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Abstract 

Let 2m ≥  be any natural number and let 2 1m
q q q qu u u −= + + + +      be a fi-

nite non-chain ring, where mu u=  and q is a prime power congruent to 1 modulo 
( )1m − . In this paper we study duadic codes over the ring   and their extensions. 

A Gray map from   to m
q  is defined which preserves self duality of linear codes. 

As a consequence self-dual, formally self-dual and self-orthogonal codes over q  
are constructed. Some examples are also given to illustrate this.  
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1. Introduction 

Duadic codes form a class of cyclic codes that generalizes quadratic residue codes from 
prime to composite lengths. While initially quadratic residue codes were studied within 
the confines of finite fields, there have been recent developments on quadratic residue 
codes over some special rings. Pless and Qian [1] studied quadratic residue codes over 

4 , Chiu et al. [2] extended the ideas to the ring 8  and Taeri [3] considered QR- 
codes over 9 . Kaya et al. [4] and Zhang et al. [5] studied quadratic residue codes over 

p pu+   where p is an odd prime. Kaya et al. [6] studied quadratic residue codes over 
2

2 2 2u u+ +    whereas Liu et al .  [7] studied them over non-local  ring  
2

p p pu u+ +    where 3u u=  and p is an odd prime. The authors [8] along with 

Kathuria extended their results over the ring 2 3
p p p pu u u+ + +     where 4u u=  

and ( )1 mod 3p ≡ . In [9] the authors studied quadratic residue codes and their 
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extensions over the ring 2 1m
p p p pu u u −+ + + +     where mu u=  and p is a prime 

satisfying ( )( )1 mod 1p m≡ −  generalizing all the previous results.  

There are duadic codes which are not quadratic residue codes, but they have 
properties similar to those of quadratic residue codes. In this paper we extend our 
results of [9] to duadic codes over the ring 2 1m

q q q qu u u −= + + + +    , where 
mu u= , q is a prime power congruent to 1 modulo ( )1m − . The Gray map defined in 

[9] is also extended from n mn
q→   which preserves linearity and in some special 

cases preserves self duality. The Gray images of extensions of duadic codes over the ring 
  lead to construction of self-dual, formally self-dual and self-orthogonal codes. We 
give some examples of duadic but non quadratic residue codes which give rise to a 
[40,20,6] self-dual code over 13 , a [27,12,6] self orthogonal code over 7 , a [30,12,8] 
self-orthogonal code over 11  and a formally self-dual [24,12,6] code over 4 .  

The paper is organized as follows: In Section 2, we recall duadic codes of length n 
over q  and state some of their properties. In Section 3, we study the ring 

[ ] / m
q u u u= − , cyclic codes over ring   and define the Gray map 

: n mn
qΦ →  . In Section 4, we study duadic codes over  , their extensions and give 

some of their properties. We also give some examples to illustrate our results. 

2. Duadic Codes over q  and Their Properties  

In this section we give the definition of duadic codes and state some of their properties. 
Before that we need some preliminary notations and results. 

A cyclic code   of length n over q  can be regarded as an ideal of the ring 

[ ] / 1n
n q x x= −  . It has a unique idempotent generator ( )e x . 

Let ( ) ( )2 11 1 nj x x x x
n

−= + + + + . The [ ], 1n n −  cyclic code n  has generating 

idempotent ( )1 j x− , its dual is the repetition code with generating idempotent 
( )j x . 
A polynomial ( )  i

i nia x a x= ∈∑   is called even like if ( )1 0a =  otherwise it is 

called odd like. A code   is called even like (odd like) if all its codewords are even like 
(odd like). For ( ), 1a n = , :a n nµ →   defined as ( ) ( )mod a i ai nµ =  is called a 
multiplier where { }0,1, 2, , 1n n= − . It is extended on n  by defining 

( ) ( )a ii
a i ii if x f xµµ =∑ ∑ . 

Suppose n is odd, ( ), 1n q =  and 1 2 0n S S= ∪ ∪ , where 
(i) 1S , 2S  are union of q-cyclotomic cosets mod n. 
(ii) 1 2S S φ∩ =  
(iii) There exists a multiplier bµ , ( ), 1b n =  such that ( )1 2b S Sµ =  and 
( )2 1b S Sµ = . 

Then codes 1  and 2  having 1S  and 2S  as defining sets are called a pair of 
odd like duadic codes and codes 1  and 2  having { }1 0S ∪  and { }2 0S ∪  as def- 
ining sets are called a pair of even like duadic codes. 
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It is known that duadic codes exist if and only if q is a square mod n.  
There is an equivalent definition of duadic codes in terms of idempotents. (For 

details see Huffman and Pless [10], Chapter 6). 
Let ( )1e x  and ( )2e x  be two even like idempotents with ( )1 1e x=  and 

( )2 2e x= . The codes 1  and 2  form a pair of even like duadic codes if and 
only if  

(1) the idempotents satisfy 

( ) ( ) ( )1 2 1e x e x j x+ = −  

(2) There is a multiplier bµ  such that 

( )( ) ( )1 2b e x e xµ =  and ( )( ) ( )2 1b e x e xµ = . 

