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Abstract 
 
The vibration acceleration time history of the cutter holder was separated into three parts; namely, chatter 
free, transition and chatter processes. The reconstructed attractor and probability distribution of vibration 
acceleration time series were studied in order to observe the system’s behavior. The Lyapunov exponent 
andKolmogorov entropy were used to help judge the cutting state. Meanwhile, the relation curves of the 
Lyapunov exponent and entropy versus machining parameters were plotted and discussed. The research 
shows that Lyapunov exponent and Kolmogorov entropy are toned up when vibration acceleration time his- 
tory goes from chatter free, transition to chatter. When cutting state transited from chatter free to chatter, the 
Lyapunov exponent and Kolmogorov entropy increase with increasing amplitude. In addition, the relation 
curves looks like stability lobes. The experimental study allow us to select optimal machining parameters for 
decreasing the uncertainty of cutting vibration.  
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1. Introduction 
 
Machine tool chatter is the self-excited relative oscilla-
tion between the cutting tool and the workpiece devel-
oped under large metal removal rates. It deteriorates the 
workpiece surface, reduces tool and machine life, and 
may create dangerous accidents. Over the last hundred 
years, research on this problem have produced many 
analytical theories. Among these theories, regenerative 
chatter and mode coupling were identified as the princi-
ple theories by Tobias [1] and Tlusty [2]. Merritt [3] 
presented an elegant stability theory for orthogonal turn-
ing using system theory terminology. His formulation 
was latter adopted by many investigators and led to ma-
jor advances towards the understanding and prediction of 
the chatter phenomenon. Hanna [4], Shi and Tobias [5], 
Tlusty [6] and others carried out theoretical and experi-
mental researches on cutting chatter, explained the 
mechanism of stabilization of chatter amplitudes and the 
phenomenon of finite amplitude instability, and pre-
sented a non-linear theory of machine tool chatter. Chaos 
cutting is an important phenomenon which is related to 
the non-linear theory of machine tool chatter. Grabec 

[7-9] analyzed the dynamics of cutting and con-cluded 
that the process was chaotic for a large enough cutting 
force. Gans [10] conducted an extended analysis of the 
cutting model analyzed by Grabec, and modified the 
method to calculate the Lyapunov exponents using sharply 
varying continuous functions to replace the discontinui-
ties nonlinear dynamical system. Gradisek [11] applied 
bifurcation diagrams to illustrate the influence of cutting 
depth on the development of irregular tool oscillations 
based on Grabec’s model. In another paper [12], Gradisek 
indicated that at least two cutting regimes from time se-
ries cutting forces should be distinguished between chat-
ter-free and cutting accompanied by chatter. The chat-
ter-free cutting regime was described as a linearly corre-
lated random process with weak periodic oscillations; 
whereas the chatter regime was described as a low di-
mensional possibly chaotic process with expressive, 
nearly harmonic oscillations. Satishmohan and Akhlesh 
[13] found that turning operations exhibit 
low-dimensional chaos from the surrogