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Abstract 
Hypergeometric functions have been increasingly present in several disciplines in-
cluding Statistics, but there is much confusion on their proper uses, as well as on 
their existence and domain of definition. In this article, we try to clarify several 
points and give a general overview of the topic, going from the univariate case to the 
matrix case, in one and then in several arguments. We also survey some results in 
fields close to Statistics, where hypergeometric functions are actively used, studied 
and developed. 
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1. Introduction 

Hypergeometric functions in one or several variables, introduced first in Mathematics, 
have been used in Physics and Applied Mathematics for some time. But their presence 
in Statistics is quite recent, within various topics, particularly in operations on random 
variables and on non-null distributions. In Multivariate analysis, as reported by Bose 
[1], Gauss hypergeometric function was used by Fisher as early as in 1928, in the de-
termination of the density of the sample multiple correlation coefficient 2R .  

There is, however, some confusion regarding the different forms under which the 
hypergeometric function appears. In particular, the equalities between the infinite se-
ries, the Euler integral representation, the Laplace representation and the Mellin-Barnes 
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representation can be confusing. Since they are only valid under certain conditions, one 
form can converge while the others do not, or take different values. We will discuss the 
necessary conditions for their equivalences, for ( )2 1 .F  only, but similar considerations 
hold for ( ).p qF . We will show the progression of these notions, from the scalar case to 
the matrix case.  

In this article, we are mostly concerned with the presence of hypergeometric func-
tions in Statistics and to this end, have adopted two measures: Section 7 is completely 
devoted to Statistics, and in the last part of the article we will survey hypergeometric 
functions in various domains, and discuss their potential relations with, and applica-
tions in, Statistics. Throughout the text, whenever possible, we will also express similar 
opinions, which are strictly ours, and are necessarily subjective.  

We try to be informative without being too technical. Naturally, we can only give a 
general landscape on the hypergeometric functions’ presence in neighboring fields. We 
will not go into details when coming into a specific domain, since this would require 
advanced knowledge in that domain itself. But relevant references are given so that the 
reader can deepen his/her knowledge on a certain topic if she/he so wishes. We have 
also given up the effort of trying to present a unified set of notations/symbols through-
out the paper because these notions vary so much from one field to the other. We be-
lieve that a good grasp of the whole picture will allow readers to have an appreciation of 
the diversity and richness of hypergeometric functions. Then, they can make possible 
connections between these ideas and their own statistical domain, to derive other re-
sults and conclusions.  

There are, at present, three survey articles on hypergeometric functions in the litera-
ture: one is from the Encyclopedia of Statistical sciences [2], one by Schlosser [3], and 
the third one by Abadir [4]. Each of these surveys has its own merits, but the first one is 
limited to one variable and does not cover several topics related to mathematics. The 
second one is strictly mathematical and covers multivariate series only, while the last 
one is oriented toward economics/econometrics topics. Furthermore, there are a couple 
of surveys in Wikipedia [5], which are also quite informative, and a short article in En-
cyclopedia of Mathematics (Russian [6]). The present article hopes to complement all 
these surveys and studies. 

Leon Ehrenpreis [7] wrote: “Hypergeometric functions pervade many branches of 
mathematics because it is at the confluence of three fundamental viewpoints.” And 
Cattani [8] reported that in the MathSciNet data base there were already 3181 articles 
with title word hypergeometric, of which 1530 were published since 1990. At present, 
there are several distinct topics in the mathematical/statistical literatures related to the 
word Hypergeometric, such as hypergeometric integrals, hypergeometric groups, etc. 
beside more specific terms like hypergeometric polynomials, rational hypergeometric 
functions, etc. 

In the same spirit, Askey [9] wrote in his review of Carlson’s [10] book. “At present 
no one has a good overview of what is happening to multivariate extensions of hyper-
geometric functions”, and predicted that full comprehension of multiple hypergeome-
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tric series will take another hundred years. But, fortunately, Gelfand, Kapranov and 
Zevelinsky [11] have already given a partial reaction to this statement. On the other 
hand, Saito, Sturmfels and Nakayama [12] have mentioned the problem that hyper-
geometric functions and series have been lately treated from so many points of view 
completely different from each other. Here, we will attempt to connect some of them to 
Statistics, and, in the process, will evidence three themes:  
1) The versatility of hypergeometric functions is due to the fact that they can be ex-

pressed as an infinite series, or as very different forms of integrals. The three basic 
forms, Euler, Laplace and Mellin-Barnes, can then be studied and extended, using 
mathematical analysis tools. 

2) Some common approaches used by researchers are: averaging (through different 
processes) and progressive definitions (e.g. from ( ),p q  to ( )1,p q+ , starting or 
finishing at simple common functions. 

3) In Statistics, understandably, Hypergeometric functions are not developed, but 
used, mostly in distribution theory. However, James [13] and Constantine and 
Muirhead [14] have contributed significantly to the theory of zonal polynomials.  

In section 2 we will consider the univariate scalar case and progressive generaliza-
tions of the hypergeometric functions, from three parameters to n parameters and to H 
and G-functions. Since integral representations play a key role, we have presented them 
clearly at every step. In Section 3, we generalize to several scalar variables, again giving 
the three integral representations. In Section 4, we consider one or several matrix va-
riates and the three current approaches to introduce them. In Section 5, computational 
issues will be discussed. Section 6 gives some other approaches used to derive the 
hypergeometric functions, different from the classical one. In Section 7, the presence of 
hypergeometric functions in Statistics, will be presented, with no pretention of being 
exhaustive. Finally, in section 8 we present the hypergeometric function in neighboring 
domains, with potential connections to Statistics. Since there are so many such do-
mains, we do not pretend to be exhaustive, or objective here either, and can only give 
basic ideas of interest, or results of importance. Deeper results would, naturally, require 
specialized advanced technical knowledge from the reader in that domain.  

NOTE: In this survey we will limit our consideration to the real case, for scalar, vec-
tor and matrix variables, since the complex case is seldom encountered in Statistics, and 
its inclusion would considerably lengthen the article. Classical treatises on this topic are 
Erdelyi et al. [15], Slater [16] [17], Bailey [18]. They are excellent references that we 
wish to acknowledge here, but there are certainly others that we ignore, and we would 
appreciate having them brought to our attention. Also, articles from various contribu-
tors mentioned here have been chosen to illustrate various points presented in the ar-
ticle, and not because they are the most influential, or the most important. 

We also realize that to cover such an immense topic as hypergeometric functions, 
within a limited number of pages, our survey is very ambitious and necessarily incom-
plete in many respects. Several properties of Gauss hypergeometric function related to 
continued fractions, linear and quadratic transformations, etc., could not be treated due 



T. Pham-Gia, D. N. Thanh 
 

954 

to lack of space. We hence ask for your comprehension and understanding. 
To put more clarity into our presentation we have worked out the following plan, 

which also reflects our point of view on surveying the whole topic: integral representa-
tions within progressive generalizations. Naturally, our view is only one among so 
many others, that could differ sharply from ours. 

PLAN OF THE PRESENTATION 
1. Introduction 
2. Hypergeometric series and functions in one scalar variable  

2.1. The Laplace, Fourier and Mellin Transforms  
2.2. Sums versus integrals  
2.3. Integral representations 

2.3.1. Euler integral on a finite segment of the real line 
2.3.2. Laplace representation on the positive half-line 
2.3.3. Mellin-Barnes representation by contour integral in the complex plane 
2.3.4. Contiguous relations 

2.4. Generalization to several parameters  
2.4.1. Generalized hypergeometric functions  
2.4.2. Analytic continuation 
2.4.3. Euler integral representation 
2.4.4. Laplace representation on the positive axis 
2.4.5. Mellin-Barnes representation  

2.5. Generalization to G and H- functions 
3. Hypergeometric series and functions in several independent scalar variables 

3.1. Appell, Lauricella and others sums 
3.2. Integral representations and further generalization  

3.2.1. Integral representation of Euler type 
3.2.2. Integral representation of Laplace type on ( )0, n∞  
3.2.3. Representation of Mellin-Barnes type 

3.3. Differential Equations and systems 
3.4. Generalized G and H -functions in several independent scalar variables  

4. Hypergeometric functions in matrix arguments: three proposed approaches  
4.1. Functions in one matrix variate 

4.1.1. Laplace transform approach 
4.1.2. Zonal Polynomials approach 
4.1.3. Matrix-transforms approach 

4.2. Hypergeometric function in two matrix variates  
5. Computational Issues 

5.1. Computation of the hypergeometric function  
5.2. Old and new relations between hypergeometric functions managed by com-

puter  
6. Hypergeometric functions derived via other approaches 

6.1. Fractional Calculus  



T. Pham-Gia, D. N. Thanh 
 

955 

6.2. Lie Group approach 
6.3. Carlson’s approach 

6.3.1. Definitions of functions ( ),nR b z  and ( ),S b z  as averages  
6.3.2. Results of interest 
6.3.3. Single integral representation and Elliptic integrals 

6.4. Basic q-hypergeometric functions  
7. Presence of Hypergeometric Functions in Statistics  

7.1. Discrete case 
7.2. Continuous case 
7.3. Matrix case 
7.4. Other Applications  

8. Hypergeometric Functions in Neighboring Domains 
8.1. Algebraic topology, Algebraic K-Theory, Algebraic Geometry  

8.1.1. Integral representations 
8.1.2. Single Integral representation 
8.1.3. A-Hypergeometric functions  

8.2. Hypergeometric integrals in Conformal Field theory, Homology and Coho-
mology 

8.3. Algebraic functions and roots of equations 
8.4. Economics, Quantitative Economics and Econometrics  
8.5. Random matrices in Theoretical Physics 

9. Conclusion 
10. References 
End 

2. Hypergeometric Series and Functions in One Scalar Variable 
2.1. The Laplace, Fourier and Mellin Transforms 

These three transforms play key roles in this article: 

a) For a function ( )f x  such that ( )
0

e dkx f x x
∞

− < ∞∫  for some real value k, the 

Laplace transform of ( )f x , 0x ≥ , is  

( ){ } ( ) ( )
0

e drx
t fL f x L t f x x

∞
−= = ∫ ,                   (1) 

where r is a complex variable. Conversely, if ( ){ }tL f x  is analytic, of order ( )kO r−  

in some half-plane ( )Re r c> , with ,c k  real and 1k > , then its inverse is ( )f x , 
uniquely determined by: 

( ) ( )1 lim e d
2 π

w i
tx

f
w i

f x L t t
i

β

β
β

+

→∞
−

= ∫ , t C∈ , 

evaluated over any line ( )Re r w c= >  in the complex plane. 
Two functions with same Laplace transform are identical. If ( )f x  is the density of 
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X, 

( ){ } ( )
0

e dtx
t f x f x xθ

∞

= ∫
 

is the moment generating function of X. 

b) The Fourier transform of ( )f x , x−∞ < < ∞ , s.t. ( ) df x x
∞

−∞

< ∞∫ , for some real 

k is: 

( ){ } ( ) ( )e ditx
t fF f x F t f x x

∞
−

−∞

= = ∫
 

and its inverse is 

( ) ( )1 e d
2π

itx
ff x F t t

∞

−∞

= ∫ . 

c) The Mellin transform of ( )f x , 0x ≥ , where ( )1

0

dkx f x x
∞

− < ∞∫  for some real 

k, is defined by: 

( ){ } ( )1

0

ds
s f x x f x x

∞
−= ∫M .                      (2) 

Then its inverse Mellin transform is: 

( ) ( )( ) ( )( )1 1 d ,
2 π

w i
s

x s s
w i

f x M f x x f x s s
i

+ ∞
− −

− ∞

 = = ∈  ∫ M M .         (3) 

Equation (3) is valid under the condition that (2) exists as an analytic function of the 
complex variable s, for ( )1 2Rec s w c≤ = ≤ . The integral is independent of w. 

2.2. Sums Versus Integrals 

In this section we consider only series and their limits. We have the series representa-
tion of the exponential function, which is a special case of the hypergeometric series:  

( )
0

exp
!

n

n

xx
n

∞

=

= ∑ , x∈ , 

where the ratio of two consecutive coefficients: 

1 1
1

n

n

a
a n
+ =

+
, ja +∈ . 

One generalization of this notion is associated with the hypergeometric series, where 
this ratio is a rational expression of n. Then we should have: 

( ) ( )
( ) ( ) ( )

11

1

1
1

pn

n q

r a n a na
a ns b n b n
+

+ +
= ⋅

++ +





 
in its decomposition into a rational form, i.e. depending on p q+  constants and 2 
other constants r and s. 

The corresponding series is then, 
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( ) ( )
( ) ( )

2
11 1

1 1 1

1 11 11
1 21 1

pp p

q q q

a aa a a arz rz
b b s b b sb b

+ +   = + + ⋅ +   + +   



 



 


 

which becomes, after rearranging and change of scale:  

( ) ( )
( ) ( )

2
1 11

1 1 1

1 1
1

1! 2!1 1
p pp

q q q

a a a aa a z z
b b b b b b

+ +
= + + +

+ +










 

The hypergeometric series ( ) ( )1 1, , , ; , , ;p qp qHS a a b b z   has the above expression. 
For 2p = , 1q = , we have Gauss hypergeometric series in 3 parameters  

( ) ( ) ( ) ( )
( )2,1

0
, ; ; ,

!

n
n n

n n

a b zHS a b c z z
c n

∞

=

= ∈∑ 
,                (4) 

where the Pochhammer symbol is ( ) ( ) ( )1 1na a a a n= + + − , ( )0 1a = . Equation (4) 
reduces to the geometric series for 1a b c= = = , hence its name. a and b can be any 
real or complex value but c must be different from a negative integer. If a or b is zero or 
a negative integer the series becomes a polynomial.  

