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Abstract

Let m>2 be any natural number and let R =F, +UF, +UZIFq +---+um_l]Fq be a fi-

nite non-chain ring, where U™ =u and ¢ is a prime power congruent to 1 modulo
(m-1). In this paper we study duadic codes over the ring R and their extensions.
A Gray map from R to F' is defined which preserves self duality of linear codes.
As a consequence self-dual, formally self-dual and self-orthogonal codes over F,

are constructed. Some examples are also given to illustrate this.
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1. Introduction

Duadic codes form a class of cyclic codes that generalizes quadratic residue codes from
prime to composite lengths. While initially quadratic residue codes were studied within
the confines of finite fields, there have been recent developments on quadratic residue
codes over some special rings. Pless and Qian [1] studied quadratic residue codes over
Z,, Chiu et al. [2] extended the ideas to the ring Z, and Taeri [3] considered QR-
codes over Z,.Kaya et al [4] and Zhang et al. [5] studied quadratic residue codes over
[, +ulF, where pis an odd prime. Kaya ez al [6] studied quadratic residue codes over
F, +UF, +u’F, whereas Liu et al. [7] studied them over non-local ring

F, +UuF, +u2]Fp where U’ =u and p is an odd prime. The authors [8] along with
Kathuria extended their results over the ring I, +UF, +u2]Fp +u3]Fp where u‘=u

and psl(mod 3). In [9] the authors studied quadratic residue codes and their
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extensions over the ring F, +UuF, + UZIFp +et u"“l]Fp where U™ =u and pisa prime
satisfying p= 1(m0d (m —1)) generalizing all the previous results.

There are duadic codes which are not quadratic residue codes, but they have
properties similar to those of quadratic residue codes. In this paper we extend our
results of [9] to duadic codes over the ring R =F, +UF, +u2]F0| +~--+um’1IE‘q, where
u™ =u, gis a prime power congruent to 1 modulo (m —1). The Gray map defined in
[9] is also extended from R" — qu” which preserves linearity and in some special
cases preserves self duality. The Gray images of extensions of duadic codes over the ring
R lead to construction of self-dual, formally self-dual and self-orthogonal codes. We
give some examples of duadic but non quadratic residue codes which give rise to a
[40,20,6] self-dual code over K, a [27,12,6] self orthogonal code over I, a [30,12,8]
self-orthogonal code over F,, and a formally self-dual [24,12,6] code over F,.

The paper is organized as follows: In Section 2, we recall duadic codes of length n
over [, and state some of their properties. In Section 3, we study the ring

R =F,[u]/ <um - u> , cyclic codes over ring R and define the Gray map

®:R" — F" . In Section 4, we study duadic codes over R, their extensions and give

some of their properties. We also give some examples to illustrate our results.

2. Duadic Codes over F, and Their Properties

In this section we give the definition of duadic codes and state some of their properties.
Before that we need some preliminary notations and results.
A cyclic code C of length n over F, can be regarded as an ideal of the ring

S, =F,[x]/ <x" —1>. It has a unique idempotent generator e(X).
Let T(x):%(1+ X+X* +--+X""). The [n,n—-1] cyclic code &, has generating

idempotent 1—7(x), its dual is the repetition code with generating idempotent
T(x).

A polynomial a(x)=> . ax €S, is called even like if a(1)=0 otherwise it is
called odd like. A code C is called even like (odd like) if all its codewords are even like
(odd like). For (a,n)=1, u,:Z,—>Z, defined as u,(i)=ai(modn) is called a
multiplier where Z, ={0,1,2,---,n—1} .Itis extended on S, by defining
i, (Z. f x' ) =1 xtal)

Suppose nisodd, (n,q)=1 and Z =S, US, U0, where

(i) S;, S, areunion of g-cyclotomic cosets mod 2.

(i) S,NS,=¢

(iii) There exists a multiplier 4, (b,n)=1 suchthat z (S,)=S, and
Hy (Sz) =3,

Then codes I, and I, having S, and S, as defining sets are called a pair of
odd like duadic codes and codes C; and C, having S, U{0} and S, U{0} as def-

ining sets are called a pair of even like duadic codes.
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It is known that duadic codes exist if and only if gis a square mod n.

