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Abstract 
 
A fourth order finite-difference scheme in a two-time level recurrence relation is proposed for the numerical 
solution of the generalized Burgers-Huxley equation. The resulting nonlinear system, which is analyzed for 
stability, is solved using an improved predictor-corrector method. The efficiency of the proposed method is 
tested to the kink wave using both appropriate boundary values and conditions. The results arising from the 
experiments are compared with the relevant ones known in the available bibliography. 
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1. Introduction 
 
A. Hodgkin and A. Huxley [1] proposed a model, known 
henceforth as the Huxley equation, in order to explain 
the ionic mechanisms underlying the initiation and pro- 
pagation of action potentials in the squid giant axon. The 
most general form of the Huxley equation, known as the 
generalized Burgers-Huxley equation (BgH) [2,3], has 
the form [4] 

  = 1 ; 0 1, > 0t x xxu u u u u u u x t          ,  

(1.1) 

where  is a sufficiently often differentiable 
function, 

 = ,u u x t
  a real parameter, 0  ,  and  0,1 

> 0 . Equation (1.1), which models the interaction be-
tween reaction mechanisms, convection effects and dif-
fusion transport, is the modified Burgers equation for 

= 0  (see [5] and the references therein), is also the 
Huxley equation [1] for = 0 , = 1  and is the Fitz-
hugh-Nagoma equation [6] for = 0 . 

Many researchers have used various methods to solve 
the BgH equation. A theoretical study of the BgH equa-
tion was found in Wang et al. [4], while analytical solu-
tions using various techniques in [7-11], etc., have been 
proposed. As far as the numerical methods are concerned 
among others the Adomian decomposition method was 
used by Ismail et al. [12] for the BgH and the Bur-
gers-Fisher equation, and by Hashim et al. [13] for the 
BgH equation. Javidi [14] used the pseudospectral me- 
thod, while Javidi [15], Javidi and Golbabai [16] the 

spectral collocation method. Batiha et al. [17] used the 
variational iteration method and Khattak [18] the collo-
cation method with radial basis functions. Babolian and 
Saeidian [19] used the homotopy analysis method, etc. 

The initial condition associated with Equation (1.1) 
will be 

   ,0 = ; 0 1.u x f x x            (1.2) 

 
Theoretical Solution 
It is known [4] that Equation (1.1) has the following kink 
wave solution 

   
1

, = tanh
2 2

u x t k x ct
       

    (1.3) 

in which 
 

 

2 4 1
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4 1
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and     
   

 

21 4
=

1 2 1
c
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are the wave number and the velocity respectively. 
 
2. The numerical Method 
 
2.1. Development of the Method 
 
2.1.1. Grid and Solution Vector 
To obtain numerical solutions the region  = ,R x t   
   0 < < 1 0,x T  with its boundary  consisting of R
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the lines ,  and  is covered with a 
rectangular mesh of points, , with co-ordinates 

= 0x = 1x = 0t
G  ,x t  

 = ,m nx t  n= ,mh

 ,m n

 with . The 
theoretical solution of Equation (1.1) at the typical mesh 
point 

= 0,1, , 1m N 

x t

 U t

 will be denoted by  and the relevant 
of an approximating difference scheme by . 

n
mu

n
mU

= nt t

1, .n
NU





Let the solution vector at time level  be 

0 1, ,nU = =U n nU        (2.1) 

 
2.1.2. Boundaries 
The following were used: 

1) The space derivatives at the left boundary  
were replaced with second order finite-difference replace- 
ments of the form ([20] p. 17) 

= 0x

 2
nU U   2h as 0 14n n 

=0x x

1
= 3

2
u U

h
0,h  (2.2) 

 24 nU 

nd 1,u

  0as h 2
3
nU 

  0 1=t g t

0 15n n

 = g

2

1
= 2u U

h

0,u t

=0xx x
h U

a

 

(2.3) 

and with analogous replacements to the right boundary 
. = 1x

2) The boundary conditions 

 t     (2.4) 

=0,1
= 0;u

n



>x x
0,t

= 1

                  (2.5) 

were used, while at the other interior points of the grid G 
the well-known approximants based on the central-dif- 
ference formulas. 
 
