if ( ) ( ) ( ), ,t x t u tψ  satisfy the coupled equations (M1) and  

( ) ( )( )
0

, ,d ,
d

n
ji

j
j i

f x t u t t
t x
ψ

ψ
=

∂
= −

∂∑                    (M5) 

for 0,1, ,i n=  , and satisfy the condition (1), then the function of time t, ( )0 tψ , is 
constant, and the function ( ) ( )( )1 , ,t x t tψ  is different from the integral of 
Equation (M4) only by a constant amount. Therefore, Equation (M4) is sufficient to be 
satisfied only at some instant t in 0 1t t t≤ ≤ . For example, instead of Equation (M3) and 
Equation (M4), it is sufficient if the following condition is satisfied:  

( ) ( ) ( )( )0 1 1 1 1 10, , , 0.t t x t tψ ψ≤ =                   (M6) 

The proof of the Pontryagin’s maximum principle is very complicated but is given in 
detail in the literature [135] [136]. So, we have omitted the proof here. However, the 
result is quite simple enough for us to apply to physical problems. 

Let us go back to the case of the nonlinear dynamics with a constraint   in the 
subsection VIII.F. In this case, 0 1ψ = −  is taken. Since this is nothing but the first 
condition in Equation (M6), we hold the second condition:  

( ) ( )( )1 1 1 1, , 0.t x t tψ =                        (P1) 

Hence, we have the following Pontryagin’s maximum principle for this case: at some 
control vector value ( )u t u= ,  

( ) ( ) ( )( )1 , , , 0.t x t u t tψ =                       (P2) 

8.8. The 4th Law of Thermodynamics as the Motoyosi Sugita’s  
Maximum Principle  

Now, let us go back to the maximum principle of Motoyosi Sugita [see Equation (7.16)]. 
We can restate it as follows:  

Theorem 7 (Modern Version of the Motoyosi Sugita’s Maxmum Principle) Suppose  

that the rate of the Gibbs free energy d
d
G
t

 is given as the Pontryagin’s Hamiltonian  

0  as before. Let us define the Pontryagin’s Hamiltonian with a constraint such that  
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( )1
0

, , ,
n

j j
j

f x u tψ
=

= ∑                           (8.44) 

where the state variables are assumed to obey the following dynamical equations:  

( ) ( ), , , 0,1, , .i ix f x u t i n= =
                       (8.45) 

Then, if the system advances under the optimal control of the control variables u, 
then there exists a maximum of the Hamiltonian 1  such that  

1 max 0.=                                (8.46) 

And in this moment, always the following equations hold: The equations of motion:  

1 1d d, ,
d d

i i

i i

x H H
t t x

ψ
ψ
∂ ∂

= = −
∂ ∂

                        (8.47) 

for 1, ,i n=  , the optimality condition:  

1 0, 1, , ,
s

s r
u

∂
= =

∂



                          (8.48) 

and the maximum condition [141]:  
2

1 0, , 1, , .
s t

s t r
u u

 ∂
≤ = 

∂ ∂ 


                        (8.49) 

Here in Equation (8.49) if 0 1ψ =  then we change the inequality to 0≥  such that 
the maximum condition becomes the minimum condition. I believe that this principle 
is exactly nothing more than the 4th law of thermodynamics in terms of the language of 
the modern control theory. 

The above approach of Pontryagin’s maximum principle is very general and 
therefore it should not be restricted within thermodynamics. However, I would like to 
see the relationship between the Motoyosi Sugita’s maximum principle and the 
Pontryagin’s maximum principle. 

Let us apply the above method to thermodynamics especially for the isothermal 
system where T = const. In order to do it, we must assume that the dissipated energy 
from the system is becoming the virtual heat such that  

2 ,S = Φ                                (8.50) 

where Φ  is the dissipation function of Rayleigh [133]. This is the heart of the 
Onsager’s principle of the least dissipation of energy. It plays the role of Lagrangian in 
classical mechanics. Because when we impose that the action of energy change from the 
dissipation energy to the virtual heat is as fast as possible, then we take variation for it. 
This restriction imposes the Onsager’s variation principle:  

( ) ( )( ) ( ) ( )( ), , , , minimum,x t u t t S x t u t tΦ − =               (8.51) 

or equivalently  

( ) ( )( ) ( ) ( )( ), , , , 0.x t u t t S x t u t tδ  Φ − = 
                 (8.52) 

Therefore, once we regard this variational constraint as 0f  in Equation (8.44), then 
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we obtain the Pontryagin’s Hamiltonian for isothermal system as  

( ) ( )

( ) ( )( ) ( )( )

( )( ) ( )( )

1 0 0
1

1

, , , ,

, , , , , ,

d , , , ,
d

n

j j
j

n

j j
j

f x u t f x u t

f x u t T x u t S x u t

G T S x u t x u t
t

ψ ψ

ψ

=

=

= +

 = − Φ − 

 = + −Φ 

∑

∑ 





              (8.53) 

where we have taken as 0 Tψ = − . If we adjust with the definition of Gibbs free energy,  

then we must regard the Hamiltonian 1  in the left hand as the power 
d
d
E
t

= . This  

yields  

1
d .
d
E
t

= =                                (8.54) 

This Hamiltonian was first found by the author two yeas ago [142] [143]. 
Thus, as long as we take the extremum using Equation (8.46), we have to obtain the 

following simple relation  

( ) ( ) ( )
1

d , , , , , , .
d

n

j j
j

G f x u t T S x u t x u t
t

ψ
=

 ≡ = − −Φ ∑               (8.55) 

This is the most general expression for the Gibbs equation generalized from the 
standard one in the textbook of thermodynamics:  

( ) ( )
1

d , , , , .
d

n

i j
i

G N T S x u t x u t
t

µ
=

 = = − −Φ ∑                 (8.56) 

Furthermore, if we impose the quadratic relation for the dissipation function of 
Equation (8.50) then we substitute it into the above. We finally obtain the following 
relation:  

( )
1

d , , .
d

n

i j
i

G N T x u t
t

µ
=

= = − Φ∑                        (8.57) 

8.9. Relationship between the Pontryagin’s Maximum Principle and the 
Bellman’s Principle of Optimality  

Now I would like to make a comment on the relationship between the Pontryagin’s 
maximum principle and the Bellman’s principle of optimality (see the details in 
Appendix). Although both theories seem to treat the same kind of optimal problem, 
the apparent looking of the results is very different. Even though I can say that they are 
almost equivalent concepts, it is far from being trivial. Therefore, I would like to clarify 
this problem. This was first done by Pontryagin et al. [135] [136]. 

Bellman simply assumes that there is a dynamical process whose the time develop- 
ment of the system is given by a time t in between the initial time 0t t=  and the final 
time 1t t= . Then, he divides the interval to two regions from 0t t=  to t and from t to 

1t t=  to establish the principle of optimality. However, it is not trivial. Rather, it should 
be unknown till we can solve the system of nonlinear differential equations Equation 
(8.2). In general, to solve the nonlinear equations is very difficult. Therefore, it becomes 
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a challenging problem in physics. 
Suppose that the system of the nonlinear equation of Equation (8.2) would be solved 

under the optimal control u for 0 1t t t≤ ≤ . This gives us the time interval 1 0T t t= −  as 
a function of the initial state of the system defined by the n-dimensional vector 0x  
such as  

( )1 0 0 .t t T x− =                             (8.58) 

Let us define ( ) ( ) 1w x T x t t= − = −  instead of ( )T x . For an arbitrary time t 
( 0 1t t t≤ ≤ ), we have  

( ) ( )0 0 .w x t t T x= − −                          (8.59) 

Differentiating this with respect to t, we then derive the following:  

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
1 1

d
, 1.

d

n n

j j
j jj j

w x t w x t w x t
f x t u t x t

x x t= =

∂ ∂
= = =

∂ ∂∑ ∑          (8.60) 

For the optimal control, we have to take the optimal condition for the control 
parameter u. So, we finally obtain the optimality relation:  

( )( ) ( ) ( )( )
1

max , 1,
n

ju U j j

w x t
f x t u t

x∈ =

∂
=

∂∑                     (8.61) 

where U stands for the space of admissible control. This is the result that we apply the 
principle of dynamic programming to the system of the nonlinear equations. 

Next, let us define the function ( ),g x u :  

( ) ( )( ) ( ) ( )( )
1

, , .
n

j
j j

w x t
g x u f x t u t

x=

∂
=

∂∑                    (8.62) 

Differentiating this with respect ix , we obviously find  

( ) ( )( ),
0,

i

g x t u t
x

∂
=

∂
                           (8.63) 

where we have used the trivial relation ( ), 1g x u =  by Equation (A.79). From this we 
have  

2

0.j
j

j ji j j i

fw wf
x x x x

∂∂ ∂
+ =

∂ ∂ ∂ ∂∑ ∑                        (8.64) 

Since 
2d

d jj
i i j

w w x
t x x x
 ∂ ∂

= ∂ ∂ ∂ 
∑  , after some manipulation using Equation (8.64), we 

obtain  

( )( ) ( ) ( )( ) ( )( )
1

,d .
d

n
j

ji i j

w x t f x t u t w x t
t x x x=

 ∂ ∂ ∂
= − ⋅  ∂ ∂ ∂ 
∑               (8.65) 

Then, if we define  

( ) ( )( )
, 1, , ,i

i

w x t
t i n

x
ψ

∂
≡ =

∂
                       (8.66) 
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then Equation (8.65) turns out to be the adjoint equation:  

( ) ( ) ( )( ) ( )
1

,d .
d

n
j

i j
j i

f x t u t
t t

t x
ψ ψ

=

∂
= − ⋅

∂∑                   (8.67) 

On the other hand, the Equation (8.61) can be written as  

( ) ( )( )
1

max , 1.
n

j ju U j
f x t u tψ

∈ =

=∑                       (8.68) 

Since the left hand side of the above equation is nothing but the Pontryagin’s 
Hamiltonian 0 , hence we can prove the Pontryagin’s maximum principle:  

( ) ( ) ( )( ) ( ) ( ) ( )( )0 0, , 1 , ,t x t u t t x t u tψ ψ= =               (8.69) 

from using the Bellman’s dynamic programming. 
Thus, as was shown by the Pontryagin’s group [135] [136], the maximum principle 

of Lev Semyonovich Pontryagin in the modern control theory is essentially equivalent 
to the optimality principle of Richard Bellmann in the modern control theory.  

