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Abstract 
 
Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar 
collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More 
accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the 
function which represents solution of boundary value problems. Through this analysis, solutions are found 
on the coarse grid points and refined towards higher accuracy by increasing the level of the Haar wavelets. A 
distinctive feature of the proposed method is its simplicity and applicability for a variety of boundary condi-
tions. Numerical tests are performed to check the applicability and efficiency. C++ program is developed to 
find the wavelet solution. 
 
Keywords: Haar Wavelets, Quasilinearization Technique, Haar Collocation Method, Boundary Value   

Problems 

1. Introduction 
 
Wavelets are mathematical tools that cut up data, func-
tions or operators into different frequency components 
and then study each component with a resolution match-
ing its scale. Much of the work on Haar functions was 
performed in the 1930s. In 1909, Haar discovered the 
simplest function now called as Haar wavelet. The inte-
gral of Haar family called Haar operational matrix was 
derived by Chen and Hsiao [1] in 1997. Since then the 
solutions of dynamical systems in a wavelet framework 
took tremendous growth. In order to take the advantages 
of the local property, many authors researched the Haar 
wavelet to solve the linear stiff systems and differential 
equations [2-4]. 

Haar function is a rectangular pulse pair. It is infact 
the Daubechies wavelet of order one and is the simplest 
of the orthonormal wavelets with compact support. As 
shortcoming, Haar wavelets are not continuous; their 
derivatives do not exist at the points of discontinuities. 
Thereby direct application of Haar wavelet is not possi-
ble in solving differential equations but here one possi-
bility is through integration of wavelets [2]. The pro-
posed technique in this paper is based on collocation 
framework and utilizes the capabilities of Haar wavelet 

basis which permits to enlarge the class of functions 
through Quasilinearization. Our main concentration on 
the following type of nonlinear boundary value problems 
defined in the interval [a, b]. 
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f is a continuous function, in case of nonlinearity of f is at 
most quadratic in y. 
 
2. Preliminary Works 
 
2.1. Haar Wavelets 
 
Fourier transform analyzes the composition of a given 
function in terms of sinusoidal waves of different fre-
quencies and amplitudes whereas wavelets analysis tells 
how a given function changes from one time period to 
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the next. Wavelet analysis is also more flexible in sense 
that one can choose a specific wavelet to match the type 
of function being analyzed. 

For a function , defined over the real axis     ,  
, is classed as a wavelet if it satisfies the following 

three properties: 


1) The integral of  is zero:     d 0t t





  
 

2) The integral of the square of  is unity: 

 is finite.  2 dt t



3) Admissibility condition: 
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ˆ
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 



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The Haar scaling function for  0,1t  is defined as 
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and corresponding wavelet function 
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Also the graph of is shown in Figure 1 [1]. 
The orthogonality property puts a strong limitation on 

the construction of wavelets. It is known that the Haar 
wavelet is the only real valued wavelet that is compactly 
supported, symmetric and orthogonal. Thus Haar wave-
lets  is orthogonal square waves family with mag-
nitude  and zero, generally written as 

 ih t
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2.2. Multiresolution Analysis 
 
Objective of this section is to construct a wavelet system, 
which is complete orthonormal set in  The idea 
of multiresolution analysis is to represent a function f as 

 2L R
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Figure1. First haar wavelet. 

a limit of successive approximations and decomposition 
of the whole function space into individual subspaces 

1j jV V  . A multiresolution analysis (MRA) of  2L R  
is defined as a sequence of closed subspaces of jV  of 

 2L R , j Z , that satisfy the following axioms: 
1) Monotonicity  1 0 1V V V    
2) The spaces jV  satisfy  and  j z jV L R  2

j z jV   

 0 .  