2.2. The Proposed Method 
 
Applying Equation (1.1) at each point of the grid G at 
time level ;  leads to a first-order 
initial-value problem, which is written in a matrix-vector 
form as 

= =nt t , 2,n

      

 1

 

, N

t t

f x






  

U

 0 = 0 , =

D t t  

U U  =

A

f x

U U

 0 1 ,

B t 



U=

f x

; > 0

f
(2.6) 

in which  =diag d dD t , 

 = = =d    gn nt   =diagm

 ,n
mUia  (2.7) 

   

 

gn n
m

n n
m mU U

  ;


= = =d

  =diag 1

t ia



  



   






 
  

  

       (2.8) 

for  are diagonal matrices, = 0,1, , 1m N 
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      (2.9) 

or 
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      (2.10) 

tridiagonal matrices arising from the use of the boundary 
values (2.2) - (2.3) or the boundary condition (2.5) re-
spectively and f the vector of the initial condition, all of 
order 2N  . 

Relation (2.6) gives 

=D A B                       (2.11) 

hence  can easily be obtained. 2D
Using the recurrence relation 

     = exp  ; = 0, , ,t D t tU U        (2.12) 

where  D tU  is given by (2.6) and replacing the ma-
trix-exponential term with the fourth order rational ap-
proximant ([21] p. 134) gives 

 

 

2 2

2 2

1 1
  

2 12

1 1
= .

2 12

I D D t

I D D t

    
 
   
 

U

U

 

 


    (2.13) 

Equation (2.13) using the notations (2.7) - (2.8) and 
Equation (2.11) leads to the following nonlinear system 
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(2.14) 

Let 

1 = 4r h , 2
2 = 2r h , 3 = 2r  , 

2 2 2
4 = 48r h , 2 4

5 = 12r h , 2 2
6 = 1r  2 , 

2 3
7 = 24r h , 2

8 = 2r h 4  and 2 2
9 = 12r h . 

Equation (2.14), when applied to the general mesh point 
of the grid G, gives 
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(2.15) 

Stability Analysis 
Following the Fourier method of analysing stability ([21] 
p. 142) if = e   is the amplification factor and  
the numerical value of  actually obtained, an error 
of the form 

n
mU

n
mU

=n n n im
m mU U e h  ; = 1i   with   a 

complex number and   real is considered. Then Equa-
tion (2.15) leads to the following stability equation 
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(2.16) 

where 0  a typical value of , ;  U 1n
mU  n

mU = 0,1, ,m 
1N   used for the linearization of the nonlinear terms, 

0 0= U  ,   0 0 0= 1       and = 2h   with 
 0, π 2 . Equation (2.16) is of the form 

= ; ,A B A B 
  

             (2.17) 

with  the set of the complex numbers, so the von 
Neumann necessary criterion for stability 


1   will 

always be satisfied when 

.B A


                (2.18) 

Inequality (2.18) for = 0  leads to 
2

1 0 6 0 1 01 2 1 ,r r r                 (2.19) 

which for = 0  holds, while for = 0   will be satis-
fied when 

1.                  (2.20) 

If = π 2 , inequality (2.18) leads to 

     
 2

5 1 0 6 0 3 9 0

3 1 0

1 16 2 8

1 4 ,

r r r r r

r r

       

   

  


 

which subject to (2.20) holds. 
 
2.3. The Modified Predictor-Corrector Scheme 
 
To avoid solving the nonlinear system (2.14) the follow-
ing Modified Predictor-Corrector (MPC) scheme is pro-
posed. 
 
2.3.1. Predictor 
 ˆ t U   is evaluated from the reccurence relation (2.12) 

replacing the matrix-exponential term with the following 
explicit second order rational approximant 

     2 2 21ˆ = 0
2

t I D D t as
      
 

U U     .  

(2.21) 

Then Equation (2.21) subject to Equation (2.11) using 
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again the notations (2.7) - (2.8) leads to 
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2
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Equation (2.22), when applied to the general mesh point 
of the grid G, gives 
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Stability Analysis 
Following again the Fourier method of analysing stabil-
ity Equation (2.23) leads to the following stability equa-
tion 
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which is of the form (2.17) with = 1A . Then condition 
(2.18) for = 0  leads to 

2 2 2
0 0

1
1 1

2
        .         (2.25) 

which for = 0  is obvious, while for = 0   is satis-

fied when the condition (2.20) holds. When = π 2  
condition (2.18) leads to 

2 2 2
0 0 02 4 2

4 8 4 1
1 1

2h h h
     

,            
   

     

(2.26) 

which again subject to (2.20) is always satisfied. 
 
2.3.2. Corrector 
The corrector arises from Equation (2.13) as follows 

   

 

2 2

2 2

1 1 ˆ=
2 12

1 1
     .