9. The Motoyosi Sugita’s Theory of Metabolism: The First  
Application of the Maximum Principle to Life  

Around the year of 1951 Motoyosi Sugita found an idea that he should apply his theory 
of the maximum principle to the theory of metabolism of life [38]. This was intensively 
studied and published in the Japanese journals [30] [31] [32] [33] [34] [41] [42] [43] 
[44] [45] as well as in English [61] [77] [78] [79]. Much later he generalized the idea to 
more complex systems of life where the control or regularity comes into the system and 
fortunately these were published in English [62] [80]-[87]. 

In this section I would like to introduce to you the earliest version of his theory of 
metabolism as the application of the maximum principle. 

9.1. Combined Chemical Reactions  

Let us denote by in  the mole number for the species i of the molecule inside the body. 
Let us denote by an  the mole number for the species a of the molecule outside the 
body. Denote by sq  the the reaction coordinate for the chemical reaction s in the 
detailed balance. Then, we define  

1 1
, ,

r r

a as s i is s
s s

n q n q
= =

= Γ = Γ∑ ∑                              (9.1) 

where r is the number of chemical reactions and asΓ  ( isΓ ) is the matrix element that 
represents the production of the molecule a (i) from the chemical reaction s. If the life 
being is in the stationary state (or steady state), then  

1
0.

sr

i is s
s

n q
=

= Γ =∑                               (9.1') 

This has to mean 0sq = . However, in general the state is progressing so that it is 
not in the stationary state; Hence, 0sq ≠ . Therefore, we can assume that isothermal 
chemical reactions are performed in the life phenomena. 
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If we denote by an′  the molecule flowing in the body from outside and by an′′  the 
molecule flowing out the body from inside, the chemical motion of the matters in life is 
not like the water flow; it straightforwardly flows in and flows out. But it is like a 
complex circulation of the matters inside the body where there are reverse chemical 
reactions of matters and the matters are flowing out to the body. This is schematically 
shown in Figure 7. 

This is the characteristics of life. When the system is not in the stationary state, the 
life itself automatically performs the cycle and adapts itself with adjusting this cycle by 
interacting with the external systems. Since it is not in stationary in this case, we have 

0in ≠ . 
On the other hand, when we consider the stationary state, since it is not in 

equilibrium, local entropy production exists due to sq . And therefore there must exist 
the dissipation of the Gibbs free energy. Let us denote by ( ),K a iG n n  the total Gibbs 
free energy of the system including the external system. Now we can write as  

1 1 1 1 1
,

a i a im m m mr

K a a i i as a is i s
a i s a i

G n n qµ µ µ µ
= = = = =

 
= + = Γ + Γ 

 
∑ ∑ ∑ ∑ ∑

                (9.2) 

where am  and im  are the mole numbers of the species of molecules for the outside 
and inside of the system, respectively. 

Now if we assume that there is no dissipation outside the body of life, then the right 
hand side of Equation (9.2) represents the dissipation of the Gibbs free energy. The first 
term means that supply from the outside to the system and waste from the system to 
the outside. If the system of life is in the stationary state, then they are compensate to 
each other. Because since 0in = , therefore 0i ii nµ =∑  . However, since the chemical 
cycle is performed, we divide this into two parts as  

1 1 1 1 1
,

i i im m mr r

i i is s is s
i s i s i

n q qµ
= = = = =

   ′= Γ + Γ   
   

∑ ∑ ∑ ∑ ∑                     (9.3) 

where the first term represents the catabolism and the second term the anabolism. 
In chemical reactions in life there seem to exist three types of chemical reactions such 

as (i) consumption, (ii) supply, and (iii) reproduction. Thus we would like to represent 
them as follows:  

( ) ( )

( )

( ) ( )

i  Consumption Catabolism ,

ii  Supply ,

iii  Reproduction Anabolism ,

i i i i
i i

j j j j
j j

k k k k
k k

x A x A

y B y B

z C z C

′ ′→

′ ′→

′ ′→

∑ ∑

∑ ∑

∑ ∑

            (9.4) 

 

 
Figure 7. Schematic diagram of chemical reactions in life. 
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where iA  and jB  are reaction components and ix  and jy  are all integers. jB′  
may be kC . iA  and jB  may be the same components as well. The chemical 
reactions that can be regarded as the path of reactions (ii) for dissolution correspond to 
the main path coming from the external of the body and going out to the external of the 
body. The reactions regarded as (i) provide the activation Gibbs free energy and hence 
they are dissipative reactions. At the same time the dissipation can be compensated by 
reactions of (iii). 

In the system of life, the above reaction are not performed independently, but they 
should be performed at the same time. Therefore, we can assume the following 
reactions:  

.i i j j k k i i j j k k
i j k i j k

x A y B z C x A y B z C′ ′ ′ ′ ′ ′+ + → + +∑ ∑ ∑ ∑ ∑ ∑            (9.5) 

Now we assume that the reaction rates (speeds) are defined by i sx q , j sy q  and 

k sz q  and so forth. We are able to assume the following expression for sq :  

1 e e ,
s s

kT kT
s

s

q
R

µ µ′  = − 
  

                          (9.6) 

where  

,s i i j j k k
i j k

x y zµ µ µ µ≡ + +∑ ∑ ∑                     (9.7) 

,s i i j j k k
i j k

x y zµ µ µ µ′ ′ ′ ′ ′ ′ ′≡ + +∑ ∑ ∑                     (9.8) 

and sR  is the chemical resistance for the chemical reaction labelled by s and iµ , jµ , 
and kµ  ( iµ′ , jµ′ , and kµ′ ) are the chemical potentials for iA , jB  and kC  ( iA′ , 

jB′  and kC′ ), respectively. 
Thus, once we consider in this way, the reactions are performed automatically such 

that the Gibbs free energies ejected from the reactions of (ii) are used for the 
reproduction reactions of (iii) and the dissipations of the Gibbs free energies from 
reproductions (namely, the Gibbs free energy produced by catabolism) are used for the 
progression of this combination of the chemical reaction of Equation (9.5).  

9.2. Reactions of Metabolism and Maximum Principle  

For the sake of simplicity, we assume the following:  

, ,j j j j k k k
j j k k

y y z zµ µ µ µ′ ′ ′ ′> <∑ ∑ ∑ ∑                   (9.9) 

.j j k k j k
j k j k

y z y zµ µ µ µ′ ′ ′ ′+ = +∑ ∑ ∑ ∑                  (9.10) 

This means that the Gibbs free energies produced from (ii) supply are all used for (iii) 
reproduction. From this situation, large energy and negative entropy are produced and 
they become the energy and entropy for activation. That is, so-called negative entropy 
has to be interpreted as activation entropy. In order that smart give and receive of the 
Gibbs free energies can be performed, it is not possible if the activated complex of the 
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reacting components of the materials of (i), (ii) and (iii) takes common feature with 
large entropy, but it can be possible if it makes the organization with small entropy. 
Here is the role of proteins. Therefore, such materials like proteins thermodynamically 
collapse and they proceed the reactions of Equation (9.5) by give and take of the Gibbs 
free energy before their collapse, and constantly reproduce the materials with holding 
the materials that collapse are going to collapse. We have to interpret the concept of 
negative entropy in this meaning. The point of view of Schrödinger [147] and Brillouin 
[148] has a danger to recognize the negative entropy as a permanent existence. 

According to Equation (9.10), the consumption (or exhaustion) per second asso- 
ciated with sq  is given by ( )is i is i si ix x qµ µ′ ′−∑ ∑  . Therefore,  

.K is i is i s
s i i

G x x qµ µ ′ ′= −  
∑ ∑ ∑

                      (9.11) 

On the other hand, the reproduction per second is given by  

.ks k ks k s
s k k

M z z qµ µ ′ ′= −  
∑ ∑ ∑                      (9.12) 

Now when the system is in the stationary state, we have to hold the following 
relation:  

.KM G=                               (9.13) 

As is discussed in the section VII, Motoyosi Sugita applied the method of maximum 
principle of Equation (7.16) to the above problem. Assuming that cont.M =  and 
giving the variation of sqδ  , we seek for the condition that KG  becomes the 
maximum. Let us define by λ  a Lagrange multiplier (i.e., unknown parameter of 
Lagrange). We obtain  

0.

is i is i s s is i is i
s i i s i i

ks k ks k s s ks k ks k
s k k s k k

x x q q x x

z z q q z z

µ µ δ δ µ µ

λ µ µ δ λ δ µ µ

   ′ ′ ′ ′− + −      
   ′ ′ ′ ′+ − + − =      

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

 

 

      (9.14) 

Now the relationship between is i is ii ix xµ µ′ ′−∑ ∑  and sq  is given by Equation 
(9.6). We can assume that Equation (9.11) can be written in the quadratic form in the 
first approximation as was discussed before [Equation (7.41) in Section 7]. Within this 
assumption, for each s the following relation has to be satisfied  

0.is i is i ks k ks k
i i k k

x x z zµ µ λ µ µ ′ ′ ′ ′− + − =  
∑ ∑ ∑ ∑               (9.15) 

Here multiplying sq  for both sides of Equation (9.15) and take the sum for s, we 
find  

0.is i is i s ks k ks k s
s i i s k k

x x q z z qµ µ λ µ µ   ′ ′ ′ ′− + − =      
∑ ∑ ∑ ∑ ∑ ∑           (9.16) 

Comparing Equation (9.16) with Equation (9.13), we obtain 1λ = − . Hence, we 
obtain  



K. Iguchi 
 

197 

,is i is i ks k ks k
i i k k

x x z zµ µ µ µ′ ′ ′ ′− = −∑ ∑ ∑ ∑                   (9.17) 

or  

.is i is i s ks k ks k s
i i k k

x x q z z qµ µ µ µ   ′ ′ ′ ′− = −      
∑ ∑ ∑ ∑                (9.18) 

This is the detailed balance equation in the process of the chemical reaction s. 
From Equation (9.18) together with the help of Equation (9.1'), if we can know the 

ratios of sq  between different s, then we can know the relationship between iµ . 
These iµ  are the chemical potentials in the living state, and therefore, they usually 
cannot be measured biochemically; i.e., they are the quantities that dominate the living 
function biochemically. 