The first work on hypergeometric function was made by Euler in 1687, when he stu-
died series (4), as solution to Equation (21). Gauss (1812) and Riemann (1857) contin-
ued Euler’s work in the complex domain and solved the associated multivaluedness 
problem, presently known as monodromy problem. 

2.3. Integral Representations 

The whole field of Special Functions is characterized by integral representations of var-
ious kinds (see e.g. Lebedev [19]). We first recall the integral representation of the up-
per tail of the gamma distribution by a finite sum, well known in elementary statistics 
(Hogg and Craig [20], p. 132): 

( )
( )1 1

0

ee d ,
1 ! !

x wk z k

xw

wz z k
k x

λ

λ

λ −∞ − − −
+

=

= ∈
− ∑∫ 

. 

Similarly, we have the integral representation of an infinite series. There are several 
advantages in dealing with an integral instead of a series, as already remarked by Carl-
son [10]. Continuity and even analyticity are usually provided by the integral, hence 
leading to a deeper study of its properties and extensions, and also faster convergence 
on a digital computer. The hypergeometric series (4), with its convergence region will 
be of limited interest if it cannot be extended to the whole complex plane. The principle 
of analytic continuation in complex analysis will permit us to precisely do that opera-
tion. 

There are three integral representations of ( ) ( )2,1 , ; ;HS a b c z , of increasing complex-
ity, that serve three different purposes, and propose three different ways in computing 
the values of a hypergeometric function: 

2.3.1. Euler Integral on a Finite Segment of the Real Line 
Let 
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( ) ( )
( ) ( ) ( ) ( )

1
11

1
0

1 1 dc b abc
I z t t tz t

b c b
− − −−Γ

= − −
Γ Γ − ∫               (5) 

and 

( ) ( )
( ) ( ) ( ) ( )

1
11

2
0

1 1 dc a bac
I z t t tz t

a c a
− − −−Γ

= − −
Γ Γ − ∫ .            (5’) 

For , ,a b c  real, inside the unit disc 1z <  we have ( ) ( ) ( )12,1 , ; ;HS a b c z I z=  if 
0c c b> − >  and ( ) ( ) ( )22,1 , ; ;HS a b c z I z=  if 0c c a> − > . If both double conditions 

are satisfied then ( ) ( ) ( ) ( )1 22,1 , ; ;HS a b c z I z I z= = . 
Outside the unit disc 1z < , either integral can be seen to converge for any value of 

z, except on [ )1,∞ , for ( ) ( )0 Re Reb c b< < −  or ( ) ( )0 Re Reb c a< < − , respectively. 
Hence, the condition 1z <  can be dropped and the series can be extended to a func-
tion analytic in the complex plane, with a cut along [ )1,∞  if ( ) ( ) ( )Re Re or Rec b a>  
(Lebedev [19]). It serves to generalize the series ( ) ( )2,1 , ; ;HS a b c z  outside the unit cir-
cle, by analytic continuation. This is the representation which is mostly used in statis-
tics, where, frequently, the integral is encountered first, and hence the series can be-
come redundant.  

But the terminology can become confusing. ( ) ( ) ( )2 1 2,1, ; ; , ; ;F a b c z HS a b c z≡  now 
means the function defined by this integral on the half-line ( ],1−∞  (and on all the 
complex plane cut along [ )1,∞  if z is complex), with an alternate expression as an in-
finite series within the unit disk, as already suggested by Appell and Kampé de Fériet in 
1926 [21]. Also, these integrals are not defined for real positive values of z superior to 1, 
as the cut [ )1,∞  implies, but they converge for all complex values of a, b and c, and 
are analytic functions of these parameters for z fixed.  

Example 1:  
a) Using MAPLE, with 4.2a = , 3.7b = , 6.5c = , we have  
( ) ( ) ( ) ( )1 2 2,10.75 0.75 0.75 0.002498I I HS= = =  but ( )1 2.75I , ( )2 2.75I , and  

( ) ( )2,1 2.75HS  are non-existent, in good accordance with the theory, while 

( ) ( ) ( ) ( )1 2 2,112.0 12.0 12.0 0.000804I I HS− = − = − = , 

the last value being, however, taken (arbitrarily) from 1I  by analytic continuation, 
since we know that the series ( ) ( )2,1 .HS  diverges at 12.0− . Also,  

( ) ( ) ( )
( ) ( )2 1

1
lim , ; ;
z

c c a b
F a b c z

c a c b−→

Γ Γ − −
=
Γ − Γ −

 if 0c a b− − > , which is NOT the case here and 

the limit is +∞ . 
b) For 4.2a = , 3.7b = − , 8.5c = , we have similar results, and equality of ( )2I z  

and ( ) ( )2,1HS z  on ( ),1−∞ , while ( )1I z  is not defined anywhere on ( ),−∞ ∞ . Fig-
ure 1 and Figure 2 illustrate the example. 

These integral representations (5) and (5’) are very convenient because even when a, 
b and c differ by integers, thi(e)s(e) integral(s) still converge(s), and equal(s) the series 
within the convergence domain of the latter. This is to be compared with the Mellin- 
Barnes representation in 2.3.3 where the poles must be simple, which does not happen 
when a, b and c differ by integers. 
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Figure 1. Graphs of ( ) ( )1 2,I z I z , and ( ) ( )2,1HS z  where 

4.2, 3.7, 6.5a b c= = =  (They coincide). 
 

 

Figure 2. Graphs of ( )1I z  (a), ( )2I z  (b), and ( ) ( )2,1HS z  (c), 

with z x iy= + , 4.2, 3.7, 6.5a b c= = =  (They coincide). 

2.3.2. Laplace Representation on the Positive Half-Line 
This representation is useful when dealing with Laplace transform methods and mo-
ment generating functions, which is frequent in Statistics. However, ( )2 1 .F , and later 

( ).p qF , is usually expressed in function of another hypergeometric function, with less 
parameters, and this fact is useful for a progressive definition of a family of functions. 
We have: 

( ) ( ) ( )1
2 1 1 1

0

1, ; ; e , ; dt aF a b c z t F b c zt t
a

∞
− −= ⋅

Γ ∫ , ( )Re 0a > , 
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where ( )1 1F ⋅  is the confluent hypergeometric function, studied first by Kummer [22], 
with single integral representation:  

( ) ( )
( )

( )
( ) ( ) ( )

1
11

1 1
0 0

, ; e 1 d
!

k
c azt ak

k k

a czF a c z t t t
c k a c a

∞
− −−

=

Γ
= = −

Γ Γ −∑ ∫ , ( )Re 0c a− > .  (6) 

or double integral representation: 

( ) ( ) ( )1 1
0 1

0 0

1 e ; ; d dt s a bs t F c xst s t
a b

∞ ∞
− − − − ⋅ −

Γ Γ ∫ ∫ . 

This hypergeometric function is an important function in its own right (see Slater 
[16]), but due to space limitation we will not deal with it further. On the other hand, 
the Laplace transform of ( ).p qF  is:  

( ) ( ) ( )1 1
1 1 1 1 1

0

e , , ; , , ; d , , , ; , , ;tx
p q p q p q p qct F a a b b t t F a a b b x

x
α α

α
∞

− − −
+

Γ
= ⋅∫     , (see (10)) 

which, however, is valid only for p q< , ( )Re 0α > , ( )Re 0x > , or p q= , 

( )Re 0α > , and does not apply here. 

MATHEMATICA gives this transform a quite complex sum of three hypergeometric 
functions, as follows:  

( ){ }( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1

2 1 1 1

1

1 1

2 2

1
, ; ; 1, 1;

1
1,1 ;

1 1, 2 ; 2 , 2 ; , Re 0.
1 1

a

b

a b a c z
L F a b c t z F a c a b z

b c a

b a b c z
F b c a b z

a c b
c F c a b z z

a b

−

−

Γ − Γ − Γ
− = ⋅ − + − +

Γ Γ −

Γ − Γ − Γ
+ ⋅ − + − +

Γ Γ −

−
+ ⋅ − − − >

− −  
NOTE: Some results on this transform, and its inverse, are given on p.212 and 291 of 

Tables of Integral Transforms [15]. 

2.3.3. Mellin-Barnes Representation by Contour Integral in the Complex Plane 
Complex analysis developed in the 19th century brought powerful tools such as the 
calculus of residues, and Mellin-Barnes formula gives a third representation, based on 
contour integration. The value of the integral is computed, not as a complex integral, 
but as the sum of the residues at poles of ( )sΓ . When they are simple we have:  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )2,1

1, ; ; d
2π

i
s

i

c a s b s s
HS a b c z z s

i a b c s

∞
−

− ∞

Γ Γ − Γ − Γ
= −

Γ Γ Γ −∫ ,     (7) 

Computing the residues at the simple poles of ( )sΓ , { }0, 1, 2,− −  , we have (4) 
equal to (7) (a proof is given in 2.4.5) but for this case only. It can be shown, again, us-
ing (7), that ( ) ( )2,1 , ; ;HS a b c z  can be extended to a function analytic in the complex 
plane, with a cut along [ )1,∞ . 

Mathai and Saxena ([23], p. 165) gave results in the case where a  and b  differ by 
integers and some poles become multiple. Cases b a m= + , b a m= +  with  
c a m n= + + , c a b m= + + , etc. were considered, and gave results distinct from the 
series ( ) ( )2,1 , ; ;HS a b c z .  
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Example 2: For 3, 3, 15.3a b a c= = + = , for example, we have ( ) ( )1 2I z I z=  on 
( ),1−∞ , and ( ) ( ) ( ) ( )1 2 2,1I z I z HS z= =  on ( )1,1−  by direct computation, and finally, 

( ) ( ) ( ) ( )1 22,1HS z I z I z= =  on ( ), 1−∞ −  by analytic continuation, by taking as value of 

( ) ( )2,1HS z  the value of ( ) ( )1 2I z I z=  within that interval. From (7) above, however, 

( ) ( )2,1 , ; ;HS a b c z  is not defined for 0 1z< <  since the formula in this case contains 
( )log z− . This is a drawback from Mellin-Barnes representation. 

Mellin-Barnes integral formula has its origins in the work of Pincherle in 1888 (see 
Mainardi and Pagnini [24]) and this formula was developed later by Mellin and Barnes. 
Athough (7) is very convenient to deal with when extensions of  

( ) ( )2,1 , ; ;HS a b c z  to forms which are more general are considered, (7) itself is seldom 
encountered in statistics.  

2.3.4. Contiguous Relations 
Let ( )2 1 , ; ;F a b c z  be Gauss hypergeometric function and the associated six functions, 
called contiguous functions: ( )2 1 1, ; ;F a b c z± , ( )2 1 , 1; ;F a b c z± , ( )2 1 , ; 1;F a b c z± . It 
can be shown that ( )2 1 , ; ;F a b c z  can be obtained as a linear combination of any two of 
these functions, with rational coefficients expressed in terms of , ,a b c  and z. There are 
hence 15 such relations, that can be generalized to ( )2 1 , ; ;F a m b k c s z+ + + , with ,m k  
and s being integers. 

2.4. Generalization to Several Parameters 
2.4.1. Generalized Hypergeometric Functions 
Although ( )1 1 1 1, , ; , , ;q q q qF a a b b z+ +   is the direct generalization of Gauss  

( )2 1 , ; ;F a b c z  we have, in general, the hypergeometric function in one scalar variable 
and ( )p q+  parameters, defined as the series with expression: 

( ) ( )
( ) ( )
( ) ( )

1
1 1,

0 1

, , ; , , ;
!

n
pn n

p qp q
n qn n

a a zHS a a b b z
nb b

∞

=

= ∑


 



, { } { }, ,i ia b z∈ ∈     (8) 

with Pochhammer’s notation:  

( ) ( ) ( ) ( ) ( ) ( )1

0

1 e 1 1t a n
na t dt a a a n a n a

a

∞
− + −= = + + − = Γ + Γ

Γ ∫  , with ( )0 1a = . 

( ) ( )1 1, , , ; , , ;p qp qHS a a b b z   converges for all z when q p≥ , and diverges for 

1p q> + . For 1p q= + , it is absolutely convergent for 1z =  if ( )Re 0β < , condi-

tionally convergent for 1z = −  if ( )0 Re 1β≤ <  and divergent for 1z =  if 

( )1 Re β≤ . Here 
1 1

p q

j j
j j

a bβ
= =

= −∑ ∑ . 

For particular values of p and q we have the following series: 

( )0 0
0

.; e
!

k
z

k

zF z
k

∞

=

= =∑ , 

( ) ( ) ( )1 0
0

; 1
!

k
ak

k

a z
F a z z

k

∞
−

=

= = −∑ , 
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( ) ( )
( )

( ) ( ) ( ) ( )0 1 11 2
0

; 2 , Bessel function
!

k

cc
k k

czF c z I z I
c k z ν

∞

−−
=

Γ
= = =∑ , 

( ) ( )
( ) ( )1 1

0
; ; Kummer ; ; function

!

k
k

k k

a z
F a c z a c z

c k

∞

=

= = Φ∑ , 

( )2 0 , ; ; Carlson s functionF a b z− = ’ , 

( ) ( ) ( )
( )2 1 , ; ; , Gauss function

!

k
k k

k

a b zF a b c z
c k

= ∑ .  