2 12

t D D t

I D D

   
 
    
 

   

 

U U

U t


      (2.27) 

Instead of the classical substitution of  t    
  a m

1n
mU

U  the 
right-hand side of (2.27) by ˆ t U odified pre-
dictor-corrector method (MPC) was applied [5]. The 
MPC method, which is explicit and is applied once, con-
sists of considering (2.27) component-wise and using an 
updated component in the corrector vector as soon as it 
becomes available. Hence, in computing 

in
 ,

  the cor-
rected value 1

1
n
mU 
  instead of the predicted value 1

1
ˆ n

mU 
  

is used. The stability analysis of the corrector is given in 
Section 2.2.1. 
 
3. Numerical Results 
 
For the linearization  was given. 
Let the error at time level ;  be 

 0
=0,1,..., 10 = maxm N mU u

=t n = 1n , 2,
  =0,1, , 1= = = maxe e t L n n

mu Um N m   and ex  the x-co- 
ordinate at which e occurs. Then e(2.2) - (2.3) denotes the 
error arising when using the boundary values (2.2) - (2.3), 
while analogous notations for the other boundary condi-
tions are used. In all experiments the initial condition 
(1.2) was given by the value   =  ,0f x u x

= 0.1h

 with u the 
theoretical solution (1.3). Experiments proved that the 
most accurate results are obtained for  and 

4= 10 .  For reasons of comparison with the correspond- 
ing works in [12,13,16,17] the same parameter values 
were used. 
 
3.1. Problem [12] 
 
From the experiments the following are deduced: 

1) when = 0   (Table 1) using: 
i) the boundary values (2.2) - (2.3) the method intro-

duced gives more accurate results for all time levels used 
than the corresponding results in [12] and marginally 
more accurate than those in [13,17], 

ii) the boundary condition (2.5) gives more accurate 
results than those in [12] and approximately equivalent 
to those in [13,17]. 
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From (i) - (ii) it is deduced that the boundary values 
(2.2) - (2.3) give more accurate results than the boundary 
condition (2.5). 

2) when = 0  (Table 2) using the boundary values 
(2.2) - (2.3) the method introduced has given 

-for = 1  more accurate results for all time levels 

used than the corresponding in [12], and 
-for > 1  results with marginally inferior accuracy 

to those in [12]. 
In Figure 1(a) the solution u for  0,1t  and 

4 410 ,10x      is shown, while in Figure 1(b) the rele-
vant solution U when  0,1x . 

 
Table 1. Problem [12]. Comparisons of the proposed method for various values of x, t with α = 1, β = 1, γ = 0.001 and δ = 1 (h 
= 0.1, ℓ = 10–4). 

t x Exact e(2.2) - (2.3) e(2.5) e [12] e [13] e [17] 

0.1 0.5000187E−03 1.87406E−08 1.26463E−09 1.93715E−07 1.87406E−08 1.87405E−08 

0.5 0.5000687E−03 1.87399E−08 1.97698E−08 1.93730E−07 1.87406E−08 1.87405E−08 0.05 

0.9 0.5001187E−03 1.87250E−08 4.60177E−08 1.93745E−07 1.87406E−08 1.87405E−08 

0.1 0.5000250E−03 3.74813E−08 6.39532E−09 3.87434E−07 3.74812E−08 3.74813E−08 

0.5 0.5000750E−03 3.74736E−08 3.99558E−08 3.87464E−07 3.74812E−08 1.37481E−08 0.1 

0.9 0.5001250E−03 3.74186E−08 7.66328E−08 3.87494E−07 3.74812E−08 3.74813E−08 

0.1 0.5001374E−03 3.74814E−07 3.29223E−07 3.87501E−06 3.74812E−07 3.74812E−07 

0.5 0.5001874E−03 3.72103E−07 3.79222E−07 3.87531E−06 3.74812E−07 3.74813E−07 1 

0.9 0.5002374E−03 3.68427E−07 4.29222E−07 3.87561E−06 3.74812E−07 3.74813E−07 

 
Table 2. Problem [12]. Comparisons of the proposed method for various values of x, t and δ with α = 0, β = 1 and γ = 0.001 (h 
= 0.1, ℓ = 10–4). 