To understand this point, let us assume that there is a material K such that it is 
produced by the rate of k sz q  and it is consumed by the ratio of jk jx q . In the 
stationary state, the balance of income and outgo of the material K is given by  

.k k kj j
j

z q x q= ∑ 
                            (9.19) 

As is shown in Figure 8, suppose that k kz q  occurs as a combination with kj kx q . If  
 

 
Figure 8. Schematic diagram of combined chemical reactions in 
metabolism of life. iA  stand for the species of materials. 
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the difference of chemical potential in each reaction is written as kµ∆ , then 
corresponding to Equation (9.18) the balance of Gibbs free energy is given by  

.kj j k k k k
j

x q z qµ µ
 

∆ = ∆ 
 
∑                        (9.20) 

Or if we use Equation (9.19) then  

.kj j k k jk j
j j

x q x qµ µ
   

∆ = ∆   
   
∑ ∑                    (9.21) 

Motoyosi Sugita points out that if we write as  

kj k kjx q q=                           (9.22) 

then Equation (9.21) has the same form of the equation of simple reproduction in 
economics, where KG  corresponds to the utility function in economics. And hence 
he suggests that once we can establish the analogy between biological phenomena and 
economics, there appears the way to use such mathematical analysis to apply to biology. 

Similarly to what was discussed on Equation (9.18), what we can say about Equation 
(9.21) is the following: If we are able to know the ratio between each reaction rate in the 
metabolism in the body with keeping the life body in the stationary state, then we are 
able to find the relation between the chemical potentials. From this we are able to 
measure the negentropy in the living state by the kinematical method. On the other 
hand, if we want to measure it by the usual chemical method then we have to make the 
living system in the equilibrium state and hence inevitably we have to kill the life. 
However, if we seek for the inter-relationship between the chemical rates with keeping 
the living chemical reactions, then we can measure the free energy of the system that is 
in the living state. 

As a special example for the above theory of Motoyosi Sugita, he discussed the 
combined chemical reactions of ATP and proteins. Suppose that all protein reactions 
are averaged for all proteins conceptually such that we can assume that there is only 
one protein. Denote by PA Px q  the speed of decomposition of ATP to produce the 
protein, where the Gibbs free energy of ATP decomposed for the production of protein 
is given by A PA Px qµ∆  . On the other hand, denote by AP Ax q  the speed of de- 
composition of protein to produce ATP, where the Gibbs free energy of the protein 
decomposed for the production of ATP is given by P AP Ax qµ∆  . Then in the stationary 
state we have  

,AP A P PA P Ax q x qµ µ∆ = ∆                         (9.23) 

where Pµ∆  ( Aµ∆ ) is the chemical potential difference between decomposition and 
reproduction of protein (ATP) (see Figure 9). Therefore, if we can know the value of 

Aµ∆  then we can know Pµ∆ , vice versa. The free energy of proteins manufactures the 
complex organization of life and it makes the smart deliver and receive of the free 
energy possible. Therefore, once it is cut down to the outside, then the meaning of 

Pµ∆  is lost. Now, according to experiments the function of protein depends on the 
speeds of production and decomposition. 
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Figure 9. Schematic diagram of combined 
chemical reactions of Protein and ATP in 
metabolism of life. 

 
Thus, when we think in this way, the negentropy (=negative entropy) is not 

permanently existing, but constantly produced by the reaction (iii), and constantly 
increasing by the reaction (i). If one doubts why entropy cannot increase in life body, 
then one forgets the combination of reactions (iii) and (i). Even though 0in = , as long 
as 0sq ≠ , the local production of entropy is carried out in life body.  

9.3. Analogy between Thermodynamics in the Transient Phenomena  
and Theory of Metabolism  

In the year of 1953, Motoyosi Sugita noticed some analogy between the thermal engine 
and the chemical engine [30] [31] [32] [33] [34] [41] [42] [43] [44] [45] [77] [78] [79]. 
He recognized that it is more convenient for us to consider the Gibbs free energy than 
to consider energy. This is because when we consider the balance of chemical energies 
in life phenomena, the energy is immortal forever but the free energy can be dissipated. 
He thought that this point is very important for life. 

Suppose that there is a life system that eats foods and discharges excreta. Let us 
denote by 1Z  the Gibbs free energy of the life system that intaking from the outside. 
Let us denote by 2Z  the Gibbs free energy of the life system that excreting to the 
outside. Let us denote by D the Gibbs free energy of the system that is consumed within 
the system. Let us denote by KG  the Gibbs free energy of the system that is 
accumulated within the system. Let us denote by KG  its time derivative. 

Now the balance of the Gibbs free energy must satisfy the following relation:  

1 2 .KZ Z D G− = +                              (9.24) 

This equation corresponds to Equation (2.6) or Equation (3.19) in the thermal 
system such that 1 2Z Z−  and D correspond to U PV+   and TS , respectively. On 
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the other hand, the Gibbs free energy change for the external system (outside of the 
system) eG  is given by  

1 2.eG Z Z− = −                             (9.25) 

This corresponds to the Gibbs free energy change in the thermal reservoir for the 
thermal system such that 1 2Z Z−  corresponds to U PV+  . Hence, the total change of 
the Gibbs free energy is given by  

0.K eG G D+ = − <                           (9.26) 

Since D in the life system corresponds to TS  in the thermal system, Equation (9.26) 
means the 2nd law of thermodynamics for the life system. From this point of view 
Motoyosi Sugita intensively studied the theory of life using the analogy. 

Let us now take the steady state into consideration. In the steady state 0KG = , we 
have  

1 2 0.eG Z Z D− = − = >                        (9.27) 

Let us consider the detailed balance of Gibbs free energy. A part of Gibbs free energy 

1 2Z Z−  is used to do the work of muscles or of digestion, of absorption and of 
excretion. Let us denote this by W. The other part is used as pump action to promote 
synthetic reaction or anabolism. The Gibbs free energy of our body is reproduced by 
this reaction. Let us denote by R the rate of reproduction. There is a loss of the Gibbs 
free energy during the work. Let us denote it by W. There is a loss of the Gibbs free 
energy during the pump action. Let us denote it by R. The rest of them is fD . The 
relation of these quantities is expressed by Figure 10. 

 

 
Figure 10. Schematic diagram of thermodynamics of life 
as the flow model for the balance of Gibbs free energy. 
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Thus, we must hold the following:  

1 2 .fZ Z W R D− = + +                       (9.28) 

Then we obtain  

.fG W R D D= + + −                       (9.29) 

Let us define the following relation:  

.r fD D W D= − −                        (9.30) 

Then we have  

.K rG R D= −                          (9.31) 

9.4. Balance of Substances in Life  

As a generalization of the concept of metabolic reaction, Motoyosi Sugita considered 
the network of the flows of substances in life systems. 

Let us denote by ( )in X  the concentration of the chemical substance X in the 
chemical state of molecule i in the life system. For example, X stands for atomic 
elements such as C, N, etc., while i stands for complex molecules such as Amino acids, 
fat, etc. 

Catabolism occurs in the directions from more complex molecules to simpler 
molecules, while Anabolism occurs from simpler molecules to more complex molecules. 
For the sake of simplicity, let us write the anabolism direction as in a series of 

1 1i i i→ − → → + →  , while the catabolism direction is reverse in order. Let us 
denote by ( )1,i iQ X−  the anabolic reaction from state 1i −  to state i. Let us denote by 

( ),i kq X  the catabolic reaction from state i to state k, where i k> . Now we can write 
the balance equation of substances as  

( ) ( ) ( ) ( ) ( )1, , 1 , , .i i i i i i k l i
k l

n X Q X Q X q X q X− += − − +∑ ∑              (9.32) 

This network is schematically shown in Figure 11.  
 

 
Figure 11. Schematic diagram of the network of chemical reactions in 
life system. Solid arrows mean the catabolic reactions and dotted 
arrows mean the anabolic reactions. 
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In the stationary state we must have the following as usual:  

( ) ( )1, , 10 i i i iQ X Q X− += −  

( ) ( ), , .i k l i
k l

q X q X− +∑ ∑                      (9.33) 

Now let us consider the weight increase w  of the body of the life. This will be given 
by ( )iX in X∑ ∑ . Since the system is an open system, if we denote by 1Y  the total 
quantity of the substances that are intaken from the outside of the body and by 2Y  the 
total quantity of the substances that are excreted to the outside of the body, then we 
must have the following:  

( ) 1 2 ,i
X i

w n X Y Y= = −∑∑                      (9.34) 

where w is the weight of the body. Let us denote by ( )eiq X  the quantity of X flowing 
from the outside into the state i in the system. Let us denote by ( )keq X  the quantity 
of X flowing out from the state k to the outside. By definition the 1Y  and 2Y  must be 
defined as  

( )1 ,ei
X i

Y q X= ∑∑                         (9.35) 

( )2 ,ie
X i

Y q X= ∑∑                         (9.36) 

respectively.  