i.e. ( )1 2bµ =   and ( )2 1bµ =   

Associated to 1  and 2  there is a pair of odd like duadic codes 1  and 2  
generated by idempotents ( )1d x  and ( )2d x  respectively, where ( ) ( )1 21d x e x= − , 

( ) ( )2 11d x e x= −   
If (1) and (2) hold we say that bµ  gives a splitting for even like duadic codes 1  

and 2  or for the odd like duadic codes 1  and 2 . 
Lemma 1: Let ( )1 1e x=  and ( )2 2e x=  be a pair of even-like duadic codes 

of length n over q . Suppose aµ  gives the splitting for 1  and 2 . Let 1  and 

2  be the associated odd-like duadic codes. Then: 
(i) 1 2 0,e e =  
(ii) { }1 2 0∩ =   and 1 2 n+ =   , 
(iii) i  is even like subcode of i  for 1, 2i = ,  
(iv) ( )1 2 j x∩ =   and 1 2 n+ =   , and  

(v) ( ) ( ) ( )i i ij x j x e x= + = +  for 1, 2i = . 

This is part of Theorem 6.1.3 of [10]. 
Lemma 2: Let 1  and 2  be a pair of even-like duadic codes over q  with 1  

and 2  the associated pair of odd-like duadic codes. 

(i) If ( )1 1 2µ− =   and ( )1 2 1µ− =    
then 1 1

⊥ =   and 2 2
⊥ =  . 

(ii) If ( )1 1 1µ− =   and ( )1 2 2µ− =   
then 1 2

⊥ =   and 2 1
⊥ =    

Proof follows from Theorems 6.4.2 and 6.4.3 of [10]. 
Lemma 3: ( )1 2 1d d j x+ = + , ( )1 2 1e e j x+ = − , ( )1 1d e j x− = , ( )2 2d e j x− = . 

Further ( )1 2d d j x=  and 1 2 0e e = . 
Proof follows immediately from the definition and Lemma 1.  

3. Cyclic Codes over the Ring  and the Gray Map   

Let q be a prime power, sq p= . Throughout the paper,   denotes the commutative 

ring 2 1m
q q q qu u u −+ + + +    , where mu u= , 2m ≥  is a natural number and 
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( )( )1 mod 1q m≡ − .   is a ring of size mq  and characteristic p. For a primitive 

element α  of q , take 
1
1

q
mξ α
−
−= , so that 1 1, 1mξ ξ− = ≠  and 

2 3 1 0m mξ ξ ξ− −+ + + + = . Let 1 2 3, , , , mη η η η  denote the following elements of  :  

( ) ( )
( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1
1

1 2 2 1
2

1 2 2 2 2 1
3

2 21 2 2 2 2 2 1
4

2 21 2 2 2 2 2 1

1 ,

1 ,

1 ,

1 ,

1 .

m

m m

m m m

m m m

mm m m m m
m

u

m u u u u

m u u u u

m u u u u

m u u u u

η

η

η ξ ξ ξ

η ξ ξ ξ

η ξ ξ ξ

−

− − −

− − − −

−− − −

−− − − − − −

= −

= − + + + +

= − + + + +

= − + + + +

= − + + + +











          (1) 

A simple calculation shows that  

2

1
, 0  for 1 , ,   and 1.

m

i i i j i
i

i j m i jη η ηη η
=

= = ≤ ≤ ≠ =∑              (2) 

The decomposition theorem of ring theory tells us that 

1 2 mη η η= ⊕ ⊕ ⊕    . 
For a linear code   of length n over the ring  , let  

{ }
{ }

{ }

1 1 2 3 1 1 2 2

2 2 1 3 1 1 2 2

1 2 1 1 1 2 2

:  , , ,  such that ,

:  , , ,  such that 

:  , , ,  such that 

n n
q m q m m

n n
q m q m m

n n
m m q m q m m

x x x x x x x

x x x x x x x

x x x x x x x

η η η

η η η

η η η−

= ∈ ∃ ∈ + + + ∈

= ∈ ∃ ∈ + + + ∈

= ∈ ∃ ∈ + + + ∈

 

 



 

 

 

 

 

 

 

. 

Then 1 2, , , m    are linear codes of length n over q , 1 1 2 2 m mη η η= ⊕ ⊕ ⊕     
and 1 2  m=     . For a code   over  , the dual code ⊥  is defined as 

{ } | 0 for all nx x y y⊥ = ∈ ⋅ = ∈    where x y⋅  denotes the usual Euclidean inner 

product.   is self-dual if ⊥=   and self-orthogonal if ⊥⊆  . A code   is called 
formally self-dual if   and ⊥  have the same weight distribution.  

The following result is a simple generalization of a result of [7]. 
Theorem 1: Let 1 1 2 2 m mη η η= ⊕ ⊕ ⊕     be a linear code of length n over  . 

Then  
(i)   is cyclic over   if and only if , 1, 2, ,i i m=   are cyclic over q . 

