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Abstract 
The main aim of the present work is to study the linear temperature behaviour of a 
non-homogeneous trapezoidal plate whose thickness varies linearly in both direc-
tions. The temperature behaviour considered linear along the length of the plate. 
Non-homogeneity in plate arises due to variation in density along the length of the 
plate. The two-term deflection function with clamped-simply supported-clamped- 
simply supported boundary condition is taken into consideration. The effect of 
structural parameters such as taper constants, thermal gradient, non-homogeneity 
constant and aspect ratio has been studied. Rayleigh-Ritz method is used to solve the 
governing differential equations and to obtain the fundamental frequencies for the 
first two modes of vibration. Results are presented in graphical form. 
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1. Introduction 

Most of the machines and structures work under the control of high temperature. Due 
to this, system undergoes some vibrations. Vibrations affect the efficiency, strength and 
durability of the system. The purpose of vibration study is to reduce vibration through 
proper and accurate design of machines and structures. Therefore, it is necessary for 
researchers and design engineers to have pre-knowledge of vibrational characteristics of 
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systems before finalizing the design of structures. The vibrational analysis of plates de-
pends on their geometry. In modern technology, plates of different shapes such as rec-
tangular, circular, elliptical, parallelogram etc. are used in engineering applications. 
Plates with different shapes, boundary conditions at the edges and various complicating 
effects have often found applications in different structures such as aerospace, machine 
design, telephone industry, nuclear reactor technology, naval structures and earth-
quake-resistant structures. Literature shows that the vibration analysis has inspired 
many researchers to do work in this direction. Out of them few are given under. Gupta 
and Sharma [1] had analyzed the effect of linear thermal gradient on vibrations of tra-
pezoidal plates whose thickness varied parabolically. Gupta and Sharma [2] had studied 
the effect of linear temperature behaviour on a non-homogeneous trapezoidal plate of 
parabolically varying thickness. Leissa [3] provided an appreciable collection of re-
search papers in his monograph on the vibration of plates of different shapes and under 
different boundary conditions. Singh and Saxena [4] discussed the transverse vibration 
of triangular plates with variable thickness. Chen et al. [5] had worked on the free vi-
bration of cantilevered symmetrically laminated thick trapezoidal plates. Bambill et al. 
[6] studied the transverse vibrations of rectangular, trapezoidal and triangular ortho-
tropic, cantilever plates. Saliba [7] worked on free vibration analysis of simply sup-
ported symmetrical trapezoidal plates. Krishnan and Deshpande [8] studied the free 
vibration of trapezoidal plates. Liew and Lam [9] had studied the vibrational response 
of symmetrically laminated trapezoidal composite plates with point constraints. Liew 
and Lim [10] worked on the transverse vibration of symmetric trapezoidal plates of va-
riable thickness. Liew [11] discussed the vibration of symmetrically laminated cantilev-
er trapezoidal composite plates. Klein [12] analyzed the vibration of simply supported 
isosceles trapezoidal flat plates. Qatu [13] discussed the vibrations of laminated compo-
site completely free triangular and trapezoidal plates. Zamani et al. [14] studied the free 
vibration analysis of moderately thick trapezoidal symmetrically laminated plates with 
various combinations of boundary conditions. Manna [15] calculated the free vibration 
of tapered isotropic rectangular plates with linearly varying thickness by using a high- 
order triangular element. Bhardwaj et al. [16] had studied the transverse vibrations of 
clamped and simply-supported circular plates with two dimensional thickness varia-
tions. Mirza and Bijlani [17] discussed the vibration of triangular plates of variable 
thickness. Gupta et al. [18] worked on vibration of non-homogeneous circular mindlin 
plates with variable thickness. Narita et al. [19] observed the transverse vibration of 
clamped trapezoidal plates having rectangular orthotropy. Zhou and Zheng [20] 
worked on the vibration of skew plates by the MLS-Ritz method. Quintana and Nallim 
[21] presented a variational approach to free vibration analysis of shear deformable po-
lygonal plates with variable thickness. Korobko and Chernyaev [22] determinated the 
maximum deflection in transverse bending of parallelogram plates using the conformal 
radiuses ratio. 

After a careful study of literature, it is recognized that no work has been done on li-
near density variation with bilinear thickness variation on vibration of heated trape-
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zoidal plate. In this paper, an analysis is presented to study the effect of thermally in-
duced vibration of non-homogeneous trapezoidal plate with bi-linearly varying thick-
ness. To acquire the natural frequencies for the first two modes of vibration, Rayleigh- 
Ritz’s method is used for a non-homogeneous trapezoidal plate whose two sides are 
clamped and two are simply-supported. 