9.5. Gibbs Free Energy of Life  

As described before, let us denote by KG  the Gibbs free energy of the life system and 
by eG  the Gibbs free energy of the external system. Hence, the total Gibbs free energy 
that includes the Gibbs free energy of the life itself is given by K eG G+ . The life system 
is a system that the total Gibbs free energy of K eG G+  is decreasing according to 
Equation (9.26). 

Let us relate the quantities given by Equations (9.24)-(9.26) with the quantities given 
by Equations (9.32)-(9.36). Let us define the chemical potential that X belongs to the 
state i by  

( ) ( )
.K

i
i

GX
n X

µ ∂
=
∂

                       (9.37) 

From this we can define the rate of the Gibbs free energy of the life system by  

( ) ( ).K i i
X i

G X n Xµ= ∑∑


                     (9.38) 

Now substituting Equation (9.32) into ( )in X  of Equation (9.38), we obtain  

( ) ( ) ( ) ( )1, . 1 .K i i i i i ik li
X i k l

G X Q Q X q X q Xµ − +
 = − − +  

∑∑ ∑ ∑        (9.39) 

This can be converted into the following form:  

( ) ( ) ( ) ( ) ( )1, . 1 1 2 ,K i i i i i i k ik
X i X k

G X Q Q X X X q X Z Zµ µ µ− + = − − − + −   ∑∑ ∑∑  (9.40) 
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where 1Z  and 2Z  are given by  

( ) ( )1 ,i ei
X i

Z X q Xµ= ∑∑                      (9.41) 

( ) ( )2 ,k ke
X k

Z X q Xµ= ∑∑                      (9.42) 

respectively. In Equation (9.40), ( )1,i iQ X−  represents the anabolic reaction when 
( ) ( )1i iX Xµ µ −> , while ( )ikq X  represents the catabolic reaction when  
( ) ( )i kX Xµ µ> . 1Z  is the Gibbs free energy of the intake of food while 2Z  is that of 

waste from the body of the life. Thus we can consider that the food is absorbed with the 
chemical potential ( )i Xµ  and the waste is ejected with the chemical potential 

( )k Xµ . Hence, the difference 1 2Z Z−  is equivalent to the metabolic energy. 
Now if we define D as  

( ) ( ) ( ) ( ) ( )1, . 1
,

,i i i i i i k ik
X i X i k

D X Q Q X X X q Xµ µ µ− + ≡ − − + −   ∑∑ ∑∑    (9.43) 

then we obtain  

1 2 .KG Z Z D= − −                         (9.44) 

This is nothing but Equation (9.29). In the stationary state it provides the following:  

1 20, .KG Z Z D= − =                       (9.45) 

Thus, we have been able to represent the quantities for the life system such as KG , 
D , 1Z  and 2Z  in terms of the quantities in the biological chemical network such as 
( )in X , ( )i Xµ , ( ), 1i iQ X−  and ( )ikq X . 
This is the essence of the Motoyosi Sugita’s theory of metabolic network system, 

which was entitled as Metabolic Turnover of Entropy and Energy and its Mathematical 
Analysis in Life I-V. It was first published in Japanese in the Busseiron Kenkyu [30] 
[31] [32] [33], which was also published in English in the Journal of Physical Society of 
Japan [61] [77] [78] [79], and later the generalized version of the theory was published 
in Japanese in the Bulletin of Kobayasi Institute as well as in the Busseiron Kenkyu [34] 
[41] [42] [43] [44] [45]. I would like to strongly recommend the Western people to read 
his theory published as the English papers [61] [77] [78] [79].  

9.6. The Birth of Network Thermodynamics  

The above Motoyosi Sugita’s theory of metabolic network in the life-being system is 
much earlier than the network thermodynamics that was founded by Aharon 
Katchalsky’s group [106] [108] as earlier as 20 years. As one of the coworker of Lars 
Onsager, Aharon Katchalsky with his students George F. Oster, and Alan S. Perelson 
independently developed the extension of the Onsager’s theory of irreversible processes 
to the theory of life system. They found the relationship between the network of 
chemical reaction in biosystems and that of electrical circuit in electronics. Hence, they 
named their theory the network thermodynamics. 

The starting point of Aharon Katchalsky’s group is Equation (7.32):  

0,KG φ+ =                            (9.46) 
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where in order to adjust with their notation, I have used φ  in stead of 2φ  in 
Equation (7.32). They took this as the fundamental equation for their theory of network 
thermodynamics. 

Let us suppose that there is a biochemical network system that is represented by a 
network graph such as Figure 11. Let us assume that we define chemical potential iµ  
on the i-th node of the graph and the current ijJ  on the link ij  in the graph, 
respectively. Let us assume that there is the standard chemical potential µ  that can 
measure the standard level for the chemical potentials. This is analogous when we 
consider the electrical circuit where the ground point plays the role of the standard level 
for all the potentials. 

By using this problem-setting, they found the Kirchhoff’s law in biosystems, where 
there are the Kirchhoff's current law (KCL) and Kirchhoff’s voltage law (KVL). The 
KCL is the conservation law of the currents on a node such that the total amount of 
incoming currents to the node must be the same as the outgoing currents from the 
node. The KVL is the conservation of the voltages (or the potentials) along any closed 
circuit in the network graph. Obviously these are very common knowledge in the 
elementary circuit theory or the elementary electromagnetism. Hence there is no need 
to explain much more. However, although there is a very famous theorem in the circuit 
theory that is called the Tellegen’s theorem [149]-[154], this is not so well known 
among physicists except some experts in electronics, although it is a natural gen- 
eralization of the theorem of the Joule’s least heat in the steady current or the 
Thomson’s theorem in the static electric field [155]. 

The Tellegen’s theorem states the following: Let us denote by ijJ  the current 
flowing out from the node i and flowing into the node j in the link ij. Let us denote by 

ijV  the voltage difference between the the node i and the node j. When both the KCL 
and KVL are satisfied at the same time for an arbitrary network graph of electrical 
circuit, if we represent the current vector J  and the voltage vector X  by  

12

23

,

ij

J
J

J

 
 
 
 =
 
 
 
 

J 



                                (9.47) 

12

23

,

ij

V
V

V

 
 
 
 =
 
 
 
 

X 



                                (9.48) 

then the following relation must be satisfied:  

0,t =X J                                 (9.49) 

where t stands for the transpose of the vector. This simple and rather looking trivial 
relation of Equation (9.49) is called the Tellegen’s theorem. And it is really a very 
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powerful tool in the electrical circuit theory [149]-[154]. 
What is important here is that Aharon Katchalsky’s group has found that Equation 

(9.46) in the biochemical network system is equivalent to Equation (9.49) in electronic 
circuit systems. Let us represent the φ  in Equation (9.46) in terms of the differences in 
the chemical potentials ij j iµ µ µ≡ −  where the level chemical potential is denoted by 

eµ . It is given by  

,
,ij ij

i j
Jφ µ= ∑                             (9.50) 

The rate of the Gibbs free energy of the system, KG , is given by  

( ) .K ie i e
i

G J µ µ= −∑                         (9.51) 

From Equation (9.46) we obtain  

( )
,

0.K ie i e ij ij
i i j

G J Jφ µ µ µ+ = − + =∑ ∑                  (9.52) 

If we explicitly write down the KCL and the KVL for a given network graph and if we 
use the relations of the KCL and the KVL, then we can prove that the above Equation 
(9.52) can be converted into the form of Equation (9.49). This is the findings of Aharon 
Katchalsky’s group [106]-[112]. 

I would like to put a comment here. There is a difference between the Motoyosi 
Sugita’s approach and the Katchalsky’s approach. In the former, Motoyosi Sugita used 
the concept of field of chemical potential and therefore, the current flow ( )ijJ X  is 
given by  

( ) ( )

( ) ( )1 e e ,
ji XX

kT kT
ij

ij

J X
R X

µµ  = − 
  

                  (9.53) 

while in the latter Katchalsky’s group used the Onsager’s linear relation or the De 
Donder’s linear relation:  

( ) ( ) ( ) ( ){ }1 ,ij i j
ij

J X X X
R X kT

µ µ= −                (9.54) 

where T is the temperature of the system, k is the Boltzmann constant, ( )ijR X  is the 
chemical resistance, and ( )i Xµ  is the chemical potential on the j-node in the network 
graph. According to the chemical reaction:  

1 1 2 2 1 1 2 2 ,i i i i j j j jA A A Aν ν ν ν+ + → + + 
              (9.55) 

the above chemical potentials are defined as  

( ) ( ), .i ik ik j jk jk
k k

X Xµ ν µ µ ν µ= =∑ ∑                (9.56) 

Very very sadly Aharon Katchalsky(Aharon Katzir) was killed by terrorism of the 
Japanese red army at the Ben Gurion International Airport in 1972. He was one of the 
victims when 26 people were killed by the attack. I feel very sorry for that. I would like 
to state that Rest in Peace to him and others. Therefore, actually the year of 1972 is the 
end of his theory. Later on, Perelson and Oster had followed the line of Katchalsky 
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straightforwardly and extended their theory to more complex network systems [106]- 
[112]. However, their theory became very pure mathematical so that none can easily 
follow them. Hence, the Katchalsky theory seems dead at that time. However, recently 
some people noticed the importance of the Katchalsky’s work and applied to the 
membrane system of life [156] [157] and the complex metabolic network [158] [159] as 
Motoyosi Sugita did it long long ago as early as 65 years. This would be regarded as 
some revival for their theory. 