(ii) If ( ) ( ) [ ]
, 

1
q

i i i n

x
g x g x

x
= ∈

−



, ( ) ( )| 1n

ig x x − , then 

( ) ( ) ( ) ( )1 1 2 2, , , m mg x g x g x g xη η η= =  where 

( ) 1 1 2 2 m mg x g g gη η η= + + +  and ( ) ( )| 1ng x x − . 

(iii) Further ( )1
m

iimn deg gq =−∑= . 

(iv) Suppose that ( ) ( ) 1, 1 .n
i ig x h x x i m= − ≤ ≤  Let 

( ) ( ) ( ) ( )1 1 2 2= ,m mh x h x h x h xη η η+ + +  then ( ) ( ) 1ng x h x x= − .  
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(v) 1 1 2 2 .m mη η η⊥ ⊥ ⊥ ⊥= ⊕ ⊕ ⊕      
(vi) ( ) ,h x⊥ ⊥=  where ( ) ( ) ( ) ( )1 1 2 2 m mh x h x h x h xη η η⊥ ⊥ ⊥ ⊥= + + + , where 
( )ih x⊥  is the reciprocal polynomial of ( ) , 1 .ih x i m≤ ≤   

(vii) ( )1
m

ii deg gq =⊥ ∑= . 
The following is a well known result : 
Lemma 4: (i) Let C be a cyclic code of length n over a finite ring S generated by the 

idempotent E in [ ] / 1nS x x −  then C⊥  is generated by the idempotent 

( )11 E x−− . 
(ii) Let C and D be cyclic codes of length n over a finite ring S generated by the idem- 

potents 1 2,E E  in [ ] / 1nS x x −  then C D∩  and C D+  are generated by the ide- 

mpotents 1 2E E  and 1 2 1 2E E E E+ −  respectively. 
Let the Gray map : m

qΦ →   be given by  

( ) ( ) ( ) ( ) ( )( )

( )

( ) ( )
( ) ( )

( ) ( )

( )

2 1 2
0 1 2 1

2 2

2 22 2 2

2 23 3 3
0 1 2 1

2 22 2 2

0 1 2 1

0 , 1 , , ,

1 1 1 1 1
0 1

0 1

, , , , 0 1

0 1

0 1 1 1 1

, , , ,

m m
m

m

m

m
m

mm m m

m

r u a a u a u a u r r r r V

a a a a V

a a a a MV

ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− −
−

−

−

−
−

−− − −

−

= + + + +

 
 
 
 
 
 

=  
 
 
 
 
 
 

=

  











     







 

where M is an m m×  nonsingular matrix of Vandermonde determinant 

( )1 1
j i

i j m ξ ξ
≤ < ≤ −

−∏  and V is any nonsingular matrix over q  of order m m× . This 

map can be extended from n  to mn
q  component wise. 

Let the Gray weight of an element r∈  be ( ) ( )( )G Hw r w r= Φ , the Hamming 
weight of ( )rΦ . The Gray weight of a codeword ( )0 1 1, , , n

nc c c c −= ∈   is defined 
as ( ) ( ) ( )( ) ( )( )1 1

0 0
n n

G G i H i Hi iw c w c w c w c− −

= =
= = Φ = Φ∑ ∑ .  For  any two elements 

1 2, nc c ∈ , the Gray distance Gd  is given by 
( ) ( ) ( ) ( )( )1 2 1 2 1 2,G G Hd c c w c c w c c= − = Φ −Φ .  

Theorem 2. The Gray map Φ  is an q -linear, one to one and onto map. It is also 
distance preserving map from ( n , Gray distance Gd ) to ( mn

q , Hamming distance). 

Further if the matrix V satisfies T
mVV Iλ= , *

qλ ∈ , where TV  denotes the transpose 
of the matrix V, then the Gray image ( )Φ   of a self-dual code   over   is a self- 
dual code in mn

q .  

The proof follows exactly on the same lines as the proof of Theorem 2 of [9]. The 
only difference is that here q is an arbitrary prime power and not just an odd prime. For 
the sake of completeness of the result we reproduce the proof here. 

Proof. The first two assertions hold as MV  is an invertible matrix over q . 
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Let now ( )ijV v= , 1 ,i j m≤ ≤ , satisfying T
mVV Iλ= . So that  

2

1 1
   for all ,1   and   0  for .

m m

jk jk k
k k

v j j m v v jλ
= =

= ≤ ≤ = ≠∑ ∑


             (3) 

Let   be a self-dual code over  . Let ( ) ( )0 1 1 0 1 1, , , , , , ,n nr r r r s s s s− −= = ∈    

where 1
0 1 1

m
i i i imr a a u a u −

−= + + +  and 1
0 1 1

m
i i i ims b b u b u −

−= + + + . Then  
1 1 1 1

0 0 0 0
0    

n n m m
j

i i ij i
i i j

r s r s a b u
− − − −

+

= = = =

= ⋅ = =∑ ∑∑∑ 





 

implies that (comparing the coefficients of ru  on both sides) 
1

0 0
0

0
n

i i
i

a b
−

=

=∑                             (4) 

