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Abstract

Necessary and sufficient conditions for the existence of the group inverse of the

block matrix [(F;N : j in Minkowski Space are studied, where P~,Q are both

square and rank (Q")Z rank(P"). The representation of this group inverse and

some related additive results are also given.
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1. Introduction

Let Fbe a skew field and F™" (C) be the set of all matrices over £. For Ae F™" (C) ,
the matrix X e F™"(C) is said to be the group inverse of 4, if

AXA=A XAX =X, AX=XA.

and is denoted by X = A*, and is unique by [1].

The generalized inverse of block matrix has important applications in statistical
probability, mathematical programming, game theory, control theory etc. and for ref-
erences see [2] [3] [4]. The research on the existence and the representation of the
group inverse for block matrices in Euclidean space has been done in wide range. For
the literature of the group inverse of block matrix in Euclidean space, see [5]-[11].

In [12] the existence of anti-reflexive with respect to the generalized reflection anti-
symmetric matrix P~ and solution of the matrix equation AXB =C in Minkowski
space M is given. In [13] necessary and sufficient condition for the existence of

Re-nnd solution has been established of the matrix equation AXA™ =C where

DOI: 10.4236/alamt.2016.63009 September 30, 2016



http://www.scirp.org/journal/alamt
http://dx.doi.org/10.4236/alamt.2016.63009
http://www.scirp.org
http://dx.doi.org/10.4236/alamt.2016.63009
http://creativecommons.org/licenses/by/4.0/

D. Krishnaswamy, T. H. Khan

AeC™ and CeC™.In [14] partitioned matrix M~ in Minkowski space M was

taken of the form M~ :{ (?B" _(I:D*Gl} to yield a formula for the inverse of M~
!

in terms of the Schur complement of D”.

In this paper P* and P~ denote the conjugate transpose and Minkowski adjoint
of a matrix P respectively. |, denotes the identity matrix of order nxn. Minkowski
Space M is an indefinite inner product space in which the metric matrix associated

with the indefinite inner product is denoted by G'and is defined as

10 e 2 .
G= satisfying G° =1, and G" =G.
0 _In—l

Gis called the Minkowski metric matrix. In case U € C", indexed as U = (uo Uy Uy g ),
G is called the Minkowski metric tensor and is defined as Gu = (U, —Uy,--,~U,)
[12]. For any P eC™, the Minkowski adjoint of P denoted by P~ is defined as
P~ =GP'G where P is the usual Hermitian adjoint and G the Minkowski metric

matrix of order n. We establish the necessary and sufficient condition for the existence
and the representation of the group inverse of a block matrix [(F; F; ] or (E_ % ]
in Minkowski space, where P7,Q™ e K™", rank (QN)Z rank(P~ ) We also give a suf-
ficient condition for (P~Q") to be similar to (Q~ P") .
2. Lemmas
Lemma 1. Ler P,QeF™(C). If

rank (P) =r,rank (Q) =rank (PQ) = rank (QP),

then there are unitary matrices A,B e F™ (C) such that

(1,0 o a-[ Q=X ey
P~ = A, Q =(A) A Q (B7)
0 0 -YQ, YQ'X
where Q e F™ X e F™"™) and Y e F",

Proof. Since rank(P):r, there are two unitary matrices A,BeF™ (C) such

that
I, 0 . .
P:A[r jB’ Q:B(Ql QZJA
0 0 Q, Q,
where
Ql c I:rxr,(?2 c I:rx(n—r)'Q3 c F(n—r)xr,Q4 c F(n—r)x(n—r) )
Now
ey (L 0y, (1, 0)
P =B A =P =GBG G°AG=B A
0 0 0 0 0 0
and
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* Ql Q2 *
=B A
Q (Q3 QJ

(@) ey
Q:(A)(Q; QTI](B)

RO o) o)X B o[ -Q5 ) oy
G(A )G G'(B)YG=(A B
(%) [QZ QZJ (E)6 = )(—QS QZJ( )

©
Il

From  rank (Q) =rank (PQ) we have
Q=YQ, Q =YQ,, YeF(Mr
and from rank(Q)=rank(QP), we get
Q% =QX, Q=QX=YX, XeF~""

So,
v Y X ey
o (5] [ e e
Lemma 2. Let

P~ 0

o Oje F™(C).

PE I:I'><r,(ge F(n—r)xr’M :(

Then the group inverse of M exists in M if and only if the group inverse of P~

exists in M and rank(P” ) = rank [(I;j . If the group inverse of M" exists in M,

then

Proof. Since M :((’; 8], suppose group inverse of P~ exists in M and

rank (P~ ) = rank[p] . Now
Q

rank(M)zrank(P: OJ: rank[P:erank(P‘).
Q 0 Q

But rank(P") = rank(P~ )2 because (F"~ )# exists = rank (M )= rank(M 2). There-
fore (M B )# existsin M.