2. Thickness and Density 

As depicted in Figure 1 a symmetric, non-homogeneous trapezoidal plate has been 
considered. Thickness varies bilinearly along length and width of the plate as 

( ) ( ) ( )0 1 2
1 11 1 1 1
2 2

h hξ β ξ β η      = − − + − − +            
             (1) 

where 0h h=  at 1 2ξ η= = −  and 1 2,β β  are taper constants. 
The density is one of the most important aspects of any design. Due to variation in 

density, non-homogeneity occurs in plate’s material which varies linearly along the 
length of the plate. So, it can be considered as 

( )0
11 1
2

ρ ρ β ξ  = − − +    
                       (2) 

where 0ρ ρ=  is the mass density at 1 2ξ = −  and β  is non-homogeneity constant. 
The temperature of the trapezoidal plate varies linearly along the length of the plate as 
 

 
Figure 1. Geometry of the trapezoidal plate. 
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0
1
2

τ τ ξ = − 
 

                            (3) 

where τ  denotes the excess above the reference temperature at a distance x aξ =  
and 0τ  denotes the temperature excess above the reference temperature at the end 

1 2ξ = − .. 
For most of the structural materials the temperature dependence of the modulus of 

elasticity is given by Nowacki [23] as 

( )0 1E E γτ= −                             (4) 

where 0E  is Young’s modulus value at reference temperature 0τ =  and γ  is the 
slope of variation of E  and τ . 

By the use of Equation (3) in Equation (4), one obtains  

0
11
2

E E α ξ  = − −  
  

                         (5) 

where ( )0 0 1α γτ α= ≤ ≤  known as thermal gradient. 

3. Governing Differential Equations 

The governing differential equations of kinetic energy T and strain energy V for a tra-
pezoidal plate are given by [10] as  

( )2 2d
2 A

abT h w Aω ξ ρ= ∫                        (6) 

and  

( ) ( )
2 22 2 2 2 2

2 2 2 2 2 2 2 2

1 1 1 12 1 d
2 A

ab w w w w wV D A
aba b a b

ξ ν
ξ ηξ η ξ η

     ∂ ∂ ∂ ∂ ∂  = + − − −     ∂ ∂∂ ∂ ∂ ∂      
∫ (7) 

where ν  is the Poisson’s ratio; ω  is the angular frequency of vibration and A is the 
area of the plate. 

Flexural rigidity of the plate ( )D ξ  can be expressed as 

( ) ( ) ( )
3

0 1 2
1 11 1 1 1
2 2

D Dξ β ξ β η
       = − − + − − +              

           (8) 

where ,x y
a b

ξ η= =  are non-dimensional variables. Here,  

( )
3
0

0 212 1
Eh

D
ν

=
−

                            (9) 

By using Equation (5) and Equation (9) in Equation (8), the flexural rigidity becomes  

( ) ( ) ( ) ( )
33

0 0
1 22

1 1 11 1 1 1 1
2 2 212 1

E h
D ξ β ξ β η α ξ

ν

           = − − + − − + − −           −            
(10) 

Using Equation (1) and Equation (2) in Equation (6), we get  

( ) ( )2 2
0 0 1 2

1 1 11 1 1 (1 ) 1 1 d
2 2 2 2A

abT h w Aρ ω β ξ β η β ξ          = − − + − − + × − − +                    
∫ (11) 
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Using Equation (10) in Equation (7), we get  

( ) ( )

( )

33
0 0

1 22

2 22 2 2 2 2

2 2 2 2 2 2 2 2

1 1 11 1 ) 1 (1 ) 1
2 2 2 212 1

1 1 1 12 1 d

A

E habV

w w w w w A
aba b a b

β ξ β η α ξ
ν

ν
ξ ηξ η ξ η

           = − − + − − + − −           −            

     ∂ ∂ ∂ ∂ ∂  × + − − −     ∂ ∂∂ ∂ ∂ ∂      

∫
(12) 

In the present study the two term deflection function which satisfies the boundary 
condition can be expressed as  

2

1

3 2 2

2

1 1
2 2 2 4 2 4

1 1 ,
2 2 2 4 2 4

b c b c b c b cw A

b c b c b c b cA

ξ ξ η ξ η ξ

ξ ξ η ξ η ξ

   − +  − +           = + − − + + −              
              

   − +   − +           + + − − + + −               
               

(13) 

where 1A  and 2A  are two unknowns to be evaluated. For the solution of the problem 
the trapezoidal plate is considered whose two sides are clamped and two are simply 
supported. Therefore, the boundaries are defined by four straight lines 