There is an equivalent definition of duadic codes in terms of idempotents. (For
details see Huffman and Pless [10], Chapter 6).

Let (x) and e,(x) be two even like idempotents with C,=(g (x)) and
C, :<e2 (x)> The codes C, and C, form a pair of even like duadic codes if and
only if

(1) the idempotents satisfy

e (x)+e,(x)=1-7(x)
(2) There is a multiplier g, such that
1, (e1 (x)) =e,(x) and g (e2 (x)) =e (x).

ie. 14, (C))=C, and 4,(C,)=C,

Associated to C, and C, there is a pair of odd like duadic codes D, and D,
generated by idempotents d,(x) and d,(x) respectively, where d,(x)=1-¢,(x),
d, (x)=1-¢(x)

If (1) and (2) hold we say that g gives a splitting for even like duadic codes C;
and C, or for the odd like duadic codes D, and D,.

Lemma 1: Let C, = (el (X)> and C, = <62 (x)> be a pair of even-like duadic codes
of length n over F,. Suppose u, gives the splitting for C, and C,. Let D, and
D, be the associated odd-like duadic codes. Then:

(i) ee, =0,

(i) C,nC,={0} and C,+C,=¢,,

(iii) C, iseven like subcode of I, for i=12,

(iv) D, D, :<j (x)> and D, +D, =S ,and

(v) D, =C, +<T(x)> = (T(x)+ei (x)> for i=12.

This is part of Theorem 6.1.3 of [10].

Lemma 2: Let C, and C, be a pair of even-like duadic codes over F, with D
and D, the associated pair of odd-like duadic codes.

M If 1,(C)=C, and u, ((Cz) =C,

then C; =D, and C, =D,.

(i) If 4,(C,)=C, and u,(C,)=C,

then C; =D, and C, =D,

Proof follows from Theorems 6.4.2 and 6.4.3 of [10].

Lemma 3: d,+d,=1+7(x), e+e,=1-J(x), d,—e=7(x), d,—e,=F(x).
Further d,d, =7(x) and ee, =0.

Proof follows immediately from the definition and Lemma 1.

3. Cyclic Codes over the Ring R and the Gray Map

Let ¢ be a prime power, = p°. Throughout the paper, R denotes the commutative

ring F, +UF, +U’F, +---+U™"F,, where u"=u, m=>2 is a natural number and
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g=1(mod(m-1)). R is a ring of size q" and characteristic p. For a primitive

91
element a of [, take &=a™?,so that E"=1£#1 and

EMP 4 EM 4+ E41=0.Let 1,7,,75, .7, denote the following elements of R :

Ui =1—Um_l,

UP =(m—1)-1(u Ul eeay™? +u”"1),

YR :(m—l)’l(§u+§2uz +“_+§m—2um72 +um’l),

un :(m—l)fl(ézu +(§2)2 uz +.._+(§2)m—2um72 +um71), (1)

M =(m=1)" (gm‘zu + (§m‘2)2 u? 4+ (gm‘z)mfz u™? + um‘l).
A simple calculation shows that
m
nt =n,nn; =0 forl<i,j<m,izjand Y 5 =1 (2)
-1
The decomposition theorem of ring theory tells us that
R=npR®n,R®---®n,R.

For alinear code C oflength nover the ring R, let
G :{x1 ey 13 %y, Xg,+++, X, € Fy such that 77, %, +17,X, +---+17, X, eC},

C, :{x2 ey 13x, %, 0+, X, € Y such that i, %, +7,%, +-+-+17, %, eC}

Cu :{xm ey 13X, %, X, € Fy suchthatzg, X, +1,%, +--- 417, X, eC}

Then C,C,,---,C, arelinear codes of length nover F,, C=nC ®n,C, ®---®n,C,
and |C| = |C1||C2|---|Cm| . For a code C over R, the dual code C* is defined as
C'={xeR"|x-y=0forallye C} where x-y denotes the usual Euclidean inner
product. C isself-dual if C=C" and self-orthogonal if C = C". A code C is called
formally self-dual if C and C* have the same weight distribution.

The following result is a simple generalization of a result of [7].