Conversely, suppose the group inverse of M exists in M, then it satisfies the fol-
lowing conditions: 1) MM*M =M, 2) M*MM*=M* and3) MM*=M*"M . Also

rank(M):rank(P: Oj:rank(P:]D rank(PN):rank(P:].
Q0 Q Q

K2
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1)
o o PV e
- Yoiort o
P(P)YP 0] (p o
) Q (P) P OJ[Q Oj
2) )
AR
Q((P )”) o[\Q 0 Q((P )#) 0
{ Py o) [ (e o}
Q ((P )#) P (P} 0 Q"((P")#) 0
3)

\#
" (P7) oJ(P_ o) o
XM = MX.

Lemma 3. Let PeF™,QeF""", and M :(F(’) %]EF"X”(C). Then the

group inverse of M exists in M if and only if the group inverse of P~ exists in M
and rank (P~ ) = rank ( P Q ) . If the group inverse of M exists in M, then,

M#[m" (<P~>*)2Q~J

Proof. The proof is same as Lemma 2.
Lemma 4. Let P,Qe F™"(C). If

rank (P~) = rank Q") =rank (P"Q") = rank (Q"P")

then the following conclusions hold:

K2
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D PQ(PQ) P =P

2) P (Q~P")#Q"P” =P

3) QP (QP) P =Q

9 Q(PQ) P =QP(QPY)

5 P (QP ) =(PQ) P

Proof. Suppose rank (P)=r, then by Lemma 1 we have

(0 (@ QX
SU LG ST
where Q e F™, X e F™" Y e F""  Then

A _r [ X))o aee (v @ 0) L
PQ_B[O ) j(B), QP _(A)(—YQI OJA

Since rank (F’~ ) =rank (Q") we have that Q, is invertible. By using Lemma 2 and
3 we get

oo (@) ) ey

(1 0) .
-B A
0 oj

Similarly we can prove 2) - 5).
3. Main Results

Theorem 1. Let M :(g: P(;J where P7,Q” e F™ (C),rank(Q~)2 rank(P")z r,

then
1) The group inverse of Mexistsin M if and only if

rank(PN): rank(Q~): rank(P~Q~)= rank(QNPN) .

K2
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M, M

2) If the group inverse of Mexistsin M, then M* =
M,, M

12
j , Where

22

r-(ro) (7Y er e,

rank (P~ )2 = rank (P‘Q ) . We know that

rank (P~Q") =rank(P~) so, rank(P“)Z =rank (P~).

Therefore the group inverse of M exists. Now we show that the condition is ne-
cessary,

rank (M ) = rank (g: I:j = rank (; Zj = rank (P~ )+ rank(Q").
rank (M )2 =rank {(p)z o (P~>2J = rank[P~Q~ (P~)2J.
P

QP QP 0 QP
Since the group inverse of M exists in M if and only if rank(M )=rank(M )2 , we
have
rank(P~ ) +rank (Q~) =rank (M )2
2
<rank (P"Q" )+ rank (P)
QP

< rank(P~Q“)+ rank(P )

Also

rank(P*)+ rank(Q*): rank (M )°

< rank(P~Q~ + rank (Q P- )

(PY)
< rank(Q ~h )+rank(P").
rank(Q

Then rank(P‘)grank(P‘Q‘) and rank (Q ) P
rank(Q ) rank(P Q ) rank(Q~P~).

) Therefore,

From
rank (Q") = rank (P™Q ) < rank(P‘)

and

K2
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rank (P~ ) = rank ( P"Q ) <rank (Q~) ,

we have
rank (P ) = rank (Q")
Since
rank (")« rank (@) < rank (PQ" (P )+ rank(QP")
and
rank(PQ™ (P )< rank(P) < rank(PQ (P,
we get
rank(PQ™ (P7)°| = rank(P").
Thus

rank(P"Q~ (P")Z) =rank(P7Q").
Then there exists a matrix U~ e F™"(C) suchthat P'QU™ = (P~ )2 . Then
P Q 0 o .
rank (M )* = rank =rank(P rank P7).
) =rank( "8 O |- rank(Q ) s

So, we get

rank(PN): rank(QN): rank(P"QN): rank(Q"PN) .

M, M
2) Let X = (Mu Mlzj , we will prove that the matrix X satisfies the conditions of
2 22

the group inverse in M. Firstly we compute

MX :£P~Mn +P"M, P My, + P~M22J
Q~M11 Q~M12

M — [ MyuP™ +M,Q MllP"J
IV|21Q~ + M22Q~ IlelP~

Applying Lemma 4 1), 2) and 5) we have

#o

P"M, +P "M, =P (PQ7) P =P (P Q) (P)(QP)Q +P (QP)Q
oo (e
ool rel Py e
=P (PQ) P +P(QP)Q PP (QP)
PP )Q

K2
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Poy(r @ er(ro)ra

(PQ )PP +P(QP)Q

#* — % o o
[ [
4 O — —
| N [N}
|

MaP”=(PQ) (P) -(PQ ) (P) (QP) QP
(Po)(P)-(PQ) ()