( )
1

0 1 , 1 0 , 1 , 1 , 2 , 1 0
0

0,
n

i ir i i r ir i ir i m i r i m i m i
i

a b a b a b a b a b a b
−

− − + − −
=

+ + + + + + + =∑      (5) 

for each r, 1 1.r m≤ ≤ −  
For convenience we call ( ) ( ) ( ) ( )( ) ( )2

1 20 , 1 , , , , , ,m
i i i i i i imr r r rξ ξ α α α− = 

 and 

( ) ( ) ( ) ( )( ) ( )2
1 20 , 1 , , , , , ,m

i i i i i i ims s s sξ ξ β β β− = 
. Then  

( ) ( )1 2 1 2
1 1 1

, , ,  ,   , ,  
m m m

i i i im ij j ij j ij jm
j j j

r V v v vα α α α α α
= = =

 
Φ = =  

 
∑ ∑ ∑   

Similarly  

( ) 1 2
1 1 1
 ,   , ,  .

m m m

i i i i ms v v vβ β β
= = =

 Φ =  
 
∑ ∑ ∑

     

  

  

Using (2), we find that 

( ) ( )
1 1 1

2

1, 1 1 1, 1 1
  .

m m m

i i ij i jk k
k j

m m m m m m

ij ij jk ij i jk k ij ij
j j k j j k j

r s v v

v v v

α β

α β α β λ α β

= = =

= = = = = ≠ = =

Φ ⋅Φ =

   = + =   
   

∑∑∑

∑ ∑ ∑ ∑ ∑ ∑

 



 

  

 

Now  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1

0 0 1

1

1 1
0 2

1 1
2 2

0 0
0 0 2

1 2

0 0

1 2 1 1

0 0 0 0

1

0

 

 

 

 

 

n n m

i i ij ij
i i j

n m

i i ij ij
i j

n n m
j j

i i i i
i i j

n m
k k

i i
i k

n m m m
kj k

ik i
i k j

n

i

r s r s

a b r s

r s

a b

λ α β

α β α β

ξ ξ

ξ ξ

ξ ξ

− −

= = =

−

= =

− −
− −

= = =

− −

= =

− − − −

= = = =

−

=

Φ ⋅Φ = Φ ⋅Φ =

 
= + 

 

= +

=

  =   
  

=

∑ ∑∑

∑ ∑

∑ ∑∑

∑∑

∑∑ ∑ ∑

∑







( )
2 1 1

0 0 0

2 2
0 1 2 2

   

      say.

m m m
k j

ik i
k j

m
m

a b

A A A A

ξ

ξ ξ ξ

− − −
+

= = =

−
−= + + + +

∑∑∑ 
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Using (3) and (4), one can check that each iA  is zero, which proves the result.  

4. Duadic Codes over the Ring    

We now define duadic codes over the ring   in terms of their idempotent generators. 

Let n  denote the ring [ ]
1n

x
x −


. Using the properties (2) of idempotents iη , we 

have  
Lemma 5: Let ( )( )1 mod 1q m≡ −  and , 1i i mη ≤ ≤  be idempotents as defined in 

(1). Then for { }1 2, , , 1, 2mi i i ∈  and for any tuple ( )1 2
, , ,

mi i id d d  of odd-like idem- 

potents not all equal and for any tuple ( )1 2
, , ,

mi i ie e e
 of even-like idempotents not all 

equal, 
1 21 2 mi i m id d dη η η+ + +  and 

1 21 2 mi i m ie e eη η η+ + +  are respectively odd-like 

and even-like idempotents in the ring [ ]
1n n

x
x

=
−


 . 

Throughout the paper we assume that q is a square mod n so that duadic codes of 
length n over q  exist. The construction and the properties of duadic codes over the 
ring   is similar to that of quadratic residue codes over the ring 

2 1m
p p p pu u u −+ + + +    , where mu u=  given in [9]. We denote the set 

{ }1, 2, , m  by  . For each i∈ , let { }iD  denote the odd-like idempotent of the 

ring n  in which 1d  occurs at the ith place and 2d  occurs at the remaining 
1, 2, , 1, 1, ,i i m− +   places i.e.  

{ } ( )1 2 2 2 1 2 1 1 2 2 1 21 .i i i m i iiD d d d d d d d dη η η η η η η η− += + + + + + + + = + − 
   (6) 

For 1 2,i i ∈ , 1 2i i≠  let { }1 2,i iD  denote the odd-like idempotent in which 1d  occ- 
urs at the 1thi  and 2thi  places and 2d  occurs at the remaining 

1 1 2 21, 2, , 1, 1, , 1, 1, ,i i i i m− + − +    places i.e.  