2.4.2. Analytic Continuation 
Series are very useful in the resolution of differential or algebraic equations, but to 
study the solution’s analytic properties we rather use its integral form.  

As we have seen, conditional on the values of a, b and c in ( )2 1 .F , integral (5) or (5’) 
converges for any value of z, except on [ )1,∞  which means that the function can be 
extended to any point in the complex plane, with the cut [ )1,∞ , provided 

0, 1, 2,c ≠ − − 
 

For the general case, Olsson [25] proposed to express p qF  as an expression of 

1 1p qF− −  progressively down to Gauss 2 1F  (for 1p q= + ), using (13), the analytic 
continuation of which has been made. For an extensive study, and lists of properties 
and formulas of p qF , we refer to Mathai and Saxena ([23], sect 5). As before, we have 
three types of integral representation: 

2.4.3. Euler Integral Representation 

( )
( ) ( ) ( ) ( ) ( )

1
1 1

1

1
1 11

10

, , ,
;

, , ,

, ,
1 ; d , Re Re 0

, ,

p
p q

q

d c pc
p q

q

a a c
F z

b b d

a ad
t t F tz t d c

b bc d c

+ +

− −−

 
 
 
Γ  

= − > > Γ Γ −  
∫









.    (9) 

2.4.4. Laplace Representation on the Positive Axis 
a) Laplace integral representation:  

( )
00 1 11

1
1 10 0

, , , , ,1; e ; d
, , , ,

p pat
p q p q

q q

a a a a a
F z t F tz t

b b b ba

∞
−−

+

   
= ⋅   Γ   

∫
 

 

        (9’) 

This relation is not to be mistaken as the Laplace transform below. 
b) Laplace transforms: 
Considering 1p qF +  and 1p qF+ , using Laplace transforms, we have the couple: 

( )
1 11 1

1
1 10

, , , , ,
; e ; d

, , , ,

c
p ptx c

p q p q
q q

a a c a axF x t F t t
b b b bc

∞
− − −

+

   
− = −   Γ   

∫
 

 

,       (10) 

( )1 1 1
1 1

1 1

, , , ,
; e ; d

, , , , ,2π
p ptz c

p q p qc
q qL

a a a ac
F t z F z z

b b c b bt i
− −

+ −

Γ   
− = −   

   
∫

 

 

,       (11) 

where L is a curve in the complex plane, properly indented to separate the two kinds of 
poles. 



T. Pham-Gia, D. N. Thanh 
 

963 

(The above expressions become Laplace and inverse Laplace transforms of ( ).p qF  
when 1c =  and 0c =  respectively. They would permit us to “circulate” between 
( )1,p q+ , ( ), 1p q + , and ( ),p q , under some conditions on the values of p and q.) 

2.4.5. Mellin-Barnes Representation 
Conversely, it can be shown that if ,i ja b R∈  are distinct of each other with differenc-
es different from integers, (8) is the sum of all residues of ( )sΓ . Evaluating 

( )
( ) ( )
( ) ( ) ( )( )1

1

1 d
2π

d i
p s

d i q

a s a s
f z s z s

i b s b s

+ ∞
−

− ∞

Γ − Γ −
= Γ −

Γ − Γ −∫




,           (12) 

where ,i ja b  are positive numbers, we have simple poles of ( )sΓ  at  
, 0,1, 2,s γ γ= − =  , being negative integers. Using the formula for residue value, we 

have:  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )
( ) ( )
( ) ( )

11 1

1 1

1

1
Res

! !

p

j
pp j

q
q q

j
j

a a aa a zz
b b b bb

γ γ
γγ γ

γ γ

γ λ
γ

γ γγ γ
=

=

 
Γ Γ + Γ +−  = − =  

Γ + Γ +  Γ
  

∏

∏





 

. 

Since the poles are in infinite numbers, we can see that  

( )
( ) ( )
( ) ( )

1

=0 0 1

Res
!

p

q

a a z
b b

γ
γ γ

γ γ γ γ

γ
γ

∞ ∞

=

=∑ ∑




, 

( )
( )

( )
( ) ( )
( ) ( ) ( )( )11

1 1
1

1

1, , ; , , ; d
2π

q

j d i
p sj

p q p q p
d i q

j
j

b a s a s
F a a b b z s z s

i b s b sa

+ ∞
−=

− ∞

=

Γ Γ − Γ −
= Γ −

Γ − Γ −Γ

∏
∫

∏



 



 (13) 

NOTE: We have most common functions in mathematics represented by 
( )2 1 , ; ;F a b c z  where a, b and c take simple values. For example, we have:  

( ) ( )2
2 1arctan 1 2,1;3 2;z F z= − . A list of standard mathematical functions expressed as 

G-functions can be found in Mathai and Saxena ([23], sect. 2.6). Conversely, section 2.7 
there gives G-functions expressed in terms of standard functions. Also, the software 
MAPLE allows us to convert a hypergeometric function into a standard function. For 
example, the command:  

convert (hypergeom [ ] [ ]( )1,1 , 2 , x− , StandardFunctions); 

gives as answer: ( )ln 1x
x
+

. 

2.5. Generalization to G and H Functions 

In an effort to generalize ( )p qF ⋅  and make sense of the case 1p q> + , we define the 
H-function, using Mellin-Barnes formula, and consider the ratio of two products of 
gamma functions as integrand. Fox’s H-function, is hence defined as the integral along 
the complex contour L, of the expression ( ) sxϕ −⋅ , i.e.  
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 1

1 1 1 1

, , , , , , , ,1 d
2π, , , , , , , ,

m r
p p p p sp q

Lq q q q

a a a a
H x x s

ib b b b

α α α α
ϕ

β β β β
−

   
   =
   

  
∫

 

 

,    (14) 

where 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
1 1 1 1

1 1

1 1

1, , , ,

, , , , 1

m r

j j j j
p p j j

q p
q q

j j j j
j m j r

b s a sa a

b b b s a s

β αα α
ϕ

β β β α

= =

= + = +

Γ + Γ − − 
  =
 

Γ − − Γ + 

∏ ∏

∏ ∏





.       (15) 

The Meijer function ( )G x  is a special case, when 1i jα β= = , ,i j∀ , of ( )H x . 
We notice that (15) is just one way to generalize the integrant in (13). 

From (3) and (14) we can see that G and H-functions are Inverse Mellin Transforms 
of ( ).ϕ  and that the Mellin-Barnes integral is now taken as the definition of the 
G-function, instead of a series, or a definite integral, as in preceding sections. But under 
some mild conditions on ,i ja b , the ( )

1
1 .

p
p qG +  function can be expressed as a ( ).p qF  

function and conversely:  

( )

( )

1
1 111

1 1

1

1 , ,1 , ,
;

0,1 , ,1 , ,

p

jp
p pjp q

p qq
q q

j
j

aa a a a
G z F z

b b b b
b

=+

=

Γ
 − −   
− = ⋅   − −     Γ

∏

∏

 

 

.       (16)  

The G-function converges when L is taken as one of the two paths ,L L∞ −∞  encir-
cling the right poles (related to ja ), or the left poles (related to jb ), defining ( )G z  

for 1z <  and 1z ≥  respectively, depending on the values of p and q, or a third path 
*L  can be taken as the vertical axis, separating them, for ( )2p q m n+ < +  and 

( )arg πz δ< , with ( ) 2m n p qδ = + − + , following Jordan’s lemma. For discussions 

on the G-function see Mathai and Saxena [23], and on the H-function, see Springer 
[26], which also treats some uses of these functions in Statistics, as well as some com-
putational issues. We wish to mention the following points: 

1) The three paths of integration are similar to those of ( )p qF ⋅ , and the convergence 

of H and G now depends on 
1 1

p q

j j
j j

a bβ
= =

= −∑ ∑ , and also on 
1 1

j j
p q

j j
j j

α βλ α β
= =

=∏ ∏ .  

2) There are numerous properties of the Meijer G-functions: Contiguity, relations 
with themselves, derivatives, integral transforms, etc., that we cannot list here, due to 
space limitation. They can be seen in Mathai and Saxena [23]. 

3) The H-function can be brought to the G-function for computation, when all 
,i ja b  are positive rational numbers, by a simple change of variable and using the mul-

tiplication formula for gamma functions. 
4) The Euler and Laplace representations of G involve other G-functions with lesser 

parameters, similarly to ( ).p qF  ((9) and (9’)): 

( ) ( )
1

1 1 1 11 1

0
1 1

, , , , ,1; 1 ; d
, , , , ,

m n m n
p q p qp p

q q

a a a a
G z x x G zx x

b b b b
α βαα

β α β

+
+ + − −−   

= − ⋅   Γ −   
∫

 

 

, 
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( )
1

1 1 11
0

1 1

, , , , ,
; e ; d , Re 0

, , , ,

m n m n
p q p qp px

q q

a a a a
G x y G xy y x

b b b b
αα+

+ ∞− − −   
= ⋅ >   

   
∫

 

 

. 

( )
2

2 1 12 2
0

1 1

0,1 2, , , , ,
;4 e ; d , Re 0

, , , ,

m n m n
p q p qp pzx

q q

a a a a
G z G x x z

b b b b
η η

+
+ ∞ −   

= ⋅ >   
   

∫
 

 

 

The Laplace transforms pair of G: 

( )
1

11 11
0

1 1

, , , , ,
e ; d ; , Re 0

, , , ,

m n m n
p q p qp pxy

q q

a a a a
y G y y x G x x

b b b b
α α α

η η
+

+∞ − − −   
⋅ = >   

   
∫

 

 

, 

and its inverse 

1 1 11

1 1

, , , ,1; e ; d , 0.
, , , , ,2π

m n m n
p q p qc ip pwx

c i
q q

a a a a
x G x w G w w c

b b b bi
α αη η

α
+ + ∞− −

− ∞

   
= ⋅ >   

   
∫

 

 

 

(Taking 0α =  we have the Laplace transform of ( ).
m n
p qG ). 

Also, the relation 1 1

1 1

, , 1 , ,1
; ;1

, , 1 , ,1

m n n nm
p q pp qq

q p

a a b b
G z G z

b b a a
− −   

=   − −   

 

 

permits the ana- 

lytic continuation of ( ).G  from inside the unit disk 1z ≤  to outside it, with an ap-
propriate cut, if necessary, depending on the value of m n p+ − . 

Generalizations of H-functions: We will not go beyond the H-function, but it is 
worth mentioning that generalized forms of H exist, e.g. the one in Rathie [27], which 
depends on an additional set of parameters { }, , ,γ κ λ ζ . It is defined by:  

( )
( ) ( )
( ) ( )

1 11

1 1 1

, , , ,, , 1 1 d
, , 2π , , , ,

m r
p q p pp s

s
p L q q

a aa a
x x s

b b i s b b

γ κ
λ ξ

λ ξ

α α
ϕ

γ κ β β
−

+

  
 = 
 +    

∫








R . 

This function should not be confused with Carlson’s ( )nR ⋅  function [10] defined in 
section 6.3. 

But the Fox-Wright function  

( )( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

1 1 2 2 1 1

0 1 11 1 2 2

, , ,
;

!, , ,

jp p p p
p q

j q qq q

a A a A a A a A j a A j zz
jb B j b B jb B b B b B

ψ
∞

=

  Γ + Γ +
  =
  Γ + Γ + 

∑








 

can be expressed as a H-function, while the MacRobert E-function, defined below, can 
be expressed as a G-function.  

( )

( )

( )

( )
( ) ( )

1

1

1 11

1

1

11
1 1

1

1

, ,
|

, ,

, ,
| , , 0, or 1, 1

, ,

* ,1 , ,1
| 1 ,

1 , ,*, ,1

* ignor contrib ,

h

p

q

p

i
pi

p qq
q

i
i

p

i h
p qh h h qai

h q pq
h h p

i h
i

a a
E x

b b

a a a
F x p q x p q x

b b
b

a a a a b a b
a x F x

a a a a
b a

j h

−=

=

−=
+ −

=

 
 
 

Γ
 

= ⋅ − ≤ ≠ = + > 
 Γ

Γ − + − + − 
⋅Γ − + − + −=  Γ −

= =

∏

∏

∏

∏











 

1

2 or 1 & 1.

p

h

p q p q x

=

≥ + ≥ + <

∑
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3. Hypergeometric Series and Functions in Several Independent  
Scalar Variables 

When we go from one variable to two variables there are different ways to sum the va-

riables, reflected in different expressions for the coefficients given to 
! !

n mx y
n m

, and 

hence, we have different functions. In two variables, we have Appell hypergeometric 
functions, defined as follows: 

3.1. Appell, Lauricella and Other Sums 

( ) ( ) ( ) ( )
( ) ( )1

, 0
, , ; ; , , max , 1

! !

n m
m n m n

m n m n

a b b x yF a b b c x y x y
c n m

∞
+

= +

′
′ = <∑ , 

( ) ( ) ( ) ( )
( ) ( )2

, 0
, , ; , ; , , 1

! !

n m
m n m n

m n m n

a b b x yF a b b c c x y x y
c c n m

∞
+

=

′
′ ′ = + <

′∑ ,  

( ) ( ) ( ) ( ) ( )
( ) ( )3

, 0
, ; , ; ; , , max , 1

! !

n m
m n m n

m n m n

a a b b x yF a a b b c x y x y
c n m

∞

= +

′ ′
′ ′ = <∑ , 

( ) ( ) ( )
( ) ( )4

, 0
, ; , ; , , 1

! !

n m
m n m n

m n m n

a b x yF a b c c x y x y
c c n m

∞
+ +

=

′ = + <
′∑ .  

a) Each of these functions can be expressed as an infinite series in x alone, with coef-
ficients containing Gauss function ( )2 1 ,F y⋅ . For example, we have:  

( ) ( ) ( )
( ) ( )1 2 1

0
, , ; ; , , ; ;

!

m
m m

m m

a b xF a b b c x y F a m b c m y
c m

∞

=

′ ′= ⋅ + +∑ , 

and, similarly for other functions. 
Also, ( )1F ⋅  and its generalization ( )DF ⋅  (see sect. 3.2), seem to be the most im-

portant among these functions, with numerous applications in several disciplines. 
b) Other hypergeometric functions, 34 in total, have been defined by Jacob Horn. 