As was discussed in Section 7, the reason why we must have Equation (9.46) lies on 
the fact that there exists the 4th law of thermodynamics in nature from the view point 
of Motoyosi Sugita. It is realized as the maximum principle for the transient pheno- 
mena such as life phenomena. The concept of the transient phenomena is much broad 
concept than that of the irreversible processes studied by Lars Onsager and Ilya 
Prigogine as well as Aharon Katchalsky. The maximum principle for the transient 
phenomena always works as the 4th law of thermodynamics in biological phenomena 
such as metabolism. So, the equation such as Equation (9.46) appears as the Tellegen’s 
theorem in the circuit theory and in the biological network theory as well.  

10. The Motoyosi Sugita’s Theory of Thermodynamics of Life  
10.1. The Phenomena of Life and Its Analogy to Social Economics  

In the English paper of 1954 [61], Motoyosi Sugita pointed out the resemblance of the 
phenomena of life and the social economics, since the life phenomena can be regarded 
as the society of molecules in cells or that of cells as follows. 

1) Our body consumes various organic and inorganic substances, some of which are 
produced in our body, like hormone, enzymes, protein, nuclear acid, fats and others, 
and some of which are taken from the external world by the work of our muscles and 
digestive organs, like inorganic salt, vitamins, amino acids and others. 

2) These substances are useful to maintain life. The idea of nutritive value is well 
known but quantitatively the value of caloric units is mainly taken into account. The 
nutritive value of vitamins, iron and other inorganic substances and some amino acids 
is also taken into account but only qualitatively. There may exist the idea corresponding 
to utility or welfare function in economics which may be treated analytically and 
quantitatively. 

3) There is consumption of Gibbs free energy (shortly say, F. E.) to produce or 
absorb the necessary substances and consumption is required by production and intake. 
Even the absorption of glucose, which is the last stage of digested starch is carried out 
by the investment of F. E. of ATP, an ester of phosphoric acid of high energy. Therefore, 
in the case of famine or when ill-fed, our organ loses the power to digest or absorb 
nutritious substances due to the lack of F. E., which corresponds to initial cost. On the 
contrary, the function of intestinal absorption will be dangerously damaged if over-fed.  

The above is shown in Figure 12, in which the energy is fed back to take the 
chemical energy from the external world. This feeding back is similar to business life, in 
which an enterprise is sometimes suppressed by the lack of the initial cost. Indeed our  



K. Iguchi 
 

207 

 
Figure 12. Schematic diagram of thermodynamics of life as the syphon model for the balance of 
Gibbs free energy. This is equivalent to the diagram of Figure 10. 
 
body corresponds to a factory and ATP to capital. 

4) There is the balance of the need and the supply. Superfluous protein, for instance, 
loses its amino-group and changes into carbon-hydrates corresponding to consumer’s 
goods. On the other hand, the protein of our tissues, which corresponds to producer’s 
goods, is destroyed by lack of protein, and the material is used to construct the other 
necessary part. 

According to Professor Kida the relatively short legs of the Japanese are due to the 
lack of protein of high quality in food during growth. The body seems to lack protein to 
build legs, for we must use the material to construct the necessary part of our organs. 
Medical science may be considered good management in the balance of matter and F. 
E. 

5) Our body corresponds to our system of industry. Various substances are produced 
in every part of our body and supplied to other parts. On the other hand, the parts are 
also supplied from other parts. There is an exchange and economy of matter and energy. 
For instance, the production of protein corresponds to the first department of pro- 
ducer’s goods. In this case as well ATP as protein is consumed. The consumption of the 
latter corresponds to the depreciation of producer’s goods, in this case the chemical 
apparatus made of protein. 

The ATP which is consumed, is reproduced again in our body and carbon-hydrates, 
protein and ATP are consumed for reproduction. Here, the carbon-hydrates corre- 
spond to consumer’s goods and the reproduction of ATP to the second department of 
economics. Therefore, there is a close analogy between the two fields. For instance, 
labour is reproduced by the consumption of goods, just as carbon-hydrates in food. 
This fact is important from the point of view of methodology (see Figure 9). 

On the other hand the consumption of protein which is an example of catabolism, 
corresponds to depreciation which is repaired by anabolism. 
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6) Depreciation and the repair is the general aspect of life. For instance, reproduction 
is the turnover of the body itself, which depreciates during life, especially by re- 
production itself. 

If we take, however, the history of man-kind into account, depreciation in the 
individual body is repaired by other bodies. Therefore, those who enjoy youth enjoy the 
turnover of the individual body. 

Therefore, one of the most prominent aspects of life is the turnover of molecules of 
cells and of the individual body, so that the world of the living organism is repaired and 
steadily maintained. This is very important from the point of view of thermo-dynamics, 
for the F. E. on earth is constantly consumed by organisms. 

The steadiness is similar to that of the river, which consumes the potential energy of 
water and also maintains steadiness on the balance of water. 

In a similar manner the depreciation of the apparatus of a chemical plant, the value 
of N. E. (negative entropy) of our body is also depreciated (c.f., see Section 9). On the 
other hand this value of N. E. regulates the value of F. E. of activation of bio-chemical 
reactions. Therefore, the catalytic action of the organs, corresponding to the function of 
the chemical plant, is also depreciated and repaired. In this respect the writer has 
introduced the idea of the metabolic turnover of N. E., corresponding to the depre- 
ciation and the repair of producer’s goods in economics.  

7) Besides the feed back of F. E. there is the circulation of matter in our body, for 
instance the chemical cycle of ATPADP or the reduction and oxidation of enzymes. 
Figure 13 shows the circulation of phosphates of adenosine in which ATP is included. 
The circulation is very complicated, in general, but is schematized in Figure 7. This is 
similar to the circulation of paper money in our society. In a similar manner, the matter 
of high energy is taken from the external world and excreted, so that our body 
corresponds to a pipe and is called an open system. But it is not an open system like the 
pipe through which the water of a tank flows. 

8) The feedback of matter and energy is very similar to the management of our social 
life. Chemical processes in our body are combined like the system of gears (c.f., see 
Section 9), and, if we wish to promote a process, the effect is fed back and produces 
sometimes unexpected results. Here is the difference of the biochemical change from 
that in vitro. Therefore, if the knowledge of chemistry in vitro is applied mechanically 
the effect may be contrary to expectation, as in the controlled social economy. 

There is bad circulation in our body. For instance, the appetite is diminished, if 
health is destroyed, and health is disturbed if the appetite is diminished. Good 
management by the physician will eliminate bad circulation. 

9) There is the balance and stability of matter and F. E., in our metabolism. If the 
balance is disturbed,the function of our body is disturbed. We have seen that our body 
resembled a pipe, through which the matter of high chemical energy flows and the 
matter of low chemical energy is excreted. The balance seems to be favorable to the flow 
of matter (see Figure 14). In social life the balance of production and consumption is 
favourable to the movement of goods. There is the recovering action in our body as well  
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Figure 13. Schematic diagram of the circulation of phosphates of adenosine in our body [160]. 
ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; AMP: Adenosine monophosphate. 
 

 
Figure 14. Schematic diagram of the current flow. (a) Balanced flow. There is no oscillation. (b) 
Unbalanced flow. There is oscillation perpendicular to the flowing direction. 
 
as in our society. If the balance is disturbed, and cannot be recovered, a catastrophe 
occurs and finally death of our body.  
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Prof. Bertalanffy [161] [162] [163] called the balance of our body dynamic stability or 
equilibrium. From the point of view of thermodynamics, this is not thermal 
equilibrium. But stability can be seen in many transient phenomena of the inanimate 
world. I have studied such phenomena from the point of view of molecular statistics 
and noticed the stable equilibrium of the second coordinate which will be discussed 
later (c.f., see Section 9) in connection with the maximum principle.  

10.2. Motoyosi Sugita’s Inclination and Devotion to Incorporate  
Cybernetics of Norbert Wiener  

After 1957 when I was born in Kofu, Japan, Motoyosi Sugita turned the direction of his 
bio-theoretical work to incorporate the cybernetics of Norbert Wiener [164] [165] 
[166]. There seem to be several reasons for it. 

1) First, Motoyosi Sugita got stuck on his way to prove the maximum principle for 
the existence of the 4th law of thermodynamics around 1957; 

2) Second, there suddenly emerged a world-wide upheaval of cybernetics of Norbert 
Wiener around the time; 

3) Third, he became to see more importance on the regulation such as feedback 
control introduced by Norbert Wiener and digital control than on the nonequilibrium 
thermodynamics in the transient phenomena; 

4) Fourth, among other things, his concept of field of chemical potential [see 
Equation (6.9), Equation (7.36), Equation (9.6)]:  

1 e e ,
js jis i

ji
kT kT

s s
s

J n
R

ν µν µ ∑∑ 
 ≡ = − 
  

                      (10.1) 

was very easy to adjust with cybernetics. Here the chemical resistance 
1

c
cR

σ ≡  plays  

the role of the regulation nozzle in the regulator process. 
5) Fifth, the concept of cybernetics is so broad that it fascinated him very much, since 

he was a full time professor for economics and economical management in the 
Hitotsubashi University which is one of the top national universities for the humanities 
course in Japan. 

6) Sixth, his time was a bit earlier than the era of modern optimal control theory. I 
believe that this would be the main reason for that. 