{ }

( ) ( )

1 1 11 2

2 2 2

1 2 1 2

1 2 2 2 1 2 1 1 2,

1 2 1 1 2 2

1 21 .

i i ii i

i i i m

i i i i

D d d d d d

d d d d

d d

η η η η η

η η η η

η η η η

− +

− +

= + + + + + +

+ + + + +

= + + − −

 

            (7) 

In the same way, for 1 2, , , ki i i ∈  , , 1 ,r si i r s k≠ ≤ ≤  let { }1 2, , , ki i iD


 denote the 

odd-like idempotent  

{ } ( ) ( )1 2 1 21 2 1 2, , , 1 .
k kk i i i i i ii i iD d dη η η η η η= + + + + − − − −



          (8) 

For i∈ , 1 2, , , ki i i ∈  , where , 1 ,r si i r s k≠ ≤ ≤  let the corresponding odd-like 
idempotents be  

{ } ( )2 11 .i iiD d dη η′ = + −                        (9) 

{ } ( ) ( )1 2 1 11 2 2 1, , , 1 .
k kk i i i i i ii i iD d dη η η η η η′ = + + + + − − − −



         (10) 

Similarly we define even-like idempotents for i∈  and 1 2, , , ki i i ∈  , 
, 1 ,r si i r s k≠ ≤ ≤ ,  
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{ } ( )1 21 .i iiE e eη η= + −                         (11) 

{ } ( )2 11 .i iiE e eη η′ = + −                         (12) 

{ } ( ) ( )1 2 1 21 2 1 2, , , 1 .
k kk i i i i i ii i iE e eη η η η η η= + + + + − − − −



           (13) 

{ } ( ) ( )1 2 1 21 2 2 1, , , 1 .
k kk i i i i i ii i iE e eη η η η η η′ = + + + + − − − −



           (14) 

Let { } { } { } { }1 2 1 2, , , , , ,, , , 
k ki i i i i i i iQ Q Q Q′ ′

 

 denote the odd-like duadic codes and 

{ } { } { } { }1 2 1 2, , , , , ,, , , 
k ki i i i i i i iS S S S′ ′

 

 denote the even-like duadic codes over   generated by 

the corresponding idempotents, i.e.  

{ } { }i iQ D= , { } { }i iQ D′ ′= , { } { }i iS E= , { } { }i iS E′ ′= , 

{ } { }1 2 1 2, , , , , ,k ki i i i i iQ D=
 

, { } { }1 2 1 2, , , , , ,k ki i i i i iQ D′ ′=
 

, 

{ } { }1 2 1 2, , , , , ,k ki i i i i iS E=
 

, { } { }1 2 1 2, , , , , ,k ki i i i i iS E′ ′=
 

. 

Theorem 3: Let ( )( )1 mod 1q m≡ − , Then for i∈ , { }iQ  is equivalent to { }iQ′  

and { }iS  is equivalent to { }iS ′ . For 1 2, , , ki i i ∈  , , 1 ,r si i r s k≠ ≤ ≤ , { }1 2, , , ki i iQ


 is 

equivalent to { }1 2, , , ki i iQ′


, and { }1 2, , , ki i iS


 is equivalent to { }1 2, , , ki i iS ′


. Further there are 
12 1m− −  inequivalent odd-like duadic codes and 12 1m− −  inequivalent even-like 

duadic codes over the ring  . 
Proof: Let the multiplier bµ  give splitting of 1  and 2  or of 1  and 2 . 

Then ( )1 2b d dµ = , ( )2 1b d dµ = , ( )1 2b e eµ = , ( )2 1b e eµ =  and so 
( )( ) ( )1 2 2 11 1b i i i id d d dµ η η η η+ − = + − , ( )( ) ( )1 2 2 11 1b i i i ie e e eµ η η η η+ − = + − , 

{ }( ) { }1 2 1 2, , , , , ,k kb i i i i i iD Dµ ′=
 

, { }( ) { }1 2 1 2, , , , , ,k kb i i i i i iE Eµ ′=
 

. This proves that ~i iQ Q′  

~i iS S ′ , { } { }1 2 1 2, , , , , ,~
k ki i i i i iQ Q′

 

, and { } { }1 2 1 2, , , , , ,~
k ki i i i i iS S ′

 

.  

Note that { } { }i iD D− ′= , { } { }i iE E− ′= , { } { }1 2 1 2, , , , , ,k ki i i i i iD D−
′=

  , { } { }1 2 1 2, , , , , ,k ki i i i i iE E−
′=

  . 

Therefore  

{ } { } { } { } { } { }~ ~ ,  ~ ~ ,i i i i i iQ Q Q S S S− −′ ′                   (15) 

{ } { } { } { }1 2 1 2 1 2 1 2, , , , , , , , , , , ,~ ,  ~ .
k k k ki i i i i i i i i i i iQ Q S S− −                  (16) 

For a given positive integer k, the number of choices of the subsets { }1 2, , , ki i i  of 

  is 
m
k

 
 
 

. 

Let m be even first. Then { } { }1 2 2 1 2 2, , , , , ,
2m m
mi i i i i i= − =  . Using (15) and 

(16), we find that the number of inequivalent odd-like or even-like duadic-codes is 

( )
11 2 1

2 11 2 22
mmm m m

m m
−      

+ + + + = −      −      
 . If m is odd the number of inequiv- 

alent odd-like or even-like duadic codes is ( )
12 1

1 21 2
mmm m

m
−    

+ + + = −     −     
 . 