MaP™+M,Q =(QP ) QP -Q (P Q) (P ) (QP )P
+Q (PO ) P (PR (P) (P ) QP
Q(PQ)(Fy(eP)e

(o) e oo (o er )
+Q (PQ) PP (QP) P
Q(FQ)(Py(eF)e

=@ (PQ) P - (PR (P)(QP) O

QM,=Q (PQ) P

=0 (P )P0 (P (Y (0P

+Q (PO ) P (PR (P) (P ) QP
o (o) o (Po (PP P
+Q° (Q“P~ )# PP (QNP~ )# P
=Q (PQ)P

= MX=XM = " (Q~P~ )# < °

re) e (el Er e o e
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P~ (Q"P")#Q" 0 J

g MZJ[Q<P~Q~>“P~<z~<P~Q~>“<P~>2<Q~P~>“o~ o (o)

SR »
C 0l (PR )P -Q (PQ)(P)(QP)Q Q(PQ)P

Ya=(PQ ) (P (@P )@ (P ) (P)(@P) QP (QP)Q
HPQ VPO (PR)P-(PQ)PQ(Pe)(P)(er)e
=(PQ)P-(PQ)(P)(@P)Q
Y, =(P Q) PQ(PQ)P =(PQ) P =M,
@ P (P e o (pe (P e (@) g
@ (ref e e (P er) @r)er e
e () (@) o (o)
+Q (PQ) (P (@P )@ (PQ)(P)(@P)Q
~(@P)Q-Q (PQ)(P)(eP)
‘o (po)r (o (Pr(er o
Ve =-Q (PQ ) (PT)(QP) @ (PQ)P
-0 (P (P)(QP)
= XMX =[ I\'\tj:x
Py (@7 @ e (P P re (e (T () @
=Py (@P)Q+P (P)(QP)Q
X, =P Q(PQ) P =P
Xy =Q P (QP)Q =0Q
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= MXM = P P =M
Q" 0
=X =M* 0
P Q) . nxn
Theorem 2. Zet M :(PN OJ in M, where P,QeF™(C),

rank(QN)z rank(PN): r.

Then,
1) the group inverse of Mexistsin M if and only if

rank(PN): rank(Q~): rank(P~Q~): rank(QNPN) .

Z Z
2) if the group inverse of Mexists in M, then M *= ( 1 12 j , Where
21 22

#

(o P o (Pa ) (P (@)
-0 (o f-(ra (Pl e
+Q (PQ) P YR(QP)P(QP)Q
Z,=(P Q)P
Z,=-(PQ) (PP )@
Proof. 1) Given rank(Q")>rank(P~)=r.Suppose rank(P~)=rank(Q") then,
rank(P*)2 = rank(P‘Q‘) .
We know that
rank (P~Q") = rank (P")
50,
rank(P‘)2 =rank (P").

Therefore the group inverse of M exists in M. Now we show that the condition is

necessary,

rank (M) = rank ((I; P(;] = rank ((; Poj: rank(|:>~)Jr rank(Q~)
at Q"J[(P")”Q‘P‘ Q]
0 (P) PQ

PY+QP PQ P 0
:rank(Mz)rank[( ) e 0 Jrank[Q J

FF re) TlET P

Since the group inverse of M existsin M if and only if rank (M )= rank ( M? ) We

84
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know
rank( )+rank( ) rank(Mz)
P
[QP )Z}.rank(P Q)
srank(P )+rank(P Q )
Also

rank(P~)+ rank(QN):rank(M2
ﬁrank(Q"PM)Jrrank((PM)2 P"QM)
grank(Q‘P‘)Jrrank(P‘).
Then rank(Q”)<rank(P'Q") and rank(Q")<rank(QP~). Therefore
rank (Q”) = rank (P"Q") = rank (Q"P")

From
rank Q™) = rank (P"Q") < rank (P~
and
rank (P~) = rank (P"Q") < rank Q")
we have
rank (P ) = rank(Q‘)
Since
rank (P") + rank (Q”) < rank(PNQN (P~)2)+ rank (Q"P")
and
rank(P"Q‘ (P")Z)srank(P‘)srank(P‘Q" (P‘)z),
we get
rank(PNQN (P~)2)=rank(P~).
Thus

rank(P"Q~ (P")Z): rank (P"Q").
Then there exist a matrix U~ e F™"(C) suchthat P"QU™ = (P~ )2 . Thus
rank (M~ )2 = rank(P;g~ Q~Op~ J = rank (P™Q")+rank (QP")

So, we get rank(PN) = rank (QN)z rank(PNQN) = rank(QNPN) .

2) Proof is same as Theorem 1 2).

KD
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Theorem 3. Let P,Qe F™(C), if

rank(QN): rank(P~Q~): rank(Q~P~).

Then P Q™ and Q P are similar.
Proof. Suppose rank(P)=r, then by using Lemma 1, there are unitary matrices
A,BeF™ (C) such that

S P 2 P (N o Yo M PR
=P (0 OJA Q=) (—QIX YQIXJ<B)

where Q eF™ X e F1 y ¢ F®*  Hence

*

PO =B (% —YOQIJ(B*y
oo ) ale e
or-w( 3 I

SN

So P'Q" and QP are similar.
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