Theorem 1: Let C=nC ®n,C,®---®n,C, be alinear code of length n over R.
Then

(i) C iscyclicover R ifandonlyif G,i=12,---,m are cyclic over ]Fq.

(i) If ¢ =<9i(x)>,gi(x)e<]i:[_xi>, g (x)[(x" ~1), then
C=<77191(X),77292(X),-~~,77mgm(X)>:<g(x)> where
g(x):77191+77292+"'+77mgm and g(x)l(x”—l).

(iii) Further |C|= g Erdea(s)

(iv) Suppose that g; (X)h (x)=x"-11<i<m. Let
h(x) = mh (X)+m,h, (X)+---+m,h, (x), then g(x)h(x)=x"-1.
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V) C=nG ©nC ©--@n,Cy.

(vi) Ct= <hl (x)>, where h* (x) =mh (X)+m,hy (X)+---+7,hy (X), where
h'(x) is the reciprocal polynomial of h (x),1<i<m.

(vii) |Cl| _ qzi”lldeg(gi) )

The following is a well known result :

Lemma 4: (i) Let Cbe a cyclic code of length n over a finite ring S generated by the
idempotent E in S[x]/ <x” —1> then C' is generated by the idempotent
1-E(x?).

(ii) Let Cand Dbe cyclic codes of length n over a finite ring $ generated by the idem-
potents E,E, in S [x]/<x” —1> then CND and C+D are generated by the ide-

mpotents EE, and E +E,—-EE, respectively.
Let the Graymap @®:R — " be given by

r(u)=a, +au+au’+-+a, u™" |—>(r(O),r(l),r(g),...,r(gtm%))v

11 1 1 1
0 1 5 52 ém—z
01 & (&) - (&)

:(aolai’az""'am—l) 01

01 élgm—Z (égm—z )2 (ém—z )m72
01 1 1 1
:(aolai’az""'am—l)MV

where Misan mxm nonsingular matrix of Vandermonde determinant

qugmil(fj —§i) and Vis any nonsingular matrix over [F, of order mxm. This

map can be extended from R" to F" component wise.

Let the Gray weight of an element reR be wg(r)=w, (®(r)), the Hamming
weight of ®(r). The Gray weight of a codeword €=(C,,C,,-,C,;)€R" is defined
as W, (c)=>" W (¢) =" wy (®(c))=w, (®(c)). For any two elements
C,,C, € R", the Gray distance d is given by
dg (Cllcz) =W (Cl_CZ)ZWH ((D(Cl)_(D(CZ))'

Theorem 2. The Gray map @ isan [, -linear, one to one and onto map. It is also
distance preserving map from (R", Gray distance dg) to (F;", Hamming distance).

Further if the matrix Vsatisfies VV ' = Al m>
of the matrix V; then the Gray image ®(C) of a self-dual code C over R is a self-

dual code in IE‘(;“” .

e ]F; ,where VT denotes the transpose

The proof follows exactly on the same lines as the proof of Theorem 2 of [9]. The
only difference is that here gis an arbitrary prime power and not just an odd prime. For

the sake of completeness of the result we reproduce the proof here.
Proof. The first two assertions hold as MV is an invertible matrix over F,.
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Let now V :(vij), 1<i, j<m, satisfying VV' = A1 . So that
m m
> Vi =4 forall j1< j<m and Zvikvgk =0 forj=/. (3)
k=1 k=1

Let C be a self-dual code over R . Let r—(ro,rl, i h1),5=(8p,8 8,4 ) €C

+bu+---+b,_,u™". Then

-1

j+l
Z ayh,u

=0

where r, =a,+au+--+a,,u"" and s =

i0
-1 n-1m
O=r-s=)>rs =

>

M ‘

i=0 j

]
o
I}
o

implies that (comparing the coefficients of u" on both sides)

n-1
D b, =0 (4)
i=0
n-1
( +a|1b|r 1+ +a|rb|0 +a|rb|m 1+a| r+1b| m-2 +- +a|m 1b|0):O’ (5)
i=0

foreachr, 1<r<m-1.
For convenience we call (ri (0),r,(1), (&)1, (5”“2)) =(a, oy, ey, ) and

(si(O),si(1),si(§),-.-,si(§”"2)) (ﬁivﬂizv"‘-ﬂim)'Then
(D(ri):(ail'aiz"”’ ) (Zau Jl’zau j21" Zau JmJ

Similarly

CD(si):(Zl‘,ﬁi/Vu’le Vigse Zﬁ./ fmj
Using (2), we find that

(r)-0(s, ) = iii%mmm

k=1 j=1 (=1

m m
_ auﬂu (;vfkj+;(§auﬂw(2vjkv,k) 13,5,
J #) J=

Now
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Using (3) and (4), one can check that each A is zero, which proves the result.