1 ;
4 2 4 2
c c
b b

ξ ξη = − + +  

1 ;
4 2 4 2
c c
b b

ξ ξη = − + − −  

1 ;
2

ξ = −  

1 .
2

ξ =                               (14) 

4. Methodology 

For the existing problem, Rayleigh-Ritz’s method has been employed. It requires the 
maximum strain energy must be equal to the maximum kinetic energy. Therefore, it is 
necessary that the consequent equation must be satisfied  

( ) 0.V Tδ − =                           (15) 

Using Equation (14) into Equation (11) and Equation (12), we obtain  

( ) ( )

( )

11
2 4 2 4 22

0 0 1 21 1
2 4 2 4 2

2

1 11 1 1 1
2 2 2

11 1 d d
2

c c
b b
c c
b b

abT h

w

ξ ξ

ξ ξρ ω β ξ β η

β ξ η ξ

− + +

− − + − −

      = − − + − − +            
  × − − +    

∫ ∫
   (16) 

And  

( ) ( ) ( )

( )

3113
0 0 4 2 4 22

1 21 12
2 4 2 4 2

2 22 2 2 2 2

2 2 2 2 2 2 2 2

1 1 11 1 1 1 1
2 2 2 212 1

1 1 1 12 1

c c
b b
c c
b b

E habV

w w w w w
aba b a b

ξ ξ

ξ ξ β ξ β η α ξ
ν

ν
ξ ηξ η ξ η

− + +

− − + − −

           = − − + − − + − −           −            

     ∂ ∂ ∂ ∂ ∂  × + − − −    ∂ ∂∂ ∂ ∂ ∂    

∫ ∫

d d .η ξ



  

(17) 
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Using Equation (16) and Equation (17) into Equation (15), we get 

( )2
1 1 0.V Tδ λ− =                           (18) 

where  

( ) ( )

( )

11
4 2 4 22

1 1 21 1
2 4 2 4 2

2

1 11 1 1 1
2 2

11 1 d d ,
2

c c
b b
c c
b b

T

w

ξ ξ

ξ ξ β ξ β η

β ξ η ξ

− + +

− − + − −

      = − − + − − +            

  × − − +    

∫ ∫
        (19) 

( ) ( )

( )

311
4 2 4 22

1 1 21 1
2 4 2 4 2

2 22 2 2 2 2

2 2 2 2 2 2 2 2

1 1 11 1 1 1 1
2 2 2

1 1 1 12 1 d d ,

c c
b b
c c
b b

V

w w w w w
aba b a b

ξ ξ

ξ ξ β ξ β η α ξ

ν η ξ
ξ ηξ η ξ η

− + +

− − + − −

           = − − + − − + − −                      
     ∂ ∂ ∂ ∂ ∂  × + − − −     ∂ ∂∂ ∂ ∂ ∂      

∫ ∫
 (20) 

And  

( )2 4 2
02

2
0 0

12 1
.

a

E h

ω ρ ν
λ

−
=                        (21) 

is a frequency parameter. 
The unknowns 1A  and 2A  in Equation (18) arises due to the substitution of the 

deflection function w  given by Equation (13). From Equation (18) these two con-
stants can be determined, as follows  

( )2
1 1

1

0,V T
A

λ∂
− =

∂
 

( )2
1 1

2

0,V T
A

λ∂
− =

∂
                         (22) 

On simplifying (22), we get 

1 1 2 2 0, 1, 2m mb A b A m+ = =                      (23) 

where 1 2,m mb b  (m = 1, 2) involve parametric constants and the frequency parameter. 
For a non-zero solution, the determinant of co-efficient of Equation (23) must be 

zero. Thus the frequency Equation for a (C-S-C-S) trapezoidal plate is given by 

11 12

21 22

0.
b b
b b

=                           (24) 

On simplifying Equation (24), a quadratic equation in 2λ  is obtained. Thus, it pro-
vides the two values of 2λ  corresponding to the first and second modes of vibration 
respectively. 

5. Results and Discussions 

Frequencies for the first two modes of vibration are calculated for non-homogeneous 
trapezoidal plate whose thickness varies linearly in both directions and density varies 
linearly in x-direction. Different values of taper constants 1β  & 2β , thermal gradient 
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α , aspect ratios a/b, c/b and non-homogeneity constant β  has been considered. The 
value of Poisson’s ratio ν  is taken as 0.33. With the help of graphs all the results have 
been presented. 