The main ones are ( )1G ⋅ , ( )2G ⋅ , ( )3G ⋅  and ( )1H ⋅ , ( )2H ⋅ ,  , ( )7H ⋅ . They will 
not be treated here. Whittaker, Pandey, Srivastava, Wright, Macrobert, Kampé de 
Fériet, and Lauricella-Saran functions, as well as lesser-known functions, will not be 
treated either, due to space limitation, see Exton [28].  

c) Functions ( )⋅Ψ  and ( )Φ ⋅  of Humbert: These 7 confluent forms of the Appell 
series are denoted 1Φ , 2Φ , 3Φ , 1Ψ , 2Ψ , 1Ξ , 2Ξ , and are limiting values of Ap-
pell functions. For example: 

[ ] ( ) ( )
( ) [ ]1 2

2 1 2 1 1 2
, 0

, ; ; , lim , , ; ; ,
! !

n m
m n

m n m n

x yx y F x y
n m α

β β
β β γ α β β γ α α

γ

∞

→∞= +

Φ = =∑ . 

They have a particular role in the representation of Appell functions. For example, 
we have ( )1F ⋅  as a function of ( )2Φ ⋅ . The corresponding 13 confluent forms of the 
Horn series, denoted 1 1 11 2, , , ,H HΓ Φ , will not be discussed in detail here. We refer 
to Srivastava and Karlsson [29] for these functions. 
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3.2. Integral Representations and Further Generalization 

Lauricella functions are extensions of Appell functions to n variables, where 2n > , 
with ( )1 1 1, , , ; , , ; , ,A n n nF a b b c c x x   , ( )1 1 1, , ; , , ; ; , ,B n n nF a a b b c x x   ,  

( )1 1, ; , , ; , ,C n nF a b c c x x   and ( )1 1, , , , ; , ,D n nF a b b c x x   corresponding, respec-
tively, to Appell functions, ( )2 1 2 1 2 1 2, , ; , ; ,F a b b c c x x , ( )3 1 2 1 2 1 2, ; , ; ; ,F a a b b c x x ,  

( )4 1 2 1 2, ; , ; ,F a b c c x x  and ( )1 1 2 1 2, , ; ; ,F a b b c x x  in 2 variables. 
And the Humbert function in n variables is defined as follows:  

( ) ( )
( ) ( )
( )

1
1

1

1 1
2 1 1

, 0 1

, , ; ; , , ,
! !

n
n

n

mm
nm mn n

n n
m n nm m

b b x x
b b c x x

c m m

∞

= + +

Φ = ∑






 



        (17) 

3.2.1. Integral Representation of Euler Type 
These integrals represent hypergeometric functions in n variables. For example,  

( )
( )

( ) ( )
( ) ( )1

1 1

1 1
11

1 1 1
10 0

1
1

, , , ; ; , ,

1 1 d d ,nj

D n n

n c b b ab
j n n nn

j
n i

i

F a b b c x x

c
u u u ux ux u u

c b b b

− − − − −−

=

=

Γ
= − − − − − −
Γ − − − Γ

∏∫ ∫
∏



 

   



 (18) 

and similarly for other functions, which can serve to extend the function outside the 
domains of convergence of the series. The n-tuple ( )1, , nS S , where iS  is either 0, 1 
or ∞ , are the regular singularities for the analytic extensions, and should be studied 
separately (see Exton ([28], sect 6.7.4) for the case 3n =  and ( ).DF ).  

In particular, for ( ).DF , or ( )1 .F , it can be represented by a single integral, a result 
known as Picard’s Theorem 9 (although the result seemed to have been established 
eight years earlier). We have: 

( ) ( )
( ) ( ) ( ) ( ) ( )1

1
11

1 1 1
0

, , , ; ; , , 1 1 1 dnbc a ba
D n n n

c
F a b b c x x u u ux ux u

a c a
−− − −−Γ

= − − −
Γ Γ − ∫   . (19) 

But deeper results are obtained using A-hypergeometric functions (see section 8.1.2). 
Also, ( )1F ⋅  has strong connections with elliptic integrals. For example, we have:  

( ) ( )

π 2
2

1220

d π 1 1,1, ; ,
2 2 21 sin 1 sin

F n k
n k

θ

θ θ

 =  
 − −

∫ .           (20) 

Convenient forms for these integrals have been suggested by Carlson, using his own 
hypergeometric functions (see sect. 6.3.3). 

3.2.2. Integral Representation of Laplace Type on ( )n0,∞  

Lauricella functions are expressed in terms of n-fold integrals of 2Ψ , 2Φ , 0 1F  and 

1 1F , respectively.  
Again, for DF  we have a multiple integral expression: 

( )
( )

( )1 1
1 1 1 1 1 1 1

10 0

1

1, , , ; ; , , e ; ; dt djn
n

bt t
D n n j n n nn

j
i

i

F a b b c x x t F a c x t x t t
b

∞ ∞
−− − −

=

=

= ⋅ + +
Γ

∏∫ ∫
∏
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and also a single integral representation, using Humbert function: 

( ) ( )
( ) ( )
2

1
1 1 1 10

1, , , ; ; , , e , , ; ; , , dnt a
D n n n nF a b b c x x t b b c x t x t t

a
∞ − −= Φ

Γ ∫    . 

3.2.3. Representation of Mellin-Barnes Type 
Integrals are taken along the infinite imaginary axis, suitably indented. For example, for 

( )DF ⋅  we have  

( )

( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 1

1
1

1
1 11I I

1

, , , ; ; , ,

( )
1 d d .

( )2π
j

m m

D n n

n

n j j n n tj
j j nn n

j jn
j

j

F a b b c x x

a t t b t
c

t x t t
c t tia b

−=

= =

=

Γ − + + Γ −
Γ

= Γ −
Γ − + +Γ Γ

∏
∏ ∏∫ ∫

∏

 



 



 

Analytic continuation for Appell and Lauricella series: They can be continued ana-
lytically outside their convergence domain using their Euler integral representation or 
recurrence relations that exist between themselves. Exton ([28], sect 6.6) discusses this 
topic in details. In particular, the case of ( ) ( )3

DF ⋅  is carefully presented.  
The presence of so many forms of hypergeometric functions in n variables is embar-

rassing when we do not know the relations between them, which was the situation in 
the first half of the 20th century. But this situation started to change by the mid-eighties 
(see sect. 8.1.3). 

3.3. Differential Equations and Systems 

Partial and ordinary differential equations play an important role in Applied mathe-
matics and to a lesser extent, in Statistics. They still constitute a major tool in the study 
of hypergeometric functions in pure and applied mathematics. 

a) The basic hypergeometric equation (of Fuchsian type) in one variable is: 

( ) ( )1 1 0x x y c a b x y aby′′ ′− + − + + − =   ,               (21) 

a solution of which, obtained under series form, is ( ) ( )1 2,1 , ; ;y HS a b c x= . Every 
second-order linear ODE with three regular singular points can be transformed into 
this equation. There is an extensive discussion in the literature (e.g. Lebedev [19]) on 
values of this solution at regular singularities 0, 1 and ∞ , as well as when there are re-
lations between coefficients containing integers. When c is not an integer the other so-
lution independent of the first is: ( )1

2 2 1 1 ,1 ;2 ;cy x F c a c b c x−= − + − + − . The general 
solution of (21) is hence: 1 1 2 2y c y c y= + , with 1 2,c c  constants.  

Concerning other hypergeometric functions, the equation satisfied by G-functions is: 

( ) ( )
1 1

d d1 1 0
d d

p q
m n p

j k
j k

z z a z b u z
z z

+ −

= =

    − − + − − =    
    

∏ ∏ , 

and, for partial differential systems, there is one for each Lauricella function , ,A B CF F F  
and DF . For this last function DF , it is, for example:  

( ) ( ) ( )
2 2

2
1, 1,

1 1 1 0
n n

j j j k j j j k j
k k j k k jk j j kj

F F F Fx x x x c a b x b x ab F
x x x xx = ≠ = ≠

∂ ∂ ∂ ∂ − + − + − + + − − = ∂ ∂ ∂ ∂∂
∑ ∑ . 
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The resolution of these systems is not simple and there are up to sixty solutions. Bas-
ically, there are several independent solutions which include the hypergeometric series 
obtained when using infinite series in searching for solutions. We invite the reader to 
consult Exton ([28], Chapter 5). We will again mention differential equations since 
these pde’s will be at the heart of A-hypergeometric systems presented later.  

b) The differential equation satisfied by ( )1 .p pF+  is 

( ) ( ) ( ) ( ){ }1 1 11 1 0p pa a z b b yϑ ϑ ϑ ϑ ϑ ++ − + − − + + = 
,        (22) 

where 
d
d

z
z

ϑ = . There are p more solutions if all ia  are not integers. They are inde- 

pendent, when the difference between any two of the values: 11, , , pa a  is not an in-
teger. 

Differential equations for one-matrix hypergeometric functions can be considered. A 
short introduction to this topic is given by Muirhead ([30], chapter 7). Also 

3.4. Generalized G and H functions in Several Independent Scalar  
Variable 

As for one variable, we use the Mellin-Barnes approach to define this function. Busch-
man [31] defined H -functions of 2 variables as an integral in the complex planes of a 
ratio ( ),s tθ  of two products, i.e.  

( ) ( ) ( )
( ) ( ) ( )

( )1 1 1
2

1 1 1

, , , , , , 1, , d d
, , , , , , 2π S T

m m m s t

n n n L L

a A a A
H x y s t x y s t

b B b B i

α α
θ

β β
− −

 
= 

  
∫ ∫





,    (23) 

where ,S TL L  are curves in the two complex planes, and 

( )
( )

( )
1

1

,

m

j j j
j
n

j j j
j

a s A t
s t

b s B t

α
θ

β

=

=

Γ + +
=

Γ + +

∏

∏
.                    (24) 

But, as pointed out by Nguyen Thanh Hai and Yakubovich [32], the representation 
as the residue sum still has difficulties. There are some results on the Cauchy integral 
formula for several complex variables but it is still unclear how the residues can be 
computed in the general case. Hence, like the univariate case, not all of these integrals 
can be expressed as double series. Euler and Laplace representations, in function of 
other ( ),H x y  functions, are quite complicated and are not given here. More infor-
mation on ( ),H x y  can be obtained from Mathai and Saxena [33]. More advanced 
results on H are presented in [34]. We will not elaborate on these results, and neither 
on other definitions of ( ),H x y  encountered in the literature. 

4. Hypergeometric Functions in Matrix Arguments:  
Three Proposed Approaches 

In multivariate Analysis variables encountered can be matrices, which will be argu-
ments of hypergeometric functions. 
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4.1. Functions in One Matrix Variate 

In going from a scalar variable to a matrix, there are several difficulties to define the 
hypergeometric function. First, functions of matrices, square or rectangular, can only 
be defined under certain conditions (Higham [35]), and they can be scalar-valued, or 
matrix-valued. Secondly, for scalar-valued matrix functions, they are usually based on 
symmetric functions of the matrix entries, or of the eigenvalues of the input square ma-
trices. A simple introduction to this topic is given by Pham-Gia and Turkkan [36]. We 
recall here some basic notions of calculus on matrices, that are not so obvious.  

Domain of integration: Let ( )f X  be a scalar function of the matrix X. Then 

( )df X X
Ω
∫  is the iterated integral of ( )f X  for each entry of X separately, over the 

region Ω  located within the space defined by the simplex bounding the ranges of the 
entries of X. 

Since it is usually very difficult to carry out direct integration over a complex region 
Ω , integration on simple regions are frequently done by changes of variables, matrix 
decompositions, and finally identification with known expressions. 

We have also the region 0 mX I< <  as the set of all square matrices such that X and 

mI X−  are positive definite, which reduces to the continuous variable x being between 
0 and 1 in a unidimensional space. 

Jacobian and Exterior product: In carrying out the required changes of variables 
mentioned above we have to use jacobians, and using wedge products  

1 2 2 1d d d dx x x x∧ = − ∧  and exterior forms would be helpful. We have, for example, for  
( )1 1, , d dm m

A

I f x x x x= ∧ ∧∫    and transforms ( )1, , , 1, ,i i mx x y y i m= =  , the re-

sult ( )1 1, , d dm m
A

I g y y y y= ∧ ∧∫   , with 
1 1
d det d

m m
i

i ii i
j

x
x y

y= =

 ∂
∧ = ∧  ∂ 

 where the jacobian 

of the transformation is the absolute value of the determinant det i

j

x
y

 ∂
  ∂ 

. 

The multigamma function: Let ( ) ( )
1

2
maf X etr X X
+

−= − , where ( )etr X  is the 
exponential of the trace of X, with the domain of positive definite matrices being 

{ }: 0X XΩ = > , we have the multivariate gamma function  

( ) ( ) ( )1 2

0

da m
m

X

a etr X X X− +

>

Γ = −∫ . Carrying out integration as explained above, we 

obtain a product of m ordinary gamma functions ( ) ( )1 2

1

1π
2

m
m m

m
i

ia a−

=

− Γ = Γ − 
 

∏ . 