4. Duadic Codes over the Ring R

We now define duadic codes over the ring R in terms of their idempotent generators.
R %
Let R, denote the ring [X] . Using the properties (2) of idempotents 7,, we

()

Lemma 5: Let q El(mod(m—l)) and 7,,1<i<m be idempotents as defined in
(1). Then for i,i,,-,i; €{1,2} and for any tuple (dil, diz,---,dim) of odd-like idem-

have

potents not all equal and for any tuple (e.l NN

(! im

) of even-like idempotents not all
equal, nd, +n,d, +--+n,d;, and 7€ +7,6, +--+7n,6 are respectively odd-like
R[x]

(-9

Throughout the paper we assume that ¢ is a square mod 2 so that duadic codes of

Im

and even-like idempotents in the ring R, =

length 1 over F, exist. The construction and the properties of duadic codes over the
ring R is similar to that of quadratic residue codes over the ring

IFP + u]Fp + UZIFP +eeet um'lIFp ,where u™ =u given in [9]. We denote the set
{1,2,---,m} by A. For each icA, let D{i} denote the odd-like idempotent of the
ring R, in which d; occurs at the ith place and d, occurs at the remaining
1,2,--+,i—=1,i+1,---,m places ie.

Dy, = mdy +1,d, + 477,40, + 770+ 77,0, +o 4 77,d, = dy +(1-77)d,. (6)

For i,i, €A, i, #i, let D, ., denote the odd-like idempotent in which d, occ-

ig,ip
urs at the ith and i,th placesand d, occurs at the remaining

12,---,i,-Li+L---,i,-1i, +1---,m places ie

D{il,iz} =nd, +1,d, +---+ 7711_1dz + 77i1d1 + 77i1+1d2 e
+17,40, +7,d, + 77,40, +o- 47, (7)
=(77i1 +77i2)d1 +(1—77i1 —niz)dz.
In the same way, for i,i,, i, €A, i #i,1<r,s<k let D{il,iz,---,ik} denote the

odd-like idempotent
D{h,i2,.4.,ik} = (77i1 T, 1 )dl + (1_ Ty =M, =~ )dz- (8)

For ieA, i,i,,---,i, € A, where i #i,,1<r,s<k let the corresponding odd-like

idempotents be

Dy, =md, +(1-7,)d,. 9)
D{'il,izmik} = (77il T, e, )dz + (]-_’7i1 I/ a/ )dl' (10)
Similarly we define even-like idempotents for ie A and i,i,,-:-,i, € A,

i, =i, 1<r,s<k,
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B,y =7€ +(1-17)e,. (11)
Efy =€ +(1-7)e. (12)
Epipi = (7 +7, + )+ (L=m, —m, ==, )&, (13)
E{,ilvizf“xik} = (77il T, o )ez + (1_ Ty =M, =~ )el' (14)
Let Qg Q{'i} ey i) Q{Iilvin"'vik} denote the odd-like duadic codes and
S{i}, S{'i}, S{il,iz,--~,ik}' S{'il,iz,"',ik} denote the even-like duadic codes over R generated by

the corresponding idempotents, 7.e.

Qu=(Dy)» Qy=(Diy)> Sy =(Ey)> Sy =(Epy)>
Q{il,iz,m,ik} = <D{i1,i2,.u,ik}> > Q{,ﬁvizr“vik} = <D{’i1,i2,-u,ik}> >

Sfvip i) = <E{i1,iz,---,ik}> > Siipeni) = <E{'i1,iz,-»-,ik}> :
Theorem 3: Let g=1(mod(m-1)), Then for icA, Qy is equivalent to Qj

and S{i} is equivalent to S{’i}. For i,i,,-,i, €A, i #i,1<r,s<Kk, Q{il’izmik} is
is equivalent to Sf, .

equivalent to Q{’il’izmik}, and S{ - Further there are

it ip i}
2™' _1 inequivalent odd-like duadic codes and 2™'—1 inequivalent even-like
duadic codes over the ring R .