3)   0f t V  iff  2 j
jf t V j Z    i.e. the space jV  

are scaled versions of the central space . 0V

4) There exists 0V   s.t. is a Ri-

esz basis in . 
  ,t k k Z  

0

The sequence 
V
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,j k
k

forms an 
orthogonal basis for 

2 2t t k  
jV  by using the multiresolution 

analysis axioms. The space jV  is used to approximate 
general functions by defining appropriate projection of 
these functions onto these spaces. 

The vector space  is the orthogonal complement 

of 
jW

1j jV V  . In other words, we will let  be the 

space of all functions in  under the chosen inner 

product. See [5] for detail of MRA. As an example the 

space  can be defined like 
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then the scaling function  generates an MRA for 
the sequence of spaces 

 1h t

 Z,jV j  by translation and 
dilation as defined in (2) and (3). The linearly independ-
ent functions  ,j k t  spanning jW  are called wavelets. 
Original signal can be expressed as a linear combination 
of the box basis functions in jV . These basis functions 
have two important properties: orthogonality property 

with        0,0 0,0 1,0 1,1, , ,t t t    t  and normalization 

of    2
, 2 2 ,   ,j j

j k t t k j  k Z   . 

3. Haar Wavelet Integration and the    
Quasilinearization Approach 

The wavelets corresponding to the box basis are known 
as the Haar wavelets. 

 
 
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1 for ,

1 for , ,

0   elsewhere
i

t

h t t

, 
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           (4) 

Here 
0.5 1

, , , 2 ,jk k k
m

m m m
   
     0,1, , .j J   

J indicates the level of resolution. The integer 
0,1, ,k    1m   is the translation parameter. The in-

dexing i in (4) is calculated as . In case with 1i m k  
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minimal values . The maximal value 

of i is 

1, 0, 2m k i  
12 2 jm  . 

Consider the collocation points 
0.5

,
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 The operational matrix P which is a 
 square matrix is defined by 

                    (5) 

Remarkable that [3] considers integral of Haar wave-
lets as 

  2 ,m t t       (6) 

and operational matrix is 
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But we have considered the integral of Haar wavelets 
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We also introduce the following notation for specific 
value of function 

 
1

,1 ,1
0

di iD P t   

The Quasilinearization technique [6] is an application 
of the Newton-Raphson-Kantrovich approximation me- 
thod in function space. This method is applied to solve a 
nonlinear  order ordinary or partial differential equa-
tion in N-dimensions as a limit of a sequence of linear 
differential equations. The idea of the method is based on 
the fact that how to solve the nonlinear ODE’s by Haar 
wavelets while there are no useful techniques for obtain-
ing the general solution of a nonlinear equation in terms 
of a finite set of particular solutions. But we limit our-
selves here for variables according to involved variables 
in nonlinear ordinary differential in the interval  ,  ,a b  

. 0,a 1b 

                      1 2 3 1, , , , , ,n nL y t f y t y t y t y t y t t   

with initial conditions 
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Here  is the linear order ordinary differential 
operator, f is nonlinear functions of 

 nL thn
 y t  and its 1n   

derivatives are     2,jy t , 1,j ,n 1  . 
The Quasilinearization prescription determines the (r 

+ 1)th iterative approximation  1ry t  to the solution of 
 order nonlinear ordinary differential Equations (1) 

as a solution of linear differential equation. 

thn
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where    0
r ry t y t . The functions    j jy

f
f

y





 are 

functional derivatives of the functional 
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The zeroth iteration  0y t  is chosen as Haar wavelet 
basis from physical and mathematical considerations of 
given problem. 

In [7] proved     2

1r r  that showed 
the difference between exact solution and the rth iteration 
is decreasing quadratically and 

y t k y t  

 1ry t   for an arbi-
trary l r  satisfied the following inequality: 

    
12

1

r

r ly t k y t 


  k  

the Haar wavelet series considered as function approxi-
mation in Quasilinearization technique which satisfies 
the boundary conditions of given problem. Then Qua-
silinearization procedure is adopted through Haar wave-
let collocation method for getting the solution of con-
cerning problems. 