δ = 1 δ = 2 δ = 3 
t x 

e(2.2) - (2.3) e [12] e(2.2) - (2.3) e [12] e(2.2) - (2.3) e [12] 

0.1 2.49875E−08 1.87465E−07 1.11763E−06 5.58901E−07 3.96731E−06 1.9841E−06 

0.5 2.49875E−08 1.87486E−07 1.11750E−06 5.58836E−07 3.96652E−06 1.98371E−06 0.05 

0.9 2.49874E−08 1.87508E−07 1.11737E−06 5.58772E−07 3.96572E−06 1.98331E−06 

0.1 4.99750E−08 3.74934E−07 2.23526E−06 1.11779E−06 7.93462E−06 3.96811E−06 

0.5 4.99750E−08 3.74977E−07 2.23500E−06 1.11766E−06 7.93304E−06 3.96731E−06 0.1 

0.9 4.99749E−08 3.75019E−07 2.23474E−06 1.11753E−06 7.93144E−06 3.96652E−06 

0.1 4.99750E−07 3.75002E−06 2.23526E−05 1.11754E−05 7.93462E−05 3.96632E−05 

0.5 4.99749E−07 3.75044E−06 2.23500E−05 1.00741E−05 7.93303E−05 3.96553E−05 1 

0.9 4.99749E−07 3.75086E−06 2.23474E−05 1.11728E−05 7.93143E−05 3.96473E−05 

 

     
(a)                                                         (b) 

Figure 1. Problem [12] with δ = 1, α = 1, β = 1, γ = 0.001 when t  [0,1]: In (a) the surface shows u(x,t) for x  [–104, 104], 
while in (b) the numerical solution U when x  [0,1]. 



A. G. BRATSOS 
 

157

Table 3. Problem [17]. Comparisons of the proposed method for various values of δ and γ when α = β = 1 (h = 0.1, ℓ = 10–4). 

t = 1 δ = 1 γ = 10–3 t = 0.5 δ = 2 γ = 10–2 t = 0.5 δ = 4 γ = 10–2 

x e(2.2) - (2.3) e [17] x e(2.2) - (2.3) e [17] x e(2.2) - (2.3) e [17] 

0.1 3.74814E−07 3.74812E−07 0.1 3.89463E−05 2.75734E−04 0.1 5.69322E−05 1.08762E−03

0.5 3.72103E−07 3.74814E−07 0.3 3.89656E−05 2.75614E−04 0.3 5.69778E−05 1.08644E−03

0.9 3.68427E−07 3.74813E−07 0.5 3.89844E−05 2.75493E−04 0.5 5.70134E−05 1.08527E−03

 
Table 4. Problem [16]. Boundary conditions (2.4) – (2.5). Comparisons of the proposed method for various values of t withα = 
5 and δ = 1 (h = 0.1, ℓ = 10–4). 

γ = 10–3 γ = 10–4 γ = 10–5 
t β 

Method e [16] Method e [16] e e [16] 

1 3.1570E−08 3.1616E−08 3.1584E−10 3.1630E−10 3.3410E−12 3.1632E−12 

10 3.9684E−07 3.9742E−07 3.9702E−09 3.9760E−09 3.9704E−11 3.9762E−11 0.3 

100 5.0291E−06 5.0365E−06 5.0316E−08 5.0389E−08 5.0318E−10 5.0392E−10 

1 3.3393E−08 3.3394E−08 3.3408E−10 3.3409E−10 3.3410E−12 3.3411E−12 

10 4.1976E−07 4.1977E−07 4.1995E−09 4.1996E−09 4.1997E−11 4.1998E−11 0.9 

100 5.3165E−06 5.3166E−06 5.3221E−08 5.3223E−08 5.3224E−10 5.3225E−10 

 
3.2. Problem [17] 
 
From Table 3 it is deduced that the method introduced 
using the boundary values (2.2) - (2.3) has given more 
accurate results for all time levels and parameters used 
than the relevant method in [17]. 
 
3.3. Problem [16] 
 
For reasons of comparison with the relevant results in 
[18] the boundary conditions (2.4) - (2.5) with  0 =g t  

 and  0,u t    1 = 1,g t u t  were used. From Table 4 it 
is deduced that the proposed method: 

-has given marginally more accurate results to those in 
[16] for all time levels and  ,   used, 

-for fixed  ,   and 
●  , the accuracy increases and U tends to identify 

with u at long time level as   is refined, 
●  , as   increases, the accuracy decreases. 

4. Conclusions 
 
An implicit finite difference scheme based on fourth- 
order rational approximants to the matrix exponential 
term was proposed for the numerical solution of the Bur- 
gers-Huxley equation. The resulting nonlinear scheme 
was solved using an improved predictor-corrector method. 
The computational efficiency of the proposed method 
given in detail in Section 3 was tested by comparing the 
numerical results to selected ones in [12,13,16,17] using 
both appropriate boundary values and conditions. Con-
clusions for the boundaries used were derived. 

Since the real world problems lead to the numerical 
solution of nonlinear equations or systems of equations, 
the introduced low cost and easy-to-handle method en-
ables us to obtain accurate solutions. 
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