The Matrix Laplace Transform: Let ( )f S  be a scalar function of the positive de-
finite symmetric m m×  matrix S. Its Laplace transform is defined by  
( ) ( ) ( )

0

d ,
S

g Z etr f S Z X iYZS S
>

= = +−∫  symmetric. 

We assume that the integral converges in the half-plane ( ) 0Re Z X X= > , for some 

positive definite matrix 0X . Then ( )g Z  is analytic in Z in the half-plane. If 

( ) dg X iY y+ < ∞∫  and ( )lim d 0
X

g X iY Y
→∞

+ =∫ , then the inverse Laplace transform 
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is: ( )
( )

( ) ( ) ( )
( )Re 00

1
2

d
1

2π X
m m

Z

f S etr g ZXZ Z
i >

+
>

= ∫ . 

Gupta and Nagar [37] can be consulted for several notions on matrix variate distri-
butions. 

To define hypergeometric functions in one matrix argument, there are three ap-
proaches offered in the literature. 

4.1.1. Laplace Transform Approach 
This approach was pioneered by Bochner, developed by Herz [38], and uses the matrix 
forms of (10) and (11). We can then define ( )1P qF + Λ  and ( )1p qF + Λ . More precisely, 

we define 1

1

, ,
;

, ,
p

p q
q

a a
F

b b
 

Λ 
 





 in a progressive way, with 

( ) ( ) ( ) ( ) ( )

1 1
1

1

1 21

10

, , ,
;

, ,

, ,1det ; det d
, ,

p
p q

q

mp
p q

qm

a a
F Z

b b

a a
Z etr Z F

b b
γ γ

γ

γ

−
+

− +

Λ>

 
− 

 
 

= −Λ ⋅ −Λ Λ Λ Γ  
∫









.         (25) 

( )( ) ( )
( ) ( ) ( ) ( )

0

1
1

1

1 2 1 1
1 2

1Re 0

, ,
;

, , ,

, ,
det ; det d

, ,2π

p
p q

q

m pm
p qm m

qZ X

a a
F

b b

a a
etr Z F Z Z Z

b bi
γ γ

γ

γ

+

+ − −−
+

= >

 
−Λ 

 
Γ  

= Λ Λ − 
 

∫









 (26) 

Here, m is the dimension of the matrices and in (25). Also, for the multivariate Lap-
lace transform, the elements off-diagonal of Z are taken as 2ijz . So, theoretically, 
hypergeometric functions can be defined in this way, and sometimes they can be com-
puted by numerical methods.  

4.1.2. Zonal Polynomials Approach 
This approach was introduced by James, and developed by James and Constantine, us-
ing results on group decomposition by Lo Keng Hua (see Gross and Richards [39]). It is 
based on group representation using matrices, aimed at replacing nx  of the scalar 
case, by a polynomial ( )C X , when x is replaced by the random matrix X. ( )C X  is 
called the zonal polynomial of X. We have, for example, instead of the multinomial 
form  

( ) ( ) 1
1 1

1

!
! !

m

i

k k kk
m m

k k m

mtr X x x x x
k k∑ =

= + + =   ∑ 



, 

the expression ( ) ( )k
tr X C Xκ

κ
=   ∑ , where the zonal polynomial ( )C Xκ  is a sym- 

metric homogeneous polynomial of degree k in elements of X. Here, κ  is the partition 
( )1, , mk k , with 1 2 0mk k k≥ ≥ ≥ ≥ , and 

1

m
ii

k k
=

=∑ . kV  is the vector space of 
homogeneous polynomials of degree k in the ( )1 2m m +  elements of the symmetric 
m m×  matrix X, and kV Vκκ

= ⊕ , i.e. Vκ  is the direct sum of irreducible invariant 
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subspaces Vκ  in the representation of the real linear group ( ),Gl m   in the vector 
space Vκ . 

When 1m =  we have indeed ( )kx C xκ=  and hence, zonal polynomials of a matrix 
are similar to powers of a scalar variable. 

The decomposition into a direct sum of subrings is assured by ring theory (Gross and 
Richards [39]) and hence, zonal polynomials do exist. However, their values must be 
obtained by solving a differential equation of Laplace-Beltrami type  

( ) ( )
22

2
2

1 1 1,
,

m m m
i

Y Y i
i i j j i i j ii

yC Y C Y y
y y yyκ κ κα

= = = ≠

∂ ∂
∆ = ∆ = +

− ∂∂∑ ∑ ∑
 

(Muirhead [30]), which quickly becomes difficult to track. More precisely, we have: 

( ) ( ) ( )1Y C Y k m C Yκ κ κρ∆ = + −   , with ( )
1

m

i i
i

k k iκρ
=

= −∑ . 

Alternately, we can obtain ( ) ( ),C Y c M Yκ κ λ λ
λ κ≤

= ∑ , where the monomial symmetric 

functions are ( ) 1
1

p

p

kk
i iM Y y yλ = ∑ 

 and the coefficients  

( ) ( )
, ,

i jl t l t
c cκ λ κ µ

λ µ κ κ λρ ρ< ≤

 + − − =
−∑ , ( )1, , ml lλ =  , 

( )1, , , , , ,i j ml l t l t lµ = + −   , ( )1,2, , jt l=  . 

For 3k = , for example, we have the values of ,cκ λ  as follows: 

( ) ( ) ( )
( )
( )
( )

3 2,1 1,1,1
3 1 3 5 2 5

2,1 0 12 5 18 5
1,1,1 0 0 2

λ

κ

 
Other methods, not necessarily simpler, have been suggested (Kates [40], Saw [41], 

Takemura [42]). Values of ( )C Yκ  up to 20k =  are found by researchers. We have 
some basic results on integration associated with zonal polynomials, as follows (Muir-
head [30]): 

( )
( )

( ) ( )
( )

d
mO m

C X C Y
C XHYH H

C I
κ κ

κ
κ

′ =∫ ,                 (27) 

( ) ( ) ( ) ( ) ( )
1

12

0

d
ma a

m
X

etr XZ X C XY X a a C YZ Zκ κκ

+
− −

>

− = Γ∫ ,      (28) 

and 

( ) ( )
( )

( ) ( )
( ) ( )

11
22

0

d
mm

m

ba m m
m

mX I

a a b
X I X C XY X C Y

a b a b
κ

κ κ
κ

++ −−

< <

Γ Γ
− =

+ Γ +∫ ,   (29) 

with  

( ) ( )1 4

1

1
2

m
m m

m
j

ja aπ −

=

− Γ = Γ − 
 

∏  and ( )
1

1
2

j

m

j k

j
κα α

=

− = − 
 

∏ .       (30) 
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A hypergeometric functions of one matrix X then have the familiar form: 

( )
( ) ( )
( ) ( )

( )
1 1

1

0 1

, , ; , , ;

!

p q p q

p

k q

F a a b b Z

a a C Z
kb b

κ κκ

κ κ κ

∞

=

= ∑∑

 





                     (31) 

and we have 

( ) ( ) ( )
( )

( )
2 1

0
; ;

!k

a b C Z
F a b Z

c k
κκ κ

κ κ

∞

=

= ∑∑ . 

Like the scalar variable case (see (9)), using zonal polynomials, we have the Eu-
ler-type representation: 

( )
( ) ( )

1
1 1

1

11
1

22

10

, , ,
;

, , ,

, ,
; d

, ,
m

p
p q

q

mm d cc pm
m p q

qm m T I

a a c
F

b b d

a ad
T I T F T T

b bc d c

+ +

++
− −−

< <

 
Λ 

 
Γ  

= − Λ Γ Γ −  
∫









.    (32) 

Similarly, again using zonal polynomials, the Laplace and inverse Laplace representa-
tions of 1p qF +  in the scalar variable case can be extended to the matrix case, and we 
can prove (25) and (26).  

This zonal polynomials approach is favored when we aim at deriving theoretical re-
sults, using and obtaining expressions similar to the scalar case. Since higher order zon-
al polynomials are difficult to obtain we have here a topic still under development. It is 
worth mentioning that numerical computations have been carried out successfully for 
low values of p and q only (see sect.5). Several breakthroughs are due to James [13] and 
Constantine and Muirhead [14], as already mentioned. Contemporary research relies 
heavily on their results (see for example Bekker et al. [43]).  

4.1.3. Matrix-Transforms Approach 
Mathai [44] introduced the M-Transform method, which can establish several relations 
between hypergeometric functions, by using the fact that Laplace transforms are 
unique. It is based on the Weyl fractional integral, and a function ( )f X  is, by defini-
tion, a ( ),r s - hypergeometric function, i.e.  

( ) ( )1 1, , ; , , ;r s r sf Z F a a b b Z=    

if its M-transform, i.e. ( )
1

2

0

d
m

Z Z

Z f Z Zρ +
−

′= >

⋅ −∫ , is of the form  

( ) ( )

( ) ( )
( )1 1

1 1

s r

m j m j
j j

mr s

m j m j
j j

b a

a b

ρ
ρ

ρ

= =

= =

Γ Γ −
Γ

Γ Γ −

∏ ∏

∏ ∏
, with ρ  arbitrary such that the above expression on 

gammas exists. 
Similarly, the Lauricella function ( )AF ⋅  in n matrix arguments can be defined as the 

function that can be represented as a n-fold integral, i.e. 



T. Pham-Gia, D. N. Thanh 
 

974 

 

( )
1 11

1 1 1

1 1 11
1 2 1 2 1 2 1 22 2 221 1 1 1 1 1

0 0

; , , ; , , ; , ,

d d ,
m m

n n n

A n n n

I I m m mm ab c b c bb
n m m n m n n n n

F a b b c c X X

K U U I U I U I X U X X U X U U
+ + ++ −− − − − −−= − − − − −∫ ∫

  

    

 

where 
( )

( ) ( ){ }
1

1

n

m j
j

n

m j m j j
j

c

b c b
K =

=

Γ

Γ Γ −
=

∏

∏
. 

Mathai [45] was able to define most hypergeometric functions of matrix arguments, 
including H and G, with this approach, which is favored when we seek pure theoretical 
results only, since numerical computations seem quite difficult to undertake. 

4.2. Hypergeometric Function in Several Matrix Variates 

Hypergeometric function in two matrix variates is present in a basic result of multiva-
riate analysis (Muirhead ([30], p.259)), defined with zonal polynomials, since it does 
not seem convenient, although possible, to define ( ).; ,p qF X Y  using either Laplace 
transform, or M-transform method.  

( )( )
( )

( ) ( )1 1 1 1, , ; , , ; d , , ; , , ; ,m
p q p q p q p q

O m

F a a b b XHYH H F a a b b X Y′ =∫     . 

Here, ( )dH  is the normalized invariant measure on ( )O m , X and Y are symmetric 
m m×  matrices, and 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( )

1
1 1

0 1

, , ; , , ; ,
!

pm
p q p q

k mq

a a C X C Y
F a a b b X Y

k C Ib b
κ κ κκ

κ κκ κ

∞

=

= ∑∑


 



. 

It is straightforward to extend the number of matrices to 2n >  (Mathai and Peder-
zoli [46]), even when using H and G functions. 

5. Computational Issues 
5.1. Computation of the Hypergeometric Function 

In the past several serious efforts were made to find so-called computable forms for H 
and G-functions, with some success since the formulas obtained are extremely compli-
cated (see e.g. Mathai and Saxena [23]). Classical hypergeometric functions and 
G-functions, in one scalar variable, are now found in most commercial software 
(Maple, Mathematica, Matlab, etc.). In determining the numerical value of G by Mellin- 
Barnes method, the number of poles can influence its accuracy, since this value is 
computed from the numerical values of residues at regular poles, as presented in 
Springer [26]. Pearson’s thesis [47] discusses several points on the computation of 

( )2 1F ⋅ . Table 17 there makes some recommendations on methods to be used. It is in-
teresting to note here that, usually, the series ( )2,1HS  converges very slowly while the 
integral (5), or (5’), converges quite rapidly. Also, (5) and/or (5’) remains valid when 
parameters differ by integers while (7) has to be adjusted. Section 2.3.1 above can be 
consulted for these questions. 
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G-functions are used lately to carry out difficult definite integrals computations 
(Adamchik [48]) because of various relations that exist between transforms of 
G-functions, and between products of G-functions. For example,  

( )
( )

( )
( )

( )
( )

1

0

d
s t m n i j

pu kl ku v p q k l

v lq

ac g
x G x G x x kG

d hb
α σ ω ξ

∞
−

      =           
∫ ,       (33) 

with the values of the parameters on the RHS obtainable from those of the LHS.  
The two integral representations of G below are also used to deal with definite inte-

grals:  

( ) ( )
1

1 1 11 1

1
1 1

, , , , ,1; 1 ; d
, , , , ,

m n m n
p q p qp p

q q

a a a a
G z x x G zx x

b b b b
α βαα

β α β

+
+ + ∞ − −−   

= − ⋅   Γ −   
∫

 

 

 

and 

( )
2

2 1 12 2
0

1 1

0,1 2, , , , ,
;4 π e ; d , Re 0

, , , ,

m n m n
p q p qp pwx

q q

a a a a
G w w G x x w

b b b b
η η

+
+ ∞ −   

= ⋅ >   
   

∫
 

 

. 