As is known that cybernetics as well as feedback control of Norbert Wiener belong to 
the classical control theory, we know the modern control theory such as L. Pontryagin’s 
maximum principle [see Section 8] and Richard Bellman’s optimality principle (see 
Appendix) nowadays. Motoyosi Sugita was born in the age of classical control theory 
much earlier than that of modern control theory. Therefore, he seemed unfamiliar with 
what happened in the control theory around 1960 when Pontryagin’s revolution 
occurred. So, he would like to catch up the Norbert Wiener’s theory for his theory of 
thermodynamics of life. 

The above situation seemed to stimulate Motoyosi Sugita to write many books on the 
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application of cybernetics to the theory of life or life being [5] [6] [7] [8] [10] [11] [12]. 
For the English world, he published many papers on it around 1960-1975 [62] [80]-[87]. 
Only one of them (1963’s paper) was cited in Stuart A. Kauffman’s The Origins of 
Order [99]. 

Although this research theme is very fascinated, this is out of scope of this paper. 
Otherwise, more several hundreds pages would be needed to do it. This work would be 
for you, the readers, probably not for me, I hope!  

11. Conclusions  

In conclusion, I have introduced the personal history of Motoyosi Sugita in Section 1. 
Here I summarized his birth, education, working, marriage, visits, publications, as well 
as his research history, etc. 

In Section 2, I have shortly summarized his bright ideas of the concept of broad 
quasi-static change, the concept of virtual heat, and the concept of irreversible cycle. 
And I have shown his application of them to a certain classical phenomenon in physics 
such as the Kelvin’s thermoelectric effect. 

In Section 3, as another example for his application to other classical phenomena in 
physics, I have discussed the diffusion phenomena. Here the Langevin equation, the 
mixing entropy and free energy, the number of partition have been discussed. 

In Section 4, the theory of condensation in the supersaturated state developed by 
Becker-Döring, Volmer, and Frenkel has been discussed. I explained that this theory 
promoted Motoyosi Sugita to recognize the importance of the concept of the field of 
chemical potential. 

In Section 5, I have summarized Motoyosi Sugita’s thermodynamics of transient 
phenomena. Here for the concrete understanding, the theory has been applied to the 
chemical reactions only. Considering the system of chemical reaction network, the 
concept of the field of chemical potential, the relationship between cooperative 
phenomena and the chemical potential have been discussed. 

In Section 6, I summarized the maximum principle of Motoyosi Sugita in the 
transient phenomena. Here I have discussed G  = max conjecture, the existence of 
the 4th law of thermodynamics, the relationship between the Boltzmann’s H-theorem 
and the µ-field (i.e., the field of chemical potential). Also, the proof of the conjecture 
was shown for some special situation. 

In Section 7, I have argued the relationship between the Motoyosi Sugita’s theory and 
the theories of Lars Onsager and Ilya Prigogine. Here in general, both of them are 
almost identical and therefore they established the same type of theory independently. 
However, while the Onsager-Prigogine’s theory was limited within the linear theory, 
Motoyosi Sugita’s theory went far beyond the linear theory using the concept of the 
field of chemical potential. 

In Section 8, I have discussed the relationship between the maximim principle of 
Motoyosi Sugita and that of Pontryagin in the modern optimal control theory. I have 
shown that the Motoyosi Sugita’s approach can be absorbed into the more broad 
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category of Pontryagi’s theory. And therefore, the way to prove his conjecture lies on 
the fact that the Pontryagin’s maximum principle can be regarded as a key to prove the 
existence of the 4th law of thermodynamics when it is applied to non-equilibrium 
thermodynamics in the transient phenomena. I also have shown the Bellman’s principle 
of optimality (see Appendix). 

In Section 9, I have shortly summarized the first application of the Motoyosi Sugita’s 
maximum principle to the theory of metabolism. Here I have discussed the combined 
chemical reactions, reactions of metabolism, and the maximum principle, the analogy 
between thermodynamics in the transient phenomena and the theory of metabolism, 
the balance equation of substances, the Gibbs free energy of life, the birth of network 
thermodynamics, respectively. 

In Section 10, I have shortly introduced the Motoyosi Sugita’s theory of life. Here I 
have shown his way of thinking on the topic, quoting his main explanation on his 
motivation. Finally, I have presented the Motoyosi Sugita’s work of theory of life 
adapting cybernetics of Norbert Wiener after 1957. 

Looking back at my long journey to introduce the widely unknown Japanese 
thermodynamicist, Motoyosi Sugita, to the Western world (namely, the English- 
reading people) as well as to the young generations of biophysical scientists in Japan, 
what I have done here seems far from to be perfect. However, being insufficient is 
much better than nothing to do. All that glitters is not gold. If what I have done here 
would help you to understand the great work of Motoyosi Sugita, then I could sleep 
well. This is only just a beginning for the construction of theory of life.  
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Appendix: The Bellman’s Theory of Optimality Principle  

The Richard Bellman’s work in engineering mathematics and control theory has not so 
well-known in physics community as well [137] [138]. However, it is also very 
important for our purpose as well as so is Pontryagin’s theory. As is shown before, on 
the one hand, Pontryagin’s theory is the generalization of the Hamilton principle in 
classical mechanics to the theory of optimal control. On the other hand, Bellman’s 
theory is the generalization of the Hamilton-Jacobi theory in classical mechanics to the 
theory of optimal control, whose theory is called the dynamic programming in the 
control theory [137] [138]. From the quality and flavor of Bellman’s work and the age 
that the work was done, I feel like that he is “Richard Feynman” [145] in engineering 
mathematics. Even their faces are alike to each other as well.  

1. Multistage Processes  

The expression of the multistage processes is that in the optimal control theory and in 
the applied mathematics. It is nothing more than the recursive processes and the 
iteration processes in physical terminology. 

Now, let us denote by a state vector x a point in an n-dimensional space. Next, let us 
consider that the point is transformed into another point 1x  by the transformation 
function ( )R x . Namely,  

( )1 .x R x=                                  (A1) 

By repeating this process, the transformation from the n-th stage to the 1n + -th 
stage is written by  

( )1 .n nx R x+ =                                (A.2) 

Thus, as the initial point flutters from point to point till it moves to the final point, 
we finally obtain an infinite series of the points. That is,  

[ ]1 2, , , , , .nx x x x                              (A.3) 

We call this multistage process. It is inconvenient to write many terms in the series at 
every time, we write it in the simplified way:  

( ) [ ], or , .x R x x R                               (A.4) 

2. N-Stage Processes and Reduction of Data  

Since we human being control the system in the optimal control theory, we consider 
the case of finite time. Therefore, we assume that there is an upper limit number N in 
the sequence. That is, we consider only the case:  

[ ]1 2, , , , .Nx x x x                              (A.5) 

Then, later we take the limiting process: N →∞ . If we write it much more 
mathematically reasonably, we have  

( )1 , 0, , .n nx R x n N+ = =                           (A.6) 
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Now, we consider that there exists a function in this multistage process. In other 
words, we consider that a function g is written in the following:  

( )1 2, , , , .Nx x x x=                            (A.7) 

This is thought of as a mapping from the coordinates ( )1 2, , , , Nx x x x  in the very 
higher dimension onto the scalar function ( )1 2, , , , Nx x x x . It is a projection, which 
deletes many data by this mapping. Therefore, it reduces the data in a sense. What we 
represent the multistage processes by a function means that we have performed 
reduction of the data. 

As explicit examples, the following forms can be considered:  

( ) ( )
0 0

or .
NN

i i
i i

h x h x
= =

= =∑ ∏                       (A.8) 

( ) ( )
1

10 0
max or , .

NN

i i ii N i
h x h x x

−

+≥ ≥ =

= = ∑                     (A.9) 

3. N-Stage Deterministic Process and Mathematical Representation  
of Policy  

Let us consider the expression of the N-stage deterministic process in the optimal 
control theory and in the applied mathematics [137] [138]. It is nothing more than the 
recursive processes and the iteration processes in physical terminology. 

Now, let us denote by a state vector x a point in an n-dimensional space. Let us 
denote by u the r-dimensional vectors for control variables that we determine at each 
stage. Then, an N-stage deterministic process is given as follows:  

( )1 , , 0,1, , ,n n nx R x u n N+ = =                     (A.10) 

where we have defined 0x x= . This produces a vector sequence:  

[ ]1 2 0 1 2, , , , ; , , , , .N Nx x x x u u u u                    (A.11) 

Let us now define the evaluation function or the performance index function by  :  

( )1 2 0 1 2, , , ; , , , .x x x u u u                       (A.12) 

In the theory of optimal control [135] [136], the above external vector u is called the 
control vector or the control function. On the other hand, in the theory of dynamic 
programming [137] [138], it is called the policy or decision. 

4. Mathematical Representation of Policy  

The evaluation function   is a function of the state vectors ix  and the policy vectors 

iu  from the initial state to the final state. But in order to decide the policy at any stage, 
the policy itself have to be evaluated by them. Therefore, the policy kq  must be 
thought of as a function of the past state vectors and the past policy vectors such as  

( )1 0 1 1, , , ; , , , .k k k ku u x x x u u u −=                     (A.13) 

This is called the policy function. When the policy makes the evaluation function 
optimal, we may call it the optimal policy. And the optimality problem is that to 
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determine the optimal policy by the multistage processes. 
The above case of Equation (A.13) is most general, since it includes all the 

information of the past. Therefore, it is very complicated, since the policies in the past 
determine the present policy. So, we have to simplify the policy representation by 
restricting ourselves to consider only the case that the state is determined by the state in 
the past just before the present time, such as the law of causality. In this restricted case, 
we have  

( ).k k ku u x=                             (A.14) 

Or for a bit more complicated system, it is given as  

( ) ,k k ku u π=                             (A.15) 

where kπ  is defined by  

[ ]1, , .k k kx xπ −=                            (A.16) 

When we adopt the condition such as Equation (A.14) or Equation (A.15), the 
evaluation function   can be written as a sum or a product of the function of local 
specific variables. In this case we recognize that the separability of the evaluation 
function is realized. The evaluation function can be written in the following:  

( ) ( )
0 0

, or , .
NN

i i i i
i i

g x u h x u
= =

= =∑ ∏                   (A.17) 

( ) ( )
1

1 10 0
max , or , ; , .