In Figure 2(a) and Figure 2(b) these figures show the variation of the frequency pa-
rameter λ  with the taper constant 1β  (0.0 to 1.0) for the first and second mode, re-
spectively, for  

 

 
(a) 

 
(b) 

Figure 2. (a) Variation of frequency parameter λ  for different values of taper cons- 
tant 1β  for the first mode. (b) Variation of frequency parameter λ  for different 
values of taper constant 1β  for the second mode. 
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1) 1.0, 0.5a b c b= =   
2) 0.4,1.0β =   
3) 0.0,0.4α =   
4) 2 0.6β =   

These figures demonstrate that as the taper constant 1β  increases, the frequency 
parameter λ  also increases for both the modes of vibration. 

In Figure 3(a) and Figure 3(b), these figures show the variation of the frequency 
parameter λ  with the taper constant 2β  (0.0 to 1.0) for the first and second mode, 
respectively, for 

 

 
(a) 

 
(b) 

Figure 3. (a) Variation of frequency parameter λ  for different values of 
taper constant 2β  for the first mode. (b) Variation of frequency parameter 
λ  for different values of taper constant 2β  for the second mode. 
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1) 1.0, 0.5a b c b= =   
2) 0.4,1.0β =   
3) 0.0,0.4α =   
4) 1 0.6β =   

These figures explain that as the taper constant 2β  increases, and the frequency 
parameter λ  also increases for both the modes of vibration. 

In Figure 4(a) and Figure 4(b) these figures depict the behaviour of the frequency 
parameter λ  with thermal gradient α  (varying from 0.0 to 1.0) for the first and 
second mode, respectively, for  
 

 
(a) 

 
(b) 

Figure 4. (a) Variation of frequency parameter λ  for different values of 
thermal gradient α  for the first mode. (b) Variation of frequency para-
meter λ  for different values of thermal gradient α  for the second mode. 
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1) 1.0, 0.5a b c b= =   
2) 1 20.2, 0.6β β= =   
3) 1 2 0.0β β= =   
4) 0.4,1.0β =   

It is clear from these figures that as the thermal gradient α  increases, the frequency 
parameter λ  decreases for both the modes of vibration. 

In Figure 5(a) and Figure 5(b) these figures demonstrate the effect of aspect ratio 
c/b (varying from 0.25 to 1.0) on the frequency parameter λ  for the first and second 
mode, respectively, for 
 

 
(a) 

 
(b) 

Figure 5. (a) Variation of frequency parameter λ  for different values of as-
pect ratio c/b for the first mode. (b) Variation of frequency parameter λ  for 
different values of aspect ratio c/b for the second mode. 
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1) 0.75,1.0a b =   
2) 1 2 0.6β β= =   
a) 0.0, 0.0α β= =   
b) 0.4, 0.0α β= =   
c) 0.0, 0.4α β= =   
d) 0.4, 0.4α β= =   

It is evident from the figures that as aspect ratio c/b increases, the frequency parame-
ter decreases for both the modes of vibration. From Figure 5(a) and Figure 5(b) it is 
observed that with increase in aspect ratio a/b the frequency increases for both the 
modes of vibration. 

In Figure 6(a) and Figure 6(b) these figures show the effect of non-homogeneity 
constant β  (varying from 0.0 to 1.0) on the frequency parameter λ  for the first and 
second mode, respectively, for 
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Figure 6. (a) Variation of frequency parameter λ  for different values of non-homogeneity con-
stant β  for the first mode. (b) Variation of frequency parameter λ  for different values of 
non-homogeneity constant β  for the second mode. 
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1) 1.0, 0.5,1.0a b c b= =   
2) 1 2 1 20.0and 0.2, 0.6β β β β= = = =   
3) 0.0,0.4α =   

These figures show that as the non-homogeneity constant β  increases, the fre-
quency parameter λ  decreases for both the modes of vibration. 

6. Conclusion 

In the present paper, the effect of temperature on the vibration of symmetric, non-ho- 
mogeneous trapezoidal plate of isotropic material with clamped-simply supported- 
clamped-simply supported-boundary condition has been studied by using the Ray-
leigh-Ritz method. Effect of other plate’s parameters such as non-homogeneity con-
stant, aspect ratios, taper constants has also been considered. It is obvious from the 
graphs that by the increase of taper constants, aspect ratio a/b the frequency of both the 
modes of vibration increases. On the other hand, frequency decreases with increasing 
values of thermal gradient, aspect ratio c/b and non-homogeneity constant for both the 
modes of vibration. By the proper selection of various plate parameters such as taper 
constants, thermal gradient, aspect ratio and non-homogeneity constant, a desired fre-
quency can be attained for the first two modes of vibration which would be helpful for 
the design engineers. 
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