These properties have been used in the software on integration, called REDUCE 
(Gaskell [49], http://www.reduce-algebra.com/). 

There are serious difficulties, however, in carrying out computations for hypergeo-
metric functions in one or several matrix arguments, beginning with difficulties asso-
ciated with zonal polynomials. Gutiérrez, Rodriguez and Saéz [50] are the early authors 
who reported results on this topic. Their work was limited to ( )1 1 ;F Z⋅  and ( )2 1 ;F Z⋅  
and the values obtained from truncated series are quite good. However, there are al-
ready 627 zonal polynomials to be computed when 20k = , demanding a lot of com-
puter time. Koev and Edelman [51] have succeeded to have better accuracy and a much 
shorter computer time, by using Jack polynomials (which are generalizations of zonal 
polynomials), with an updating strategy to compute them. Butler and Wood [52], using 
the same Laplace approximation approach applied to one matrix argument in an earlier 
paper, reported fair to excellent accuracies in approximating ( )1 2; ,p qF Z Z⋅ , for ,p q  
equal 0 or 1.  

The theory of Grobner basis has great influence on computations lately, in several 
domains of mathematics and algebraic statistics. Saito, Sturmfels and Nakayama [12] 
used it to study and approximate hypergeometric integrals belonging to the GKZ fami-
ly. They also used it to study systems of multidimensional hypergeometric partial diffe-
rential equations. This approach can be compared to the Perturbations approach to 
solve a problem in classical mathematics. There are several important results in [12] but 
they lie outside the scope of this survey.  

As long as the computation of results cannot be made, progresses in that area are 
hampered. This is the case of zonal polynomials, which looked promising when they 
were first introduced, but there is now a high volume of highly complex theoretical re-
sults, and formulas, in need of confirmation by computation. Fortunately, fractional 
calculus applied to hypergeometric functions has some recent software and numerical 
methods recently made available (see Baleanu et al. [53], and the list therein of six hun-

http://www.reduce-algebra.com/
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dred references). 
New statistical technics are required in face of the data evolution. Now, the number 

of variables can be much larger than the sample size, as is frequently encountered in 
data sets in some statistical/biometric problems. Ledoit and Wolf ’s results [54] on es-
timating the covariance matrix in that case, are of interest. Similar approaches, related 
to other problems, are proposed by Fujikoshi and Ulyanov [55] in their joint work.  

It should be mentioned that NIST, the National Institute of Standards and Technol-
ogy (GB) maintains an on-line public library (Digital Library of Mathematical Func-
tions at http:dlmf.nist.gov) with a special section on Functions of Matrix Argument.  

5.2. Old and New Relations between Hypergeometric Functions  
Managed by Computer 

It is understandable that the huge volume of relations between hypergeometric func-
tions of all types presented in the literature, and new ones regularly introduced in 
journals, raise various pertinent questions: Are they correct? How can we recognize a 
series as being of hypergeometric type? Can some of them be merely modified versions 
of existing ones? What are the mechanisms to derive new results from existing funda-
mental ones? Can we identify those which are really basic?  

Instead of manually consulting huge data bases of published results, different com-
puter algorithms have been introduced, and run, to provide answers to the above ques-
tions. For example, Milgram [56] used computer algorithms to numerically test all 
closed forms ( )3 2 1F  identities given in Prudnikov et al. [57]. He could then omit 
some equations and amended others, as well as introduce a few new ones. By repeating 
this process he obtained a final of 89 identities, only 23 of them were in the original set 
(see Hannah [58] for other similar concepts and approaches). 

6. Hypergeometric Functions Derived via Other Approaches 

We have so far relied on infinite series and integrals to deal with hypergeometric func-
tions in one scalar variable. Can it be done otherwise? Yes, and it can be derived from at 
least three other directions which differ drastically from the approaches starting with 
hypergeometric series (4) or (8). However, only the third one, the Carlson’s approach, 
could be of immediate use in Statistics, in our opinion, the other two seem to be very 
advanced exercises to derive known or new results. 

6.1. Fractional Calculus 

Fractional calculus starts from the principle that a derivative can be of any order, unlike 
in classical calculus where these orders must be integers. Derivatives and integrals can 
then be unified into a single operation, called the differintegral: There are several ap-
proaches in defining a fractional derivative D or integral I, the most popular one being 
the Riemann-Liouville integral,  

( ) ( ) ( ) ( ) ( ) ( )
11

1
1

1d d d
nyyx x

nn n
a x a x n n

a a a a

I f x D f x f y y y x t f t t
n

−
−−= = = −

Γ∫ ∫ ∫ ∫ 
, 
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which leads to: 

( ) ( ) ( ) ( ) ( )d d
d d

n n
n n

a t a t a tn nD f t D f t I f t
t t

α αα − − −   = =    , 

with n being the nearest integer larger than α . With 0α >  we have a fractional de-
rivative, and 0α < , a fractional integral (Kiryakova [59]). 

Lavoie et al. [60] gives a simple survey of these approaches, mostly oriented toward 
special functions, which include Cauchy integral, Euler and Pochhammer contour in-
tegrals, etc. Leibnitz rule for derivatives of products becomes:  

( ) ( ) ( ) ( )n n
z z z

n
D u z v z D u z D v z

n
α α γ γα

γ

∞
− − +

=−∞

 
=     + 
∑ . 

The generalized hypergeometric function 2 1F , expressed as a fractional derivative 

zDγ , is as follows: 

( ) ( )
( ) ( )1 1

2 1 , ; ; 1 ac b c b
z

c
F a b c z z D z z

b
−− − −Γ  = − Γ

, 

and the more general relation is: 

( )
( )

1
1 1

1

11 1

1

, , ,
, , ,

, ,
, ,

p
p q

q

pd c d c
z p q

q

a a c
F z

b b d

a ad
z D z F z

b bc

+ +

− − −

 
 
  

  Γ
=   
Γ     









. 

Using fractional calculus, Kiryakova [59] shows that any special function is a diffe-
rintegral of an elementary function. More precisely, we have 3 cases for ( )p qF ⋅ : 

a) p q< : ( )p qF ⋅  is the differintegral of the generalized cosine function  
( ) ( )( )1 1

1cos 1 q p
q p q p x − +
− + − + . 

b) p q= : ( )p qF ⋅  is the differintegral of the elementary function 1 1ea xx − . 
c) 1p q= + : ( )p qF ⋅  is the differintegral of the elementary function ( ) 12 1 1 aax x −− − . 
Kiryakova [59] uses the Kober–Erdelyi transform with kernel the G-function, which 

is then shifted backwards from ( )p qF ⋅  to ( )1 1p qF− − ⋅ , and progressively to ( )0 q pF − ⋅ , 
to ( )0 0F ⋅ , or to ( )0 1F ⋅  respectively. For example in the first case we have: 

( )
( )
( )

( ) ( ) ( )

1 1

1 ,
1 0 1

1

, , ; , , ;

, , ;k q p k k

p q p q

p
a b aq p j

p q p q p
j j

F a a b b x

b
I F b b x

a
− +− −− +

− − −
=

 Γ
  =  Γ  

∏

 



. 

Using Poisson type representation we obtain the cosine function. 
( ),

,
c d
a b f xI     is, however, a complicated generalized operator of fractional integra-

tion of Riemann-Liouville type,  

( ) ( ) ( )
( )
( )

( )
01

, 11
,

0 1

; dk k

mm
k km m

m m
k k

I f x G f xγ λ β
β

γ δ
σ σ σ

δ

 +
 =     

∫ .          (34) 
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The generalized m-tuple fractional derivative is then: 

( ) ( )( ) ( ) ( )00 ,
,
k k
mD f x x D f xγ δ β δδ

β
−−=       , 

where  

( ) ( ) ( ) ( ), ,
, ,

1 1

1 d
d

r
k k k k k k

m

m r m
r j

D x j I
x

η
γ δ γ δ η δ
β βγ

β
+ −

= =

  
= + +  

  
∏∏ . 

We have, as expected, ( )
( ) ( )

( )
( ) ( ) ( ) ( ), ,

, ,
k k k k

k km mD I f x f xγ δ γ δ
β β =   . 

Using the composition of m-tuple and n-tuple integrals as ( )m n+ -tuple integral  

( )
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ), , ,
, , ,

k k k k k k k k

k k km m mI I f x Iγ δ σ γ δ γ δ σ
β β β

+ +=   , 1, , , , 0k kk m δ σ= > , 

and considering separately each of the three above cases, we obtain the above results. 
NOTE: 1) This interesting result has to be interpreted with care however, since the 

special function G is used as kernel in the operator. 
2) The idea of averaging, using simple functions, is similar to the one carried out by 

Carlson in (sect. 6.3) and other authors. Following the same idea, Pham-Gia [61] used 
the limit of an iterative convolution process to obtain interesting functions in qua-
si-analyticity.  

There are several convincing applications of Fractional calculus in Engineering and 
Applied Probability. In Theoretical Statistics, several recent research results on hyper-
geometric functions use fractional calculus (Mathai [44]), associated with functions of 
matrix arguments (Mathai and Haubold [62]). But it is still too early to appraise the 
impact of this notion on Statistics. 

6.2. Lie Group Appproach 

Group theory has had important influence on Statistics. As stated by Giri [63], by in-
troducing the group invariance principle and restricting attention to invariant decision 
rules a reduction of the dimension of the parametric space is possible. He also provides 
several examples where the hypergeometric functions are present. Group representa-
tion is another well-used concept in multivariate statistics, as seen in zonal polyno-
mials. Wijsman [64] gives a simple example of how the distribution of νχ  can be ob-
tained using this approach, and also some statistical problems to which a special group 
structure applies, called Type I.  

It can be proved that, starting from the structure of an appropriate Lie Group, here 
the special linear group ( )2,SL R , we can establish several properties of, and relations 
on, hypergeometric functions. Introduced in the late sixties by Miller Jr, among others, 
this approach seemed to be promising. It is based on the Lie group structure and the Lie 
Algebra which is the derivative at zero of the elements of the Lie group. The exponen-
tial function, using infinite series, permits to go from the Lie Algebra elements to the 
Lie group elements. Using a basis based on hypergeometric functions and commutators 
based on differential operators, several relations on hypergeometric functions can be 
derived. The following table (Wasson and Gilmore [65]) gives below the correspon-
dence between the Lie group to be considered for the chosen special function.  
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Lie Group Special Function 

Heisenberg group H3 Hermite polynomials 

Euclidean group E2 Bessel functions 

Special unitary group ( )2SU  Legendre polynomials 

 Jacobi Polynomials 

Special linear group ( )2,SL   Hypergeometric functions 

Third order triangular matrices Whittaker functions 

 Laguerre polynomials 

Special orthogonal group ( )SO n  Gegenbauer functions 

 
Miller Jr [66] and Miller Jr [67] have presented the arguments concerning the two 

functions ( )p qF ⋅  and ( )G ⋅ . However, they are too lengthy to be reproduced here. 
But the main difficulties seem to be the selection of the Lie group to start with, and then 
the choice of these bases themselves, which can be quite complicated.  

This highly mathematical approach is in the domain of theoretical mathematical 
physics, with few applications in Statistics. But the concept of symmetry frequently 
used here can be related to several symmetry problems in Statistics. Wijsman’s mono-
graph [64] is helpful in understanding several related abstract mathematical notions. 
Consequently, we have reservations that this approach can be used, in either Classical 
or Bayesian Statistics, although it is very elegant and seems helpful in establishing new 
relations for special functions. Lie group theory and Lie algebra have found some real 
applications, however, in Statistics on manifolds and on Image processing (see, for ex-
ample, Fletcher, Lu and Joshi [68]). 

6.3. Carlson’s Approach 

Carlson [10] introduced several hypergeometric functions of his own, which are differ-
ent from the classical ones, e.g. ( ),nR b z  and ( ),S b z  functions, which are obtained 
by averaging nx  and ( )exp x , using a Dirichlet measure. The motivation is that ex-
pressions of ( ),nR b z  and ( ),S b z  in the several complex variables domain are free 
of branch points, and can be better studied. Prof Carlson passed away quite recently. 

Several notions developed here can be linked to the classical ones. For example, the 
so-called Euler measure is just the Lebesgue measure using the gamma density, 

( ) ( )
1d 1 e dtt t tα

αλ α
− −=

Γ
, 

and the average derived  

( ) ( ) ( )1 1 1 1 1
0

, , ; , , ; d , , , ; , , ;p q p q p q p qF a a b b tx t F a a b b xαλ α
∞

+=∫      

is our relation (10) above.  
According to Carlson [10], ( ),nR b z  is supposed to play several roles, those of 2 1F , 

those of the elliptic integral and those of Appell’s ( )1F ⋅ , while the couple 
( ) ( )}{ 0 2, ,S b z F ⋅  replaces ( )1 1F ⋅ .  
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We have, in particular:  

( ) ( ) ( )2 0
0 0

, ; e d dstxF x s tα βα β λ λ
∞ ∞

= ∫ ∫ . 

Several classical special functions can be shown to be particular cases of ( ),nR b z  
and hence, are Dirichlet averages of elementary functions. Even the Schwarz-Christoffel 
mapping in complex analysis can be shown to be an ( ),nR b z -function too. 

6.3.1. Definitions of Functions ( )nR b z,  and ( )S b z,  as Averages 

Using a general averaging process with a Dirichlet distribution on a simplex ∆ , we de-
fine: 

( ) ( )11 111
1 1 1 1 1 1

1d 1 d dkk bbb
b k k ku u u u u u

B b
µ − −−−

− − −= − − −   , 

with 

( )
1

1 1
1

, , ,0 1, 0 1
k

k i i
i

u u u u
−

−
−

 ∆ = ≤ ≤ ≤ ≤ 
 

∑ . 