M. Goyal, M. Raka   
 

58 

Let [ ]x  denote the greatest integer x≤ . we have 
2 2
m m  =  

 when m is even and 

1
2 2
m m −  =  

 when m is odd. 

Theorem 4: If ( )( )1 mod 1q m≡ − , then for subsets { }1 2, , , ki i i  of   with 

cardinality k, 1
2
mk  ≤ ≤   

, the following assertions hold for duadic codes over  .  

(i) { } { } ( )
1 2 1 2, , , , , , ,

k ki i i i i iQ Q j x′∩ =
 

 

(ii) { } { }1 2 1 2, , , , , , ,
k k ni i i i i iQ Q′+ =

 

  

(iii) { } { } { }
1 2 1 2, , , , , , 0 ,

k ki i i i i iS S ′∩ =
 

 

(iv) { } { } ( )
1 2 1 2, , , , , , 1 ,

k ki i i i i iS S j x′+ = −
 

 

(v) { } ( ) { } { } ( ) { }
1 2 1 2, , , , , ,0 , 0 ,

k ki i i i i iS j x S j x′∩ = ∩ =
 

 

(vi) { } ( ) { } { } ( ) { }1 2 1 2 1 2 1 2, , , , , , , , , , , ,, ,
k k k ki i i i i i i i i i i iS j x Q S j x Q′ ′+ = + =

   

 

(vii) { }

( )

{ }

( )

1 2 1 2

1 1
2 2

, , , , , ,, .
k k

m n m n

i i i i i iQ q S q
+ −

= =
 

 

Proof: From the relations (2),(6)-(14) we see that { } { }1 2 1 2 1 2, , , , , ,k ki i i i i iD D d d′+ = +
 

, 

{ } { }1 2 1 2 1 2, , , , , ,k ki i i i i iE E e e′+ = +
 

, { } { }1 2 1 2 1 2, , , , , ,k ki i i i i iD D d d′ =
 

 and { } { }1 2 1 2 1 2, , , , , ,k ki i i i i iE E e e′ =
 

. 

Therefore by Lemmas 1 and 4, { } { } { } { } ( )
1 2 1 2 1 2 1 2, , , , , , , , , , , ,k k k ki i i i i i i i i i i iQ Q D D j x′ ′∩ = =

   

, 

and 

{ } { } { } { } { } { }1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , , , , , , , , , , , , ,k k k k k k ni i i i i i i i i i i i i i i i i iQ Q D D D D d d d d′ ′ ′+ = + − = + − =
     

 ; 

{ } { } { } { }1 2 1 2 1 2 1 2, , , , , , , , , , , , 0
k k k ki i i i i i i i i i i iS S E E′ ′∩ = =

   

, and 

{ } { } { } { } { } { }

( )
1 2 1 2 1 2 1 2 1 2 1 2, , , , , , , , , , , , , , , , , ,

1 2 1 2 1
k k k k k ki i i i i i i i i i i i i i i i i iS S E E E E

e e e e j x

′ ′ ′+ = + −

= + − = −

      . This proves (i)-(iv). 

Using that ( ) ( )1 21j x e e= − −  and 1 2 0e e =  from Lemma 3 and noting that 
2 2
1 1 2 2,e e e e= =  we find that { } ( )( )

1 2, , , 0
ki i iE j x =



. 

Similarly using ( )( )1 1e j x d+ =  and ( )( )2 2e j x d+ =  from Lemma 3, we see that 

{ } ( )( ) { }1 2 1 2, , , , , ,k ki i i i i iE j x D+ =
 

. 

Therefore { } ( ) { } ( )( ) { }
1 2 1 2, , , , , , 0 ,

k ki i i i i iS j x E j x∩ = =
 

 and 

{ } ( ) { } ( ) { } ( ) { } { }1 2 1 2 1 2 1 2 1 2, , , , , , , , , , , , , , ,k k k k ki i i i i i i i i i i i i i iS j x E j x E j x D Q+ = + − = =
    

. This 

proves (v) and (vi).  

Finally for 1
2
mk  ≤ ≤   

, we have  

{ } { } ( )
1 2 1 2, , , , , , ,

k k

m
i i i i i iQ Q j x q′∩ = =

 

 

it being a repetition code over  . Therefore  
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{ } { }
{ } { }

{ } { }

{ }1 2 1 2 1 2

1 2 1 2

1 2 1 2

2

, , , , , , , , ,
, , , , , ,

, , , , , ,

.k k k

k k

k k

i i i i i i i i imn
n i i i i i i m

i i i i i i

Q Q Q
q Q Q

qQ Q

′
′= = + = =

′∩

  

 

 

  

This gives { }

( )

1 2

1
2

, , , k

m n

i i iQ q
+

=


. Now we find that  

( )

{ } { } ( ) { } ( ) { }1 2 1 2 1 2 1 2

1
2

, , , , , , , , , , , , .
k k k k

m n
m

i i i i i i i i i i i iq Q S j x S j x S q
+

= = + = =
   

 

since { } ( )
1 2, , , 0 1

ki i iS j x∩ = =


. This gives { }

( )

1 2

1
2

, , , k

m n

i i iS q
−

=


. 