NN

i i i i i ii N i
h x u h x x u u

−

+ +≥ ≥ =

= = ∑                (A.18) 

5. Independency from the Past and Mathematical Representation of  
the Law of Causality  

The multistage process (that is, the recursive process) always depends upon only the 
state one step before. Although the past, the present and the future are all connected in 
time series, the present state is determined by the past state one step before. This is the 
concept of the multistage process. Therefore, the present is nothing to do with all the 
past before the past one step before. In this sense, the present is independent of the 
past. 

Mathematically, it is given by  

( ) ( ) ,n
nR x R x≡                            (A.19) 

which means  

( ).N N k kR R R−≡                            (A.20) 

This is the so-called mathematical representation of the law of causality.  

6. Mathematical Representation of the Law of Causality  

We now define the mathematical representation of causality. Suppose that the state of 
the system is ( )0 ,x f x t=  at time t, where 0x  is the initial state of the system. 
Suppose that the system is progressing from the initial state ( )0 ,x f x t=  to the final 
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state ( )0 ,x f x t s′ = +  at time t s+ . 
At this moment, we can separate the whole interval from the initial time 0t =  to the 

final time t s+  into two intervals: one region is the interval between 0t =  and t and 
the second is the interval between t and t s+ . 

In the first interval the state lies in 0x  at time 0t = , and it goes to the state 
( )0 ,x f x t=  at time t. In the second interval, the system is progressing from the state 
( )0 ,x f x t=  at time t to the final state ( )0 ,x f x t s′ = +  at time st + . However, the 

final state is equal to the state that the system starting from the state ( )0 ,x f x t=  at 
time t becomes the system progressing to the state ( ) ( )( )0, , ,x f x s f f x t s′ = = . Thus, 
we are able to adopt the causality condition that  

( ) ( )( )0 0, , , .f x t s f f x t s+ =                       (A.21) 

7. Recursive Processes  

When we consider the systems of engineering or physics, we evaluate a function that 
emerges by an engineering process or a physical process. We calculate the physical 
quantity, according to the process that the state of the system changes at a time. This 
becomes the main theme for us. 

Now, we call such physical quantities the evaluating function or the performance 
index in the control theory. Let us denote it by ( )Nf x . For example,  

( ) ( ) ( ) ( )( ) ( )( )
0

.
N

N
N i

i
f x g x g x g R x g R x

=

= = + + +∑             (A.22) 

By the way, for the 1N −  terms of 1N ≥ , we know  

( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )

2

1
1 1 1 1 1 .

N

N
N

g R x g R x g R x

g x g R x g R x f x−
−

+ + +

= + + + =





            (A.23) 

Therefore, the first relation becomes  

( ) ( ) ( ) ( ) ( )( )1 1 1 .N N Nf x g x f x g x f R x− −= + = +              (A.24) 

This is a functional equation of ( )Nf x . It is the recursive equation. 
Assuming that the system start at the initial state x, if we want to find the maximum 

of the evaluation function  

( ) ( ) ( )
0

max max ,
N

N N ix x i
x f x g x

=

= = ∑                   (A.25) 

then we can derive  

( ) ( ) ( )( )1max .N Nx
x h x R x− = +                      (A.26) 

This is called the Bellman’s equation for dynamic programming.  

8. Infinite Process, Time-Dependent Process, and Non-Stationary  
Process  

The process with the limit N →∞  is called an infinite process. This is the process 
that we take care of this limit in the above all procedures before. 
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And we consider that transformation function R is always the same so far. But we 
may think that the transformation function can change at each step. It is the time- 
dependent process. That is, 

( )1 , 0, , .n n nx R x n N+ = =                           (A.27) 

Furthermore, in the non-stationary process:  

[ ]1 1 2, , , , , , , , .m m nx x x x x x+                           (A.28) 

we have  

( ) ( )1 2 1 1, , .m m m m m mx R x x R x+ + + += =                     (A.29) 

If we can consider  

( ) ( ), ,
N

N m i i
i m

f x h x
=

= ∑                           (A.30) 

then we have  

( ) ( ) ( )( ), , 1 .N m m N m mf x h x f R x+= +                     (A.31) 

9. Continuous Multistage Process  

We have considered the discrete multistage processes so far. The discrete multistage 
processes that are generalized to the cases of the continuous time are the continuous 
multistage processes. In this case, if we divide the time very many:  

0, , 2 , .t τ τ=                              (A.32) 

then we can treat the process as if it is a discrete process, and then finally we take the 
time interval τ  to the limit of 0 (i.e., 0τ → ). 

The transformation function ( )R x  is considered up to the linear term of τ .  

( ) ( ) ( ).R x x S x Oτ τ= + +                       (A.33) 

We consider the evaluation function up to the linear term of τ  as well. That is,  

( ) ( ) ( )( ) ( )( ) .n
tf x g x g R x g R xτ τ τ τ+ = + + +            (A.34) 

Therefore, the recursive relation in this case is  

( ) ( ) ( ) ( )( )2 .t tf x g x f x S x Oτ τ τ τ+ = + + +               (A.35) 

Expanding both sides of the equation, and comparing the linear terms, we obtain the 
following:  

( ) ( )
1

.
n

i
i i

f fg x S x
t x=

∂ ∂
= +

∂ ∂∑                       (A.36) 

This is the functional relation for the continuous multistage process. Physically 
considering, it is nothing but the Fokker-Planck equation [146] when the external force 
( )g x  exists, where ( )S x  corresponds to the velocity. 
As is discussed before, if we want to obtain the maximum of the f, we need find the 

solution of the following equation:  
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( ) ( )
1

max .
n

ix i i

f fg x S x
t x=

 ∂ ∂
= + ∂ ∂ 

∑                     (A.37) 

This is called the Bellman’s differential equation.  

10. Principle of Optimality and Bellman’s Optimality Equation  

Bellman introduced the principle of optimality [137] [138], which is described in the 
following principle:  

Principle of optimality: 
An optimal policy has the property that whatever the initial state and the initial 
decision are, the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision.  

This principle is a very general property and has universality. And we can say that 
this principle of optimality is equally matched for the Dirac-Feynman’s principle for 
the path integral in physics [145]. 

For example, we consider the following evaluation function:  

( ) ( )1 2 0 1 2
0

, , , ; , , , , .
N

i i
i

x x x u u u g x u
=

= ∑                 (A.38) 

This is the function that this physical quantity provides data when we decide whether 
or not the maximum effect is attained in the multistage deterministic process. We 
decide whether the process is effective or not through evaluating this function. Namely, 
we determine so that the function becomes maximum. Therefore, we denote by 

( )N x  the function when it becomes maximum:  

( ) ( ) ( )
0 0

1 0 1
0

max , , ; , , , max , .
N

N N N i iu u i
x x x x u u u g x u

=

≡ = ∑           (A.39) 

Since we assume that we decide the optimal policy at each step from the principle of 
optimality, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 1 0 1 0
0

, , , , , , .
N

N i i N N N
i

x g x u g x u g x u g x u g x u R x u−
=

 = = + + + = + ∑    (A.40) 

Comparing this for 1N ≥ , we get  

( ) ( ) ( )( )
0

0 1 0max , , .N Nu
x g x u R x u− = +                  (A.41) 

The initial state is defined by  

( ) ( )
0

0 0max , .
u

x g x u =                         (A.42) 

Similar functional equations are obtained for other multistage deterministic pro- 
cesses as well. In general we call these the Bellman’s optimality equation.  

11. The Meaning of the Principle of Optimality and Dynamic  
Programming  

The meaning of the principle of optimality and dynamic programming is as follows: In 
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general, the evaluation function is a problem of the two-point boundary value of the 
initial and final states such that we have to consider all processes in between the 
interval. 

In classical mechanics, we impose that the action function S becomes minimum 
between the initial and final states under the principle of least action. This provides the 
Euler-Lagrange equation for the orbit. Conversely, once the Euler-Lagrange equation is 
written down, we would like to solve the Euler-Lagrange equation. This provides the 
temporal motion of the orbit in between the two boundary times, which guarantees that 
the action S becomes always minimum. 

On the other hand, in the theory of optimal control, we impose that the evaluation 
function   becomes maximum between the initial and final states as the principle of 
optimality. This provides the Bellman’s equation of optimality for the state. Conversely, 
once the Bellman’s equation of optimality is written down, we solve the Bellman’s 
equation. This provides the temporal development of the state in between the two 
boundary times, which guarantees that the evaluation function   becomes optimal. 

In this sense, the Bellman's principle of optimality is the natural extension of the 
principle of least action in classical mechanics. In the automatic control engineering 
and the control theory, to determine the policy at each stage is called the dynamic 
programming. The Bellman’s dynamic programming provides the algorithms to give 
the optimal evaluation at each stage of the process. 

Inversely, we can think that the Euler-Lagrange equation of motion is the algorithm 
that determines the orbit of the classical object in order to give the optimal action at 
each time. The evaluation function in classical mechanics is the action function and the 
evaluation function in the optimal control theory plays the same role as the action in 
classical mechanics.  