For any measurable function f , we define the average of f  w.r.t. a Dirichlet 
measure bµ  as  

( ) ( ) ( ), d b
E

F b z f u z uµ= ⋅∫ , ( )1, , k
kz z z= ∈Ω , 

1

k

i i
i

u z u z
=

⋅ = ∑ . 

Here, Ω  is a convex set in 


 and E is the standard simplex in 1k−
 . 

Hence, the averages w.r.t. power functions, kz C∈  , is: 
1) ( ) ( ) ( ), dn

n bR b z u z uµ
∆

= ⋅∫ , n∈ , and 

2) ( ) ( ) ( ), dt
t bR b z u z uµ

∆

= ⋅∫ , t∈ −  . 

Similarly, the average w.r.t. to the exponential is  
3) ( ) ( ), e du z

bS b z uµ⋅

∆

= ∫ . 

6.3.2. Results of Interest 
1) There are several relations between these functions, and with the classical hyper-

geometric functions. In fact, ( )nR ⋅  can be expressed as a polynomial  

( ) ( )
( ) ( )

11 1
1

1

, ,!,
, ! !

kk k mm
n k

m n k

b m b mnR b z z z
c n m m=

= ∑






.             (35) 

2) Relations between ( ),nR b z  and 2 1F  and DF : 
a) ( ) ( )2 1 , ; ; , ;1 ,1F x R xαα β γ β γ β−= − − .  

b) 

( )
( ) ( )

( ) ( )

1 1

1 1 1

1
1 1 1 1 1

; , , ; , ,

; , , ; ;1 , ,1

; , , ; ;1 , ,1 .

n n n

n
D n n n

na
D n n n n n

R a b b z z

F a b b b b z z

z F a b b b b z z z z−−
− −

= + + − −

= + + − −

 

  

  

 

c) Several other relations relating ( ),nR b z  to 2 1F , S  and 1 1F  exist (see Carlson 
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[10]). 

6.3.3. Single Integral Representation and Elliptic Integrals 
1) Representation by a single integral: ( ),aR b z− , which is a multiple integral, can be 

reduced to a single integral on [ ]0,1 , i.e. 

( ) ( ) ( )
1

10

, 1 di
k b

a i
i

R b z u uz uαµ
−

−
=

= − +∏∫ ,                 (36) 

where αµ  is a beta measure on [ ]0,1 , with ( ),a aα ′= , 
1

k

i
i

a a b
=

′+ = ∑ . 

This single integral gives the holomorphic continuation of ( ),aR b z−  in kC .  
2) Connections between Appell function ( )1F ⋅  and elliptic integrals: They are 

found by Carlson [10].  
A particular case of the hypergeometric integral considered in section 8.2, in a theo-

retical context, is the elliptic integral  

( ) ( ) ( ) ( )
1 22 2 2 2

0

dI x A x B x C x D x
∞ −
 = + + + + ∫ , 

that can be now shown to be equal to  

( )( )( ) 1 22 2 2

0

dt E t F t G t
∞ −
 + + + ∫ ,                   (37) 

where , ,E AB CD F AC BD G AD BC= + = + = + . 

Furthermore, setting:  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2
3 2

1 2

1 2

1 2

1 2,1 2,1 2; , ,

, , 1 2,1 2,1 2; , ,

, , 1 2,1 2,1 2; , ,

, , , 1 2,1 2,1 2,1; , , ,

F

G

H

xyz R x y z

R x y z R x y z

R x y z R x y z

R x y z R x y zρ ρ

−
−

−

−

 =

 =


=


=

 

we now have ( )2 2 22 , ,FI R E F G= , which is a very convenient symmetrical form. 
Carlson’s various hypergeometric functions are found to be quite useful by Askey [9] 

and have seen several applications in Bayesian Statistics (Dickey [69] and in the theory 
of elliptic functions (Carlson [70]). 

6.4. Basic Q-Hypergeometric Functions 

There is a parallel theory of hypergeometric functions based on q-hypergeometric se-
ries. Here, the ratios of successive terms are a rational function of nq . We then have:  

( ) ( )( )( ) ( )2 1

1, 0
;

1 1 1 1 , 1,2,3,nn

n
q

q q q n
λ

λ λ λ λ −

==  − − − − =  

 

for any , ,q λ  real or complex, 1q < , and the corresponding q-basic hypergeometric 
series is: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 11 2
1 1

0 1

, ,
, , ,; , , ; ; 1

, , ,

ns rn rn n n n n
r s r s

n sn nn

a q a q za a b b q z q
b q b q q q

∞ + −
+

=

 Φ = − ∑


 



. 

Several results here are similar to the ones we have seen, but some are quite different. 
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We will not discuss this approach further and refer the reader to Srivastava and 
Karllson [29]. It should be mentioned that Ramanujan has established several interest-
ing results in this domain. 

7. Presence of Hypergeometric Functions in Statistics 

As stated earlier, in Statistics, Hypergeometric functions are generally not developed, 
but used, and mostly in distribution theory. 

7.1. Discrete Case 

Hypergeometric distribution in unidimensional statistics:  
a) There are X “good” elements in a population of N. The probability of having x 

“good” when choosing at random n elements is (in finite sampling without replacement):  

( )Pr
X N X N

X x
x n x n

−    
= =     −    

, ( ) ( )max 0, min ,n N X x n X− + ≤ ≤ .   (38) 

The moment generating function of this distribution is  

( ) ( )( ) ( )2 1e , , 1;e
!

tX tN n N X
E F n X N X n

N
− −

= ⋅ − − − − + . 

This fact gives this discrete distribution its name. It must be mentioned that it is the 
conditional distribution, on which Fisher’s exact test on proportions is based. 

b) A generalization of this distribution leads to the Kemp family, which is based on a 
generalization of the above probability, i.e.  

( )Pr
a b a b

X r
r n r n

+    
= =     −    

, 0,1,2,r = 
, 

for arbitrary positive values of a and b. Several types of distributions are obtained and 
reported in Johnson and Kotz ([71], chapter 6). Derived distributions include the 
Non-Central Hypergeometric distribution, and the related positive and negative 
hypergeometric distributions.  

The discrete multivariate hypergeometric distribution is a straightforward extension 
of the univariate case: Instead of one good subset we have ( )1k −  distinct good ones and 
the k-th subset is the bad ones. For a sample of size m, and 1 1X x= ,  , 1 1k kX x− −= ,  

with 
1

1

k

k k j
j

X x m x
−

=

= = −∑  we have: 

( )1 1 1 1
1

Pr , ,
k

i
k k

i i

M M
X x X x

x x− −
=

     = = =     
     
∏

, 
1

k

i
i

M M
=

= ∑ , 
1

k

i
i

x x
=

= ∑ .  (39) 

We refer to chapter 39 of Johnson, Kotz and Balakrishnan [72] for other properties 
of this discrete multivariate distribution. 

7.2. Continuous Case 

a) Gauss hypergeometric function ( )2 1F ⋅  has found applications mostly in distri-
bution theory (e.g. Pham-Gia and Turkkan [73] and [74]).  
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A nice property of hypergeometric functions, especially 1 1F  and 1 2F , is that they 
could provide, by mere multiplication with the central density, the expression of the 
non-central density. For example, the density of the central F, 

1 2,~X Fν ν , defined here  

as the ratio of two independent chi-square 1
1 2

2

2

, 2F ν
ν ν

ν

χ

χ
= , is  

( ) ( )

1

1 2

1
2

1 2
1 2 2

1

2

1, ;
2, 2

1

F
fh f

B
f

ν

ν νν ν
ν ν

ν
ν

−

+=
 
+ 

 

.  

The related non-central variable G, with non-centrality parameter λ , 
1 2, ,G Fν ν λ≈ , 

will have as density  

( ) ( ) ( )
2 1 2 1

1 2 1 2 1 1, ; ; , ; e ; ;
2 2 2 1G G

gh g h g F
g

λ ν ν ν λν ν λ ν ν −  +
= ⋅ ⋅   + 

. 

This fact is particularly useful when we study the power of a test, which uses the 

non-central distribution of a statistic. If we define 1
1 2

2

2
1

, 2
2

F ν
ν ν

ν

χ ν

χ ν
= , we have similar re- 

sults relating ( )1 2, ;Fh fν ν  to ( )1 2, ; ;Gh gν ν λ . A similar result holds for the non- 
central beta distribution. Pham-Gia and Turkkan [36] provides the comparison be-
tween ratios of random variables and ratios of random matrices, and hypergeometric 
functions of various types are used in both cases. 

G and H-functions are used in the expressions of the densities of several positive 
random variables and in the distributions of determinants of random matrices, as 
shown by Pham-Gia [75]. The following variables with their densities limited to their 
positive part, have their density expressed as a G or H-function: the half- standard 
normal, the half-Cauchy, the half-Student t (Springer [26], pp. 202-207). The Cumula-
tive Distribution Function of a H-function density variable is also expressible as a 
H-function, and so are its Laplace transform and characteristic function. 

When considering a random Beta matrix variate, its determinant has its density ex-
pressed as a G-function since it is a product of independent univariate betas, and so do 
products and ratios of independent random matrices and several test statistics in mul-
tivariate analysis (e.g. Pham-Gia and Choulakian [76], Rathie [27]). The three types of  

G-functions mostly encountered here are: 
0 0

0, ,
m m m n
m m m p qG G G . But, as Mathai and 

Saxena ([23], sect 5.6) have remarked, often we have here the cases where the parame-
ters differ by integers and computations of residues have to be adjusted accordingly.  

b) Relations between hypergeometric functions and the normal distribution: What 
are the relations between these two most important notions in Statistics? 

We have already mentioned the half-standard normal density expressed as a 
G-function. And an interesting relation exists on moments. Let ( )2,X N µ σ . We 
then have the raw moments: 
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( )

2
2

1 1 2

2
1 21

1 1 2

1
122 , ; for even

2 2 2π

1
1 322 , ; for odd

2 2 2π

F
E X

F

ν ν

ν

νν

ν
ν µσ ν

σ

ν
ν µµσ ν

σ
+−

 + Γ     ⋅ − − 
    =     Γ +   −  ⋅ −  

 

 

and absolute moments 
2

2
1 1 2

1
122 , ;

2 2 2π
E X Fν ν ν

ν
ν µσ

σ

+ Γ      = ⋅ − −    
, where ( )1 1 .F  

is Kummer confluent hypergeometric function. Central moments have, however, sim-

ple expressions: ( ) ( ) ( )2 2 ! !2 for even 2

0 for odd

k kk k k
E X ν σ ν

µ
ν

 = − =   
, and  

( ) 2

1
22
π

E X ν ν ν

ν

µ σ

+ Γ 
 − = .  

Here, again, we can see that ( )1 1 .F  is associated with the non-centrality factor.  

7.3. Matrix Case 

We have already mentioned the works of James [13] and Constantine and Muirhead 
[14] on zonal polynomials. Farrell [77], Pillai [78] and Olkin and Rubin [79] also made 
significant contributions. For functions of matrix arguments there are several results 
where these functions are associated with fractional calculus, under various forms (see 
Mathai and Haubold [62]), most of them still at the very theoretical level, however. 
They will probably make an impact on statistics in the years ahead. An application of 
interest is given by Gross and Richards [80]. 

7.4. Other Applications 

Handbook of the beta distribution (see Gupta and Nadarajah [81]) has a selection of ar-
ticles containing various hypergeometric functions in one or two scalar variables. In 
particular, Pham-Gia, in that reference, and Pham-Gia and Turkkan [82] has hyper-
geometric functions applications in Bayes inference. Exton ([28], chapter 7) and Mathai 
and Saxena [23] should be consulted for a large list of applications of multivariate 
hypergeometric functions in Statistics. Hypergeometric functions of matrix arguments 
are encountered in non-central matrix distributions and in power calculation for hy-
pothesis testing involving vector and matrix variates. Mathai [44] and Mathai and Pe-
derzoli [46] offered several theoretical results on this topic. Applications of functions 
with matrix arguments in engineering include Chiani et al. [83], Gross and Richards 
[80] and Tulino and Verdu [84].  

8. Hypergeometric Functions in Neighboring Domains 

Hypergeometric functions, being special mathematical functions, are traditionally asso-
ciated with classical mathematical analysis, recurrence formulas and other special func-
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tions. An interesting account of their history is given by Stephen Wolfram [85]. But, for 
special functions, the establishment of numerous mathematical relations relating them 
via classical analysis methods, seems to lack some mathematical depth (Aomoto and 
Kita [86]). Using complex analysis, homological algebra, and algebraic and differential 
geometries, together with other abstract advanced mathematical techniques, some im-
pressive results were obtained in the study of more in-depth mathematical properties of 
hypergeometric functions. Notions such as holonomic functions, monodromy groups, 
are frequently used, but we will not present them here since they are very seldom en-
countered in Statistics. Again, below are just some results, among so many others, that 
we think could be of interest to statisticians. 

8.1. Algebraic Topology, Algebraic K-Theory, Algebraic Geometry 

Hypergeometric integrals are the main concern of these fields, in which some impor-
tant results can be presented under. 