Proof: Let the multiplier 4 give splitting of C, and C, or of D, and D,.
Then 4, (d,)=d,, u(d,)=d;, s (e)=¢,, u(e,)=€ andso
My (77id1 +(1_’7i )dz) =nd, +(1_’7i )dl’ Hy (’7ie1 +(]-_77i )ez) =€, +(1_77i )el >

Hy (D{ilyizﬁ.nik} ) = D{’irizwnik} > My (E{i1,i2,-~~,ik} ) = E{’ilvizﬁ”vik} . This proves that Q, ~Q/

5 =S/, Q{ilvin'"vik} N Q{'il:izv'wik} »and S{ilvin"‘vik} - S{'il:izf"vik}'
Note that D,y =Dfy» By yy =By Duiyig = Biiori > Bactiiprid = Bl
Therefore
Quty = Qi = Qup Sugy = Siy = Sy (15)
Qutisoriet ™ Qnsorict Sactiorie) ™ Stuipi (16)

For a given positive integer 4, the number of choices of the subsets {il, iz,m,ik} of

m
A is .
Let m be even first. Then ‘{il,iz,n-,im/z}‘:‘A—{il,iz,---,im/z}‘:%. Using (15) and

(16), we find that the number of inequivalent odd-like or even-like duadic-codes is

m) (m m 1( m o ) .
+ oot += =2""-1.If mis odd the number of inequiv-
1 2 (m/2)-1) 2(m/2

m m m
alent odd-like or even-like duadic codes is + +-oot =2"_1,
1) (2 (m-1)/2
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m| m
Let [x] denote the greatest integer <X. we have {E} =— when m is even and

[m} = m—_l when mis odd.
2 2

Theorem 4: If qsl(mod(m—l)), then for subsets {i,i,,---,i;} of A with
cardinality & 1<k < [%} , the following assertions hold for duadic codes over R .
@) Q (i i Q{lﬁvizr“vik} = <T(X)>'

() Qpiyi) + Qliipyie) = R
(i) S{ilxin'"xik} o S{'ilxizf"xik} = {0} d

W) Sy * Sy = (L= T (),
) Sm ip i a <T(X)> = {O}’ S{’ilxizf”vik} ﬁ<-j—(X)> - {0}’

(vi) S{' ‘+< ( )> Q'ul {hxizv"wik}+<T(X)>:Q'l'1'z Sid?

(vii) ‘Q{il,iz.w,ik} =

Proof: From the relations (2),(6)-(14) we see that D{il,iz,-v-,ik} + D{,il,iz,l--,ik} =d, +d,,

Eppon +Efp =6 +& > Dy D =dd, and E,,  El. . =ee,.
Therefore by Lemmas 1 and 4, Q, .. NQL, .. =<D{i1,i2,»~ Dl >=<J( )>
and

Q{'l f2r '1 iz i <D {ivdz i 11 ig o) D{il,iz,-u,ik}D{Iil,izyu.vik}> = <d1 +d, - d1d2> =R, ;
S{il,iz 11 ip <E iy ,1 iy }> = (0) , and

S '

{insiz, i} '1 i, ik | <E {i g ik} |1 i} E{ilvizf“vik}E{ilvizf“vik}> This proves (i)-(iv)
-Jj(x

(el+ez elez> {L-700)

Using that j(x)=(1-e —e,) and ee,=0 from Lemma 3 and noting that
e =e,e; =e, wefindthat E,, . (7(x))=0.

Similarly using (e, +7(x))=d, and (e,+7(x))=d, from Lemma 3, we see that
E{ilxizw“vik} * (T(X)) = D{il,iz,m,ik} .

Therefore S, . m(T(x) =<E{i1vi2'”"ik}(T(x))>={0}, and

S (TN = (B +T()=Ep 3 T(0)=(Dyy )= Qi - This

proves (v) and (vi).