Theorem 5 : If ( )( )1 mod 1q m≡ − , and if ( )1 1 2µ− =  , ( )1 2 1µ− =   then for 

each possible tuple { }1 2, , , ki i i ∈  , the following assertions hold for duadic codes 
over  .  

(i) { } { }1 2 1 2, , , , , , ,
k ki i i i i iQ S⊥ =

 

 

(ii) { }1 2, , , ki i iS


 is self orthogonal.  

Proof: By using Lemma 2 and Lemma 4, we have ( )( )1 1 1 11 d xµ⊥
−= = −   so 

( ) ( )1
1 11d x e x− = − . Similarly ( ) ( )1

2 21d x e x− = − . For 

{ } ( ) ( ) ( ) ( ) ( )
1 2 1 21 2 1 2, , , 1 ,

k kk i i i i i ii i iD x d x d xη η η η η η= + + + + − − − −


 
 

{ } ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) { } ( )

1 2 1 21 2

1 2 1 2 1 2

1
1 2, , ,

1 2 , , ,

1 1 1 1 1

1
k kk

k k k

i i i i i ii i i

i i i i i i i i i

D x e x e x

e x e x E x

η η η η η η

η η η η η η

−− = − + + + − − − − − − −

= + + + + − − − − =





 

 

. 

Now result (i) follows from Lemma 4. Using (vi) of Theorem 4, we have 

{ } { } { }1 2 1 2 1 2, , , , , , , , ,k k ki i i i i i i i iS Q S⊥⊆ =
  

. Therefore { }1 2, , , ki i iS


 is self orthogonal. 

Similarly we get 
Theorem 6 : If ( )( )1 mod 1q m≡ −  and ( )1 1 1µ− =  , ( )1 2 2µ− =   then for all 

possible choices of { }1 2, , , ki i i ∈  , the following assertions hold for duadic codes 
over  . 

(i) { } { }1 2 1 2, , , , , , ,
k ki i i i i iQ S⊥ ′=

 

 

(ii) { } { }1 2 1 2, , , , , , .
k ki i i i i iQ S⊥′ =

 

 

The extended duadic codes over 1m
q q qu u −+ + +    are formed in the same way 

as the extended duadic codes over q  are formed. See Theorem 6.4.12 of [10]. 
Consider the equation  

21 0.nγ+ =                            (17) 
This equation has a solution γ  in q  if and only if n and −1 are both squares or 

both non squares in q  (see [10], Chapter 6). 
Theorem 7: Suppose there exist a γ  in q  satisfying Equation (17). If 

( )1 1 2µ− =  , ( )1 2 1µ− =   then for all possible choices of { }1 2, , , ki i i ∈  , the 

extended duadic codes { }1 2, , , ki i iQ


 of length 1n +  are self-dual. 

Proof: As { } { } ( )
1 2 1 2, , , , , ,k ki i i i i iQ S j x= +

 

, by Theorem 4, let { }1 2, , , ki i iQ


 be the exten- 

ded duadic code over   generated by  
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{ }
{ }1 2

1 2

, , ,
, , ,

0 1 2 1
0
0

1 1 1 1

k

k

i i i
i i i

n

G
G

nγ

∞ −

 
 
 =  
  − 











 

where { }1 2, , , ki i iG


 is a generator matrix for the even-like duadic code { }1 2, , , ki i iS


. The 

row above the matrix shows the column labeling by n ∪∞ . Since the all one vector 

belongs to { }1 2, , , ki i iQ


 and its dual { }1 2, , , ki i iQ⊥


 is equal to { }1 2, , , ki i iS


, the last row of 

{ }1 2, , , ki i iG


 is orthogonal to all the previous rows of { }1 2, , , ki i iG


. The last row is orthog- 

onal to itself also as 2 2 0n nγ + =  in q . Further as { }1 2, , , ki i iS


 is self orthogonal by 

Theorem 5, we find that the code { }1 2, , , ki i iQ


 is self orthogonal. Now the result foll- 

ows from the fact that { } { }

( )

{ }1 2 1 2 1 2

1
2

, , , , , , , , ,k k k

m n
m

i i i i i i i i iQ q S q Q
+

⊥
= = =

  

.  

Theorem 8: Suppose there exists a γ  in q  satisfying Equation (17). If

( )1 1 1µ− =  , ( )1 2 2µ− =   then for all possible choices of { }1 2, , , ki i i ∈  , the 

extended duadic codes satisfy { } { }1 2 1 2, , , , , ,k ki i i i i iQ Q
⊥

′=
 

. 