4. Error Analysis of Haar Wavelets 
 
Let   and   are the scaling and the corresponding 
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

wavelet function of respectively, also imply the 
relations 

 2L R

 dt t d 1,   0t t
 

 
  (the moment properties). 

The following dilation relation holds: 

   2t h t l  
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2
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l
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              (7) 

with some  and the family wavelets hl R L
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jP  and jQ  be the corresponding projections 
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Let 2 1M M M p    of the supports of wavelets 
  and  . M stands for thM  moment of wavelet func-
tion. Then according to [8], we have the following theo-
rem: 

Theorem. Assume the moment condition. For y  
   ,lC R 1 k ,   the following estimation holds: 

 
2

max ,
j

l
j

w t M
y P y A y w j Z

 
    

where  stands for derivative of y.  ly w
Remark. For Haar function, . 

Let  be bounded first derivative on (0,1) 
such that 

 1 21, 0, 1M M M   
 2y L R
 ly w S Then error at jth level will be given 

by 

2 2kj kj
j jy P y RS y P y A       

A and R are suitable real constants. 
 
5. Function Approximations 
 
Orthogonality of Haar wavelets ensures that any square 
integral function over [0, 1] can be expressed as an infi-
nite sum of Haar wavelets as 

   
1

,i i
i

f t a h t




   

where ’s are wavelet coefficients. ia

If  f t  is piecewise constant or can be approxi-
mated as piecewise constant during each subinterval, 
then sum can be terminated to finite term as [8] 

   
12

T

1

j

i i
i

y t a h t a H




   

A function  2f L R  is a MRA of  2L R  pro-
duces a sequence of subspaces jV  of  2L R , j Z  
s.t. the projection of f onto these spaces give finer ap-
proximation of the function f as . j 

To demonstrate the applicability of Haar wavelets, we 
focus on the following nonlinear BVP’s and utilizing 
C++ Programming and MATLAB Software. In finite 
element method the approximate solution can be written 
as a linear combination of basis functions which consti-
tute a basis for the approximation space under considera-
tion. 

Here in Haar collocation method the series is taken as 
the highest derivative of given differential equation as a 
linear combination of Haar wavelet basis.  

     
12

1

j

n
i i

i

y t a h




  t  

Subsequent integrations give lower derivatives and 
 y t . Substituting the values in the given equation gives 

the coefficients and hence the solution. 
 
6. Test Problems 
 
6.1. Nonlinear Boundary Value Problems 
 
6.1.1. Two Point Boundary Value Problem 
Firstly, the application of Haar wavelets by Quasilin-
earization has been performed on the second order BVP 
of purely mathematical nature [9] which posses analytic 
solution and given by: 

     
   

2 2 42π cos 2π sin π ,

0 1, 0 0 and 1 0.

y y t t t

t y y

   

   
     (8) 

with analytic solution   2sin πy t t  . Approximate the 
solution as  πsinny t  

By wavelet based Quasilinearization technique,  
      2 2sin π sin πy t t y t t  2

t

 and Equation (8) be-
comes  

   

     
2 1

2 2 4

2sin π 2 sin π

sin π 2π cos 2π sin π .

a H t P t t P

t t

   

   
 

Efficiency of method for solution of second order 
BVP problem is depicted in Figure 2, for j = 2 and j = 3. 
 
6.1.2. Fourth Order Boundary Value Problem 
Consider the fourth order nonlinear boundary value 
problem [10] 

2 10 9 8 7 6 4'''' 4 4 4 8 4 120 48,

0 1.

y y t t t t t t t

t

        

 
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subject to        0 0 0, 1 1y y y y    1.  

Approximate the highest derivative as Haar wavelet  

series     
12 T

1
''''
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i ii
y t a h t a H
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
 
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Solution in first iteration is shown in the Figure 3. 
 