Finally for 1<k < {%} , we have

Qi iy O Qi i

K.y,

=T C)=am

it being a repetition code over R . Therefore

K2
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2

Qii i ,ii i Qii i
q™ :|Rn|:‘Q{il,i2,.,.,ik}+Q{,i1,i2,<..,ik} = ‘ et {1,.2' e :‘ {lém’k}
‘Q{hvizr"vik} a Q{ilvizf”vik}
m(n+1)
This gives ‘Q{il’izmik} =q 2 .Now we find that
m(n+1)
q? :‘Q{il,iz,m,ik} :‘S{il,iz,m,ik} +<J (X)>‘:‘S{i1,i2,-~,ik} (J (X)>|:‘S{i1,i2,..<,ik} q".
m(n-1)
since ‘S{il’izmik}m<T(x)>‘=|<O>|=l.This gives ‘S{a,iz,m,ik} =q 2 .

Theorem 5 : If q=1(mod(m-1)), and if 4,(C,)=C,, u,(C,)=C, then for
each possible tuple {il,iz,'--,ik} € A, the following assertions hold for duadic codes
over R.

() Q

(ii) S«{il,iz,---,ik} is self orthogonal.

(i 1'1 i i}

Proof: By using Lemma 2 and Lemma 4, we have C, =D; :<1—,ufl(dl(x))> $0
d, (x‘l) =1-g (x). Similarly d, (X_l) =1-e,(x).For

.1.2 i (X) (77i1 +17, +”'+77ik)d1(x)+(1_77i1 -1, _"'_Uik)dz(x)’
1-Dyy il (X’l)zl—(nil +1, T )(1—el(x))—(1—77il -1, —---—nik)(l—ez(x)) |
:(77i1 R/ Y )el(x)+(l_77i1 R/ / )ez (X) = E{il,iz,m,ik} (X)

Now result (i) follows from Lemma 4. Using (vi) of Theorem 4, we have
S  SQ SL ... Therefore S, . ., isself orthogonal.
{igip, i {igip, i {ig.ipwi {ig.ig ik}

Similarly we get
Theorem 6 : If q=1(mod(m-1)) and u,(C,)=C,, u,(C,)=C, then for all

possible choices of {i,i,,--,i} € A, the following assertions hold for duadic codes

over R.
(@) Q{ll i = S’i1 {inig ik} !
rL
(11) Q'1'2 Sk {'1'2 S

The extended duadic codes over [F, +UF, +---+ um’lIE‘q are formed in the same way

as the extended duadic codes over [, are formed. See Theorem 6.4.12 of [10].
Consider the equation
1+7°n=0. (17)
This equation has a solution y in F, if and only if 7 and -1 are both squares or
both non squares in F, (see [10], Chapter 6).
Theorem 7: Suppose there exist a y in [, satisfying Equation (17). If
14(C)=C,, u,(C,)=C, then for all possible choices of {i,i,, i} €A, the

extended duadic codes Qi i)

Proof: As Qi i = Stiproic) +<'j'(x)> , by Theorem 4, let Qiiyie) be the exten-

oflength n+1 are self-dual.

ded duadic code over R generated by
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o 012 ---n-1

0
_ 0 G{ilvizr"vik}
{igdz ik}
-ny 111 .- 1
where G, . ., is a generator matrix for the even-like duadic code S.. ... The
{ivsig ik} {insig i}

row above the matrix shows the column labeling by Z, U . Since the all one vector

belongs to Q{il’izmik} and its dual Q{tﬂz is equal to S{ , the last row of

i)

Gyipri) 18 orthogonal to all the previous rows of G, . ., . The last row is orthog-
i gk {ipig i}

i i |

onal to itself also as y?n’+n=0 in [, . Further as S{ i) s self orthogonal by

i ik

Theorem 5, we find that the code Q{il,iz,---, is self orthogonal. Now the result foll-

i}
m(n+1)
= q 2 = Q{
Theorem 8: Suppose there exists a y in [, satisfying Equation (17). If
11(C)=C,, u,(C,)=C, then for all possible choices of {i,i,, --,i} €A, the
L ’
} =Q{i1,i2,---,ik} :

m L

ows from the fact that ‘Q{h,iz,-~-,ik} S

=q

{ilvizv""ik} illiZl“'vik}

extended duadic codes satisfy Q{

igdg g

Proof: Let Q.. ., and Q. ., be the extended duadic codes over R
(i it (i}

generated by
o 012 ---n-1
0
0
- - iz i}

Gy =Gy i) = B

-ny 111 1
and

o 012 n-1
0

G =G — 0 G{lhvizv“xik}

27 i i)
-ny 111 .1

respectively where G{i ;

i i) is a generator matrix for the duadic code S{ and

g i |

., is a generator matrix for the duadic code S/ . . .Let vdenote the all one
{inda i} {iiz i}