12. Continuous Multistage Deterministic Process  

We have considered the discrete multistage deterministic processes so far. The discrete 
multistage deterministic processes can be generalized the continuous multistage deter- 
ministic processes. In this case, if we divide the time interval into very many small 
intervals of τ , we can use the idea of the discrete time:  

0, , 2 , .t τ τ=                              (A.43) 

Then we can treat the process as if it is a discrete process, and at the end we take the 
limit of 0τ → . 

Let us assume N Tτ = . Suppose that the policy is fixed as u. The transformation 
function ( ),R x u  [see Equation (A.1)] is considered up to the linear term of τ .  

( ) ( ) ( )2, , ,R x u x S x u Oτ τ= + +                    (A.44) 

where ( ),R x u  and ( ),S x u  are the n-dimensional vectors. The evaluation function 
is given by  

( )
0

, .
N

N i i
i

g x u τ
=

= ∑                           (A45) 
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And we denote by N  the maximum of the evaluation function N  such that 
maxN u N=  . Since t iτ= , we can regard it as a function of continuous time t such 

as ( )N t=  . 
We consider the evaluation function of Equation (A.39) up to the linear term of τ :  

( ) ( ) ( )( ) ( )( ), , , .n
t x g x u g R x u g R x uτ τ τ τ+ = + + +        (A.46) 

Therefore, the recursive relation Equation (A.40) becomes  

( ) ( ) ( ) ( )( )2, , .t tx g x u x S x u Oτ τ τ τ+ = + + +            (A.47) 

Expanding both sides of the equation up to the linear order of τ , and comparing the 
coefficients of the linear terms, we obtain the following:  

( ) ( )
1

max , .
n

iu i i

g x S x u
T x=

 ∂ ∂
= + ∂ ∂ 

∑ 
                (A.48) 

This is the functional equation in the continuous multistage deterministic process. 
This is called the Bellman’s partial differential equation. Physically speaking, it is 
nothing but the Fokker-Planck equation [146] when the external force ( ),g x u  exists, 
where ( ),S x u  corresponds to the velocity. 

In the above we have considered the final time as a free parameter of T. However, 
since we can regard the initial time 0t  as a free parameter, in this case we can just 
replace as d dT t= − . Then, the corresponding equation becomes  

( ) ( )
1

max , , 0.
n

iu i i

F Fg x u S x u
t x=

 ∂ ∂
+ + = ∂ ∂ 

∑              (A.49) 

This corresponds to the Hamilton-Jacobi equation in classical mechanics, since the 
  and the second term in the left hand side corresponds to the action integral   
and the Hamiltonian   in classical mechanics, respectively. Therefore, we can call it 
the Bellman’s Hamilton-Jacobi equation. This point will be discussed more explicitly later.  

13. Relationship between the Variational Principle and the Dynamic  
Programming  

At first glance, the functional equation of the dynamic programming for the continuous 
multistage deterministic process looks totally different from the Euler-Lagrange 
equation of motion in classical mechanics. We can prove that they are equivalent to 
each other, however. 

For the sake of simplicity, let us consider the following evaluation function with 
one-dimensional state vector:  

( ) ( )
0

, d ,
T

x g x x t= ∫                        (A.50) 

where ( )0x q= . The value that the evaluation function is maximum is given by  

( ) ( ) ( )
0

, max max , d .
T

x x
q T x g x x t= = ∫                 (A.51) 

The state variable is ( )q x t=  at some fixed time t, and time left for the process 
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becomes T t− . In the usual case of the variational problem, ( )u t x=   corresponding 
to the velocity (i.e., the tangent) becomes the determination of the policy. 

Let us consider the problem to determine the initial tangent ( )0x . If we denote it by 
u, then the integral interval can be separated into the following two regions:  

0 0
.

T Tτ

τ
= +∫ ∫ ∫                              (A.52) 

In the first interval,  

( ) ( ) ( )2
0

, d , .g x x t g q u o
τ

τ τ= +∫                      (A.53) 

The principle of optimality is described as  

( ) ( ) ( ) ( )2, max , , .
u

q T g q u q u T oτ τ τ τ= + + − +              (A.54) 

Therefore, we have  

( )max , .
u

g q u u
T q

 ∂ ∂
= + ∂ ∂ 

                        (A.55) 

This functional relation determines both the maximum of the integral and the policy 
function ( ),u u q T= . 

Now, putting here T t= −  and calculating the right-hand side of the above equation, 
namely, differentiating inside [ ]  with respect to u in order to obtain the maximum, 
we have  

0.g
u q
∂ ∂

+ =
∂ ∂


                            (A.56) 

This is the condition to get the maximum. To satisfy the principle of optimality is to 
require that always this condition is satisfied. Therefore, if we think that this condition 
is always satisfied, then we get rid of max  in the right-hand side. Hence, we have  

( ), .g q u u
T t q

∂ ∂ ∂
= − = +

∂ ∂ ∂
  

                     (A.57) 

Differentiating both sides of Equation (A.56) with respect to time,  
2 2

2
d d .
d d

g u
t u t q t qq

 ∂ ∂ ∂ ∂  = − = − −  ∂ ∂ ∂ ∂∂   

                    (A.58) 

Similarly, differentiating both sides of Equation (A.57) with respect to q,  
2

2 .g u
q q t q
∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                          (A.59) 

Comparing both results, since each right hand side is identical, we finally obtain the 
Euler-Lagrange equation:  

d , .
d

g g u q
t u q

∂ ∂  = = ∂ ∂ 
                         (A.60) 

In this case of the variational problem, we are not able to understand whether or not 
the original evaluation function takes the maximum value or the minimum value only 
from the extremum condition for the variation in the linear order. And the condition of 
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Legendre is the condition that guarantees it; Namely, for the case of the maximum 
(minimum), we hold  

( )
2

2 0 0 .g
u
∂

< >
∂

                            (A.61) 

In classical mechanics it is very difficult to put the restriction on the policy and it is 
not necessary to do so. However, in the dynamic programming and in the optimal 
control theory, there are various ranges and restrictions of the policy. 

For example,  

( ) , 0 .u x t k t T= ≤ ≤ <                       (A.62) 

In such a case, since the principle of optimality is satisfied, we change the problem to 
the one that we seek for the maximum with a constraint. That is,  

( ) ( )max , , , 0 0.
u k

g q u u q
T q≤

 ∂ ∂
= + = ∂ ∂ 

 
                (A.63) 

14. Geometrical Meaning of Dynamic Programming  

The geometrical meaning of the dynamic programming is as follows: In classical 
mechanics we seek for the curve ( )x x t=  corresponding to the orbit in the 
mechanical system. We select the orbit so that the action becomes maximum or 
minimum. Therefore, the unknown function u is regarded as a point in the functional 
space. On the other hand, in the dynamic programming, we seek for the optimal 
direction at each instant. The solution is represented by the envelope curve that is 
constructed by collecting the optimal directions selected at each point. Namely, it turns 
out to be the envelope of its tangents of the curve. Using the terminology in fluid 
mechanics, it corresponds to the streamline. In this respect, the variational principle in 
classical mechanics is dual to the principle of optimality each other. Hence, we find the 
duality between the variational principle and the principle of optimality.  

15. Hamilton-Jacobi Equation  

When we apply the principle of optimality to classical mechanics, the problem of 
optimal control reduces to solve the Hamilton-Jacobi equation [137] [138] [139] [140]. 
Consider the action integral I:  

( )
0

, , d ,
t

t
I L x x t t= ∫                             (A.64) 

where L is the Lagrangian. When the action integral takes the minimum, we write as  

( ) ( )
0

0 0, ; , min , , d .
t

tx
S x t x t L x x t t= ∫



                     (A.65) 

Similarly as before, we divide the whole interval of time into two intervals ( )0 0,t t τ+  
and ( )0 ,t tτ+ :  

( ) ( ) ( )

( ) ( ) ( )

0

0 00

0

0 0

0 0 0

, ; , min , , d , , d

min , , , ; , .

t t

t tx

x

S x t x t L x x t t L x x t t

L x x t S x x t x t o

τ

τ

τ τ τ τ

+

+
 = +  
 = + + + + 

∫ ∫




 

 

      (A.66) 
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In the limit of 0τ → , we have  

0
0

0 0

min 0.
x

S SL x
t x

 ∂ ∂
+ + = ∂ ∂ 

                        (A.67) 

Differentiating inside [ ]  with respect to 0x  yields  

0 0

0.L S
x x
∂ ∂

+ =
∂ ∂

                            (A.68) 

And from this, we find  

0
0 0

.L S p
x x
∂ ∂

= − =
∂ ∂

                           (A.69) 

0p  is the momentum vector at 0t t= . 
Now, this time if we apply the principle of optimality for the state x not at the initial 

time 0t  but at the final time t, then the terms that depend upon the time derivative 
change its sign to minus. Therefore, we obtain the following:  

min 0.
x

S SL x
t x

∂ ∂ − − = ∂ ∂ 

                         (A.70) 

0.L S
x x
∂ ∂

− =
∂ ∂

                            (A.71) 

0.S SL x
x t
∂ ∂

− − =
∂ ∂
                           (A.72) 

.L Sp
x x
∂ ∂

≡ =
∂ ∂

                           (A.73) 

Thus, if we define the Hamiltonian H by  

( ), , ,H x p t px L≡ −                          (A.74) 

then we get  

, , 0.S SH x t
x t
∂ ∂  + = ∂ ∂ 

                        (A.75) 

This is again the Hamiltonian-Jacobi equation in classical mechanics. 
Thus, when the idea of the Bellman’s principle of optimality is applied to the special 

case of the action function in classical mechanics, then it reproduces to the usual the 
principle of least action. In this respect, the Bellman’s principle of optimality is thought 
of as being a natural generalization of the principle of least action.  
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