8.1.1. Integral Representations 
We define first the Hypergeometric series of type ( )1, 1n m+ + : Let us consider the 
power series  

( ) ( )( )
( )( ) ( )( )

( )( )

1

11
; ;

, , ,
; !

n m n

i i j j
ji

i i

a b
F x x

c
ν

ν

α ν β ν
α β γ

γ ν ν

− −

===
∑∏

∑           (40) 

defined by the lattice formed by the set ( ), 1n m nM Z− −  of matrices ( )1n m n× − −  with 
integral coefficients and m linear forms 

( )
1

1

m n

i ij
j

a ν ν
− −

=

= ∑ , 1 i n≤ ≤ . Naturally, the notation is:  

( )

( ) ( ) ( )

1
1

, 1
1 1

, ! !, , 1 1,

,

ij
n

ij ij j ij
i

n m n

ij ij n m n
i j

x x b j m n

c M Z

νν ν ν ν ν

ν ν ν ν

=

− −

− −
= =

= = = ≤ ≤ − −

= = ∈

∑∏ ∏

∑ ∑
. 

We can see that Gauss ( )2 1F ⋅ , Appell’s ( )1F ⋅  and Lauricella ( )DF ⋅  are of this 
type. They have 2 integral representations, as stated in Theorem 3.3 of Aomoto and Ki-
ta [86], 

a) 

 ( ) ( )( ) ( ) ( )
( )1

1

1 1 1 1
1

, ; ; 1 dj

n

m n
n

i i j nj n
j

F x c U u x u x u u
β

ω

α β γ
− − −

=∆

= ⋅ − − −∏∫ 
,     (41) 

with  
( ) ( )1

1

1

n

in
i

i
i

c
γ

α
γ α =

=

Γ
= Γ

 Γ − 
 

∏
∑

 and ( ) ( ) 11
1 1

1
1 ii

n

i n
i

U u u u u γ αα − −−

=

∑= − − −∏  . 

b) 

( ) ( )( ) ( ) ( )
( )1

2

1
2 2 1 1 , 1 1

1
, ; ; 1 di

m n

n
m n

i i i i m n m n
j

F x c U u x u x u u
α

ω

α β γ
− −

− − −
− − − −

=∆

= ⋅ − − −∏∫ 
, (42) 
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with  
( ) ( )

1

2 1 1

1

m n

jm n j
j

j

c
γ

β
γ β

− −

− −
=

=

Γ
= Γ

 


Γ − 


∏
∑

 and ( ) ( )
1 11

2 1 1
1

1 jj
m n

j m n
j

U u u u uβ γ β
− −

− −−
− −

=

∑= − − −∏  . 

Similarly, Aomoto and Kita [86] show that an integral representation is possible for 
Horn’s 14 hypergeometric series. 

8.1.2. Single Integral Representation 
This topic is related to the preceding one, and has attracted attention for a long time, 
since integrating in one variable is supposedly much simpler than doing it in several 
ones. There are at least three known cases, and we start with the Dirichlet distribution, 

( )1, , p qb b b + , defined on a simplex, of which the univariate beta ( )1 2,β β β , defined 
on [ ]0,1 , is a special case. 

1) Let ,p q  be positive integers and ,b βµ µ  Dirichlet and beta measures where 

( )1 1 2 1,p p p qb b b bβ β β + += = + + = + +   on 1p qE + −  and 1E  resp. Let ( )ϕ ⋅  be 
continuous, complex-valued on [ ]0,1 . Then  

( ) ( ) ( ) ( )
1

1

1
0

d d
p q

p b
E

v v v u uβϕ µ ϕ µ
+ −

+ + =∫ ∫
. 

Also, 

( ) ( ) ( )11
1

1 11
1 1 1 1

0

d d , , dp p

p

b b bb
p p p p

E

v v v v v v B b b u u uϕ ϕ− + + −−+ + =∫ ∫


   
. 

2) Carlson ( ),aR b z−  can be expressed as a single integral, in Equation (36). 
3) For hypergeometric functions, Picard’s Theorem (Equation (19)) on ( )DF ⋅ , al-

ready mentioned, expresses this function as a single integral. 
4) Here, we can see that Picard’s integral is a particular case of Equation (41) above, 

when 1n = . Equation (41) itself, is hence a generalization of Picard’s theorem to the 
case 1n > , using the appropriate simplex. 

8.1.3. A-Hypergeometric Functions 
In the late eighties, Gelfand, Kapranov and Zelevinsky considered all the vector genera-
lizations of Gauss hypergeometric functions, and the related differential equations, and 
fit them into the system of A-hypergeometric functions.  

A GKZ (Gelfand, Kapranov, Zelevinsky) hypergeometric system is recently renamed 
A-hypergeometric system. It starts with an A-Matrix, r N×  with columns 1, , Na a , 
hence its name, and is defined as follows (Saito et al. [12], p. 49): Let ( )ijA a=  be an 
integer d n×  matrix of rank d and let ( )1, , dβ β β=   be a vector of parameters. The 
GKZ system ( )AH β  is the system of linear partial differential equations for an inde-
terminate function f, such that: 

1
0, 1, ,

n

ij j j i
j

a x f i dβ
=

 
∂ − ⋅ = = 

 
∑ 

 

( ) 0, , , .u v nf u v N Au Av∂ − ∂ ⋅ = ∈ =  
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For hypergeometric functions we assume that the last row of A is constant, i.e. 

1 2d d dna a a p= = = =  and let 1 1, , , dα γ γ −  be integers. We set d pγ α= − , 
1n d= − , ( )T

1 11, , 1,d dβ γ γ γ−= − − − − − . Then ( )AH β  annihilates the hypergeome-
tric integral 

( ) 1
1

; d di
n

a
i n

iC

x x t t t t
α

γγ
=

 Φ =  
 
∑∫ 

 

(hence this integral satisfies the GKZ hypergeometric system). 
A solution for the above system can be investigated under the form of a multiple se-

ries of the following form, which include most series in section 3. 

( ) ( )( ) ( )
1 1

1

1
, 1

, , 1 1

, ,
1 1

n n

n

ll
n

L n
l l L n n

uuu u
l l

γγ

γ γ γ

++

∈

Ψ =
Γ + + Γ + +∑



  . 

We can verify that Gauss hypergeometric function ( )2 1F x , Appell first hypergeo-
metric function ( )1 ,F x y  and Horn ( )3 ,G x y  have this form (Beukers [87]), by 
choosing the appropriate A-matrix which determines the polytope, the vector-parameters 

,γ β , and γ , and setting all variables other than x, or x and y, as 1. Important results 
in the field of several complex variables are obtained by using this approach. 

It should be mentioned that there are several applications in Combinatorics of 
A-hypergeometric functions, for example in arranging a number of hyperplanes in a 
multi-dimension complex space.  

8.2. Hypergeometric Integrals in Conformal Field Theory, Homology  
and Cohomology 

a) Varchenko [88] considers the integral  

( ) 1
1 1, , d dN

N NI f f f x xααα
∆

∆ = ∫   , 

and later, the more general form:  

( ) ( ) 1
1 1, , exp d dN

N NI f x f f x xααα
∆

∆ = ∫   , 

where ∆ , the polytope, is now a variable also, if  are linear functions and iα  are 
complex numbers. They are also called hypergeometric integrals and generalize the beta 
function. An interesting example is a configuration of 3 consecutive points 1 2 3, ,z z z  
on a line. Put 1 2,∆ ∆  as the consecutive distances separating them, and  

j jf t z= − , ( ) ( ) ( ) 31 2
1 2 3l t z t z t z αα α

α = − − − , 
( )1

1 1
1

d t z
l

t zαω α
−

=
−

, 
( )2

2 2
2

d t z
l

t zαω α
−

=
−

. 

Then we have:  

( )
( )

3

1

3

1

1
det

1

i

i

j
j

j i j
i j

j
j

f zα

α
ω

α

=

≠∆

=

Γ + 
=      Γ + 

 

∏
∏∫

∑
 

meaning that the determinant of integrals of hypergeometric forms of a configuration, 
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over all bounded components of the complement of that configuration, can be simply 
computed. This formula can be extended to a configuration of hyperplanes. 

There are several important results on hypergeometric functions in Conformal Field 
theory, on representation theory of Lie Algebra, in quantum groups, etc. However, they 
do not fit into this survey and the reader is invited to consult Varchenko [88]. For ex-
ample, the integral  

( ) ( )1 1
1

, , d d ,jk
n j k n N

j k N
I t t t t t t N m n

λ

+
≤ < ≤

= − = +∏∫   

can be interpreted as average of interactions of the last m points with the first n points, 
and can be shown to be associated with a representation of Kac-Moody algebra.  

b) An interesting point of view can be taken for hypergeometric integrals, using the 
fact that definite integrals are considered as pairings of homology and cohomology 
groups according to de Rham Theory.  

Let T be an m-dimension complex manifold, or equivalently, as a 2m-dimension real 
smooth manifold. Let iσ  be a smooth map from the p-dim simplex to T. A finite sum 

i iC cσ= ∑ , ic C∈ , is called a p-chain, and a p-cycle if 0i iC c σ∂ = ∂ =∑ , where ∂  
is the boundary operator. 

The homology group ( ),pH T C  is vector space of p-cycles modulo (Image of 
( )1p +  chains by operator ∂ ). Let’s consider the de Rham cohomology group 

( ),pH T C  which is the quotient space:  

{ }
( ) }{

-valued smooth -forms  s.t. d 0

-valued smooth 1 -forms

C p
C pd

ω ω =

−
. 

We know that there is an isomorphism: ( ) ( ), ,p
pH T C H T C . By Stokes Theorem  

d
C C

ω ω
∂

=∫ ∫ . 

We define ,
C

C ω ω= ∫ , which leads to a bilinear form:  

( ) ( ).;. : , ,p
pH T C H T C C× → .  

The GKZ or A-hypergeometric integral is 

( ) ( ) 1, , d d m
C

x f x t t t tα γγΦ = ∫ 
, with ( ) 1

1
1

, i di
n

i d
i

f x t x t tα α α

=

= ∑  , 

where ( )1, , mt t t=  , and similarly for , ,x α γ .  
We can see that the hypergeometric integral is a pairing between homology groups 

and cohomology groups, with its value being a function of x. A simple illustration using 
1p = , is the winding number in complex analysis, which is a pairing between 
( )1 ,H T C  and ( )1 ,H T C . It satisfies the GKZ-hypergeometric system as presented 

above. This theoretical result is of importance although it does not permit to calculate 
the value of the integral.  

For complex variables we have twisted homology and cohomology, as explained in 
Aomoto and Kita [86]. 
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8.3. Algebraic Functions and Roots of Equations 

Hypergeometric functions have been used to find solutions of algebraic equations of 
fifth order and higher. The reason is that its expression as an infinite series can be con-
veniently used for the search for a solution. For example, with the equation: 

5 1 0ax x− + =  we can use Lagrange inversion formula that states that one solution to 
( )f z a=  is given by the power series  

( )

1

1 0

d
! d

kkk

k x

a x
k x f x

−∞

= =

  
       

∑ . 

Here, we have: 

( ) ( ) ( ) ( )
( ) ( ) ( )

5

4

1 5 2 5 3 5 4 55 5
4 1 1 2 3 4 5 4 !4

n n n
n n n n

n
n n n

n a a
n n n

  
=   +  

. 

Setting  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )4 3

0

1 5 2 5 3 5 4 5
1 5,2 5,3 5,4 5;1 2,3 4,5 4;

1 2 3 4 5 4 !

n
n n n n

n n n n

zF z
n

∞

=

= ∑  

we have the solution of the equation as the hypergeometric function 
5

4 3 4

51 5,2 5,3 5,4 5;1 2,3 4,5 4;
4

F a
 
 
 

. 

There is a classification list by H.A. Schwarz, of hypergeometric functions which are 
at the same time algebraic (Beukers [87]). This list has been recently extended by Beuk-
ers and Heckman [89]. Perelomov [90] gives hypergeometric solutions to more general 
algebraic equations. 

8.4. Economics, Quantitative Economics and Econometrics 

It is not surprising that hypergeometric functions are used in Economics and related 
fields, where advanced mathematics are often used for modeling and computation. We 
refer the reader to Abadir [4] for an extensive survey on their presence there. In 
Finance, the well-known Black-Scholes model now has its generalization to hypergeo-
metric functions (Albanese et al. [91]). 

8.5. Random Matrices in Theoretical Physics 

Hypergeometric functions are frequently seen in theoretical physics and Appell’s ( )1 .F  
function is associated with several results related to the Shrodinger equation (see Exton 
[28]). It should be mentioned that the Theory of Random Matrices, developed inde-
pendently in theoretical physics, has strong connections with matrix variate distribu-
tions in Mutivariate statistics. The various distributions associated with the eigenvalues 
of the Wishart matrix distribution were the connecting link between the two discip-
lines, and Wishart’s [92] pioneering work on the distribution of the covariance matrix 
has been often cited in Physics. But the laws of Wigner, Tracy-Widom and Marcen-
ko-Pastur developed there, have now found applications in Statistics (Johnstone [93]). 
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On the other hand, G and H-functions have numerous applications in Astrophysics, as 
can be seen in Chapter 5 of Mathai and Haubold [43]. 

9. Conclusion 

The hypergeometric function and its generalizations have a place of choice in mathe-
matics and its allied fields. We have given an overview of the roles this function plays 
across various domains and disciplines. In particular in Statistics, and Applied Statis-
tics, its influence can be important in the years ahead and the statistician should be 
aware of its development in neighboring disciplines. We conclude this review by men-
tioning a reference bearing a special title [94], which clearly shows that hypergeometric 
functions can create an image which deeply affects the feelings of a researcher. 
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