!

vector of length n. As ve Q{,ﬁ,izy" | and Q{’;izv___’ik} =S i)’ vis orthogonal to all the

i

rows of G,

i) - AlsO (-ny,v)-(-ny,v)=0. Further rows of G{Iilxin"'xik} are in
St i) = Q{iyizv“'vik} , so are orthogonal to rows of G{il,iz,---,ik}' Therefore all rows of G,

are orthogonal to all the rows of G,. Hence Q{,ilyizr”,ik} gQ{ L. Now the result

i i |
follows from comparing their orders.
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Corollary: Let the matrix V taken in the definition of the Gray map ® satisfy
W' =Al,, 2€F,.If u,(C,)=C,, then for all possible choices of {i,i,," i} €A,

the Gray images of extended duadic codes Q{il,iz,---,ik}

codes of length m(n+1) over F, and the Gray images of the even-like duadic codes

Le. @(Q{il,izmik}) are self-dual

S{il'iZ""'ik} ie. (D(S{il,izmik}) are self-orthogonal codes of length mn over F . If

4,(C,)=C,, then (D(Q{il’izmik}) are formally self-dual codes of length m(n+1)
over [F,.

Next we give some examples to illustrate our theory. The minimum distances of all
the examples appearing have been computed by the Magma Computational Algebra

System.
2 2 1
Example 1: Let m=3, =7, n=9 and V=|1 2 2 | be a matrix over F,
2 1 -2

satisfying VV' =21 . The even like idempotent generators of duadic codes of length 9
over I, are € =2x"+x +3x° +2x° + X" +2x* + x+ 2,
g, =X +2x" +x° +2x* +3x* + X’ +2x+2 . Here u ,(e,)=e,, wu,(e,)=¢,.The Gray
image of even like duadic code S{l} is a self-orthogonal [27,12,6] code over F,. Here
thereisno y e[, satisfying Equation (17).

Example 2: Let m=4, =13, n=9 and

2 -2 1 1
-11 2 2
V =
2 2 1 41
1 1 -2 2

be a matrix over F, satisfying VV' =101 . The even like idempotent generators of
duadic codes of length 9 over F,; are € =x®+9x” +6x° +x° + 9x* + 4x® + x* + 9x +12,
6, =9 +x +4x°+9x° + x* +6x° +9x* +x+12 . Here 1, (e)=6,, u,(e,)=¢

and y =6 is a solution of (17). The Gray image @((5{1}) of extended duadic code
Qy isa self-dual [40,20,6] code over F,.

Example 3: Let m=6, =11, n=5 and

11 1 1 1 1
1 2 3 1 2 3
1 3 2 1 -3 2
11 1 -1 -1 -1
1 2 3 -1 -2 3
1 3 2 -1 3 -2

be a matrix over [, satisfying VV' =6l . The even like idempotent generators of

duadic codes of length 5 over F, are e =6x"+9x° +4x* +7x+7,
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€, =7x" +4x° +9x* +6x+7. The Gray image of even like duadic code S, is a self-

orthogonal [30,12,8] code over I;.

Example4:Let m=4, q=4, n=5 and let a be the primitive element of F,

V=l
a= a -1 1
1 1 & -a
be a matrix over F, satisfying VV' =1. The even like idempotent generators of

duadic codes of length 5 over F, are e =ax*+a’x’+a’x* +ax,

e, =

a’x* +ax® +ax* +a’x. Here u,(e)=¢, u,(e,)=¢e, and y=1 is a solution

of (17). The Gray image CD(Q{l}) of extended duadic code (3{1} is a formally self-dual

[24,12,6] code over F,.
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