Proof: Let { }1 2, , , ki i iQ


 and { }1 2, , , ki i iQ′


 be the extended duadic codes over   

generated by  

{ }
{ }1 2

1 2

, , ,
1 , , ,

0 1 2 1
0
0

1 1 1 1

k

k

i i i
i i i

n

G
G G

nγ

∞ −

 
 
 = =  
  − 











 

and  

{ }
{ }1 2

1 2

, , ,
2 , , ,

0 1 2 1
0
0

1 1 1 1

k

k

i i i
i i i

n

G
G G

nγ

∞ −

 
 ′ ′= =  
  − 











 

respectively where { }1 2, , , ki i iG


 is a generator matrix for the duadic code { }1 2, , , ki i iS


 and 

{ }1 2, , , ki i iG′


 is a generator matrix for the duadic code { }1 2, , , ki i iS ′


. Let v denote the all one 

vector of length n. As { }1 2, , , ki i iv Q′∈


 and { } { }1 2 1 2, , , , , ,k ki i i i i iQ S⊥′ =
 

, v is orthogonal to all the 

rows of { }1 2, , , ki i iG


. Also ( ) ( ), , 0n v n vγ γ− ⋅ − = . Further rows of { }1 2, , , ki i iG′


 are in 

{ } { }1 2 1 2, , , , , ,k ki i i i i iS Q⊥′ =
 

, so are orthogonal to rows of { }1 2, , , ki i iG


. Therefore all rows of 2G  

are orthogonal to all the rows of 1G . Hence { } { }1 2 1 2, , , , , ,k ki i i i i iQ Q
⊥

′ ⊆
 

. Now the result 

follows from comparing their orders.  
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Corollary: Let the matrix V taken in the definition of the Gray map Φ  satisfy 
T

mVV Iλ= , *
qλ ∈ . If ( )1 1 2µ− =  , then for all possible choices of { }1 2, , , ki i i ∈  , 

the Gray images of extended duadic codes { }1 2, , , ki i iQ


 i.e. { }( )1 2, , , ki i iQΦ


 are self-dual 

codes of length ( )1m n +  over q  and the Gray images of the even-like duadic codes 

},,2,1{ kiiiS


 i.e. { }( )1 2, , , ki i iSΦ


 are self-orthogonal codes of length mn  over q . If 

( )1 1 1µ− =  , then { }( )1 2, , , ki i iQΦ


 are formally self-dual codes of length ( )1m n +  

over q . 

Next we give some examples to illustrate our theory. The minimum distances of all 
the examples appearing have been computed by the Magma Computational Algebra 
System. 

Example 1: Let 3m = , 7q = , 9n =  and 
2 2 1
1 2 2
2 1 2

V
− 

 =  
 − 

 be a matrix over 7  

satisfying T 2VV I= . The even like idempotent generators of duadic codes of length 9 
over 7  are 8 7 6 5 4 2

1 2 3 2 2 2e x x x x x x x= + + + + + + + , 
8 7 5 4 3 2

2 2 2 3 2 2e x x x x x x x= + + + + + + + . Here ( )1 1 2e eµ− = , ( )1 2 1e eµ− = . The Gray 
image of even like duadic code { }1S  is a self-orthogonal [27,12,6] code over 7 . Here 

there is no 7γ ∈  satisfying Equation (17).  

Example 2: Let 4m = , 13q = , 9n =  and  

2 2 1 1
1 1 2 2

2 2 1 1
1 1 2 2

V

− 
 − =
 −
 

− 

 

be a matrix over 7  satisfying T 10VV I= . The even like idempotent generators of 

duadic codes of length 9 over 13  are 8 7 6 5 4 3 2
1 9 6 9 4 9 12e x x x x x x x x= + + + + + + + + , 

8 7 6 5 4 3 2
2 9 4 9 6 9 12e x x x x x x x x= + + + + + + + + . Here ( )1 1 2e eµ− = , ( )1 2 1e eµ− =  

and 6γ =  is a solution of (17). The Gray image { }( )1QΦ  of extended duadic code 

{ }1Q  is a self-dual [40,20,6] code over 13 . 

Example 3: Let 6m = , 11q = , 5n =  and  

1 1 1 1 1 1
1 2 3 1 2 3
1 3 2 1 3 2
1 1 1 1 1 1
1 2 3 1 2 3
1 3 2 1 3 2

V

 
 − − 
 − −

=  
− − − 

 − − −
  − − − 

 

be a matrix over 11  satisfying T 6VV I= . The even like idempotent generators of 
duadic codes of length 5 over 11  are 4 3 2

1 6 9 4 7 7e x x x x= + + + + , 
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4 3 2
2 7 4 9 6 7e x x x x= + + + + . The Gray image of even like duadic code { }1S  is a self- 

orthogonal [30,12,8] code over 11 . 
Example 4 : Let 4m = , 4q = , 5n =  and let a be the primitive element of 4   

2

2

2

2

1 1
1 1

1 1
1 1

a a
a a

V
a a

a a

 −
 
− =  −
  − 

 

be a matrix over 4  satisfying TVV I= . The even like idempotent generators of 

duadic codes of length 5 over 4  are 4 2 3 2 2
1e ax a x a x ax= + + + , 

2 4 3 2 2
2e a x ax ax a x= + + + . Here ( )1 1 1e eµ− = , ( )1 2 2e eµ− =  and 1γ =  is a solution 

of (17). The Gray image { }( )1QΦ  of extended duadic code { }1Q  is a formally self-dual 

[24,12,6] code over 4 . 
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