6.2. Linear Boundary Value Problem 
 
Fourth Order Linear Boundary Value Problem 
Consider the fourth order linear boundary value problem 
 

 
(a) 

 
(b) 

Figure 2. Comparisons of solutions. (a) For j = 2, m = 4 (b) 
More accurate curve when j = 3, m = 8. 
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Solution is shown in the Figure 4. 
 
7. Conclusions 
 
For nonlinear differential equations the proposed Haar 
 

 

Figure 3. Comparison of Solutions for level of resolution j = 
2, 2m = 8. 

 

 

Figure 4. Comparison of Solutions for level of resolution j = 
2, m = 8. 
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wavelet Quasilinearization approach is adopted. The test 
problems of this paper demonstrate that in solving 
nonlinear boundary value problems the Haar wavelet 
method coupled with Quasilinearization approach can 
successfully compete with the other efficient numerical 
methods such as Newton-Raphson based Haar wavelet 
method and analytic one. The main benefits of the Haar 
approach are simplicity (as a small number of grid points 
according to the resolution guarantees the necessary ac-
curacy without iterations) and universality (as almost the 
same approach is applicable for a wide class of higher 
order differential equations with different types of non- 
linearity). 
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Appendix 
 
Here we demonstrate the developed C++ program to 
solve the Haar wavelet based matrix systems for solu-
tions of ODEs 
 
#include<iostream.h> 
 #include<math.h> 
 #include<conio.h> 
 using namespace std 
 
double hfn(double x, double a, double b, double c) 
 { if(x>=a && x<b) return 1; 
 else if(x>=b && x<c) return -1; 
 else return 0; 
} 
double hp1(double x, double a, double b, double c) 
{  if(x>=a && x<b) return x-a; 
  else if(x>=b && x<c) return c-x; 
   else return 0;  
}  
double hp2(double x, double a, double b, double c) 
{  if(x>=a && x<b) return pow(x-a,2)/2.; 
}  
}  
double fun(double x) 
{ return  function 
} 
int main( ) 
{ int n, m; double x[64]; int i, j, k, kk; 
 double a, b, c, H[64][64], P1[64][64], P2[64][64], 
d[64];  
  cout<<"Enter the value of m"; 
   cin>>m; 
   n=2*m; 
   for (i=0; i<m; i++) 
   {  j=2*i+1;  
       x[i]= (j)/n;  
    cout<<"Done here\n";   
   do 
   { 
     c=1./k; 
     b=(a+c)/2.; 
    {  

      i++; 
       cout<<"Done here\n"; 
      for(j=0;j<m;j++) 
     {H[i][j]=haarfn(x[j],p,q,r); 
      P1[i][j]=haarp1(x[j],p,q,r); 
      P2[i][j]=haarp2(x[j],p,q,r); 
     }  }} 
  while(k<m/2); 
  cout<<"Done here\n"; 
  for(i=0; i<m; i++) 
  for(j=0; j<m; j++) 
  A[j][i]=H[i][j]; 
 for(i=0; i<m; i++) 
  for(j=0; j<m; j++) 
  A[j][i]=A[j][i]+L.H.S vector of given problem 
  for(i=0;i<m;i++) 
  d[i]=fun(x[i]); 
   for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
  cout<<"  "<<A[i][j]; 
  cout<<"\n"; 
  } 
  cout<<"Values of the coefficients d's\n"; 
  for(i=0;i<m;i++) 
  cout<<d[i]<<"  ";  
   for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
  cout<<"  "<<A[i][j]; 
  cout<<"\n"; 
  } 
  for(i=0;i<m;i++) 
  cout<<d[i]<<"  "; */ 
  cout<<"\n Enter values of the d solution obtain from      
  MATLAB below"; 
  for(i=0;i<m;i++) 
  cin>>d[i];  
   cout<<"\n Exact solution is\n"; 
  for(i=0;i<m;i++) 
  cout<<exact(x[i])<<"  "; 
   getch(); 
  return 0; 
  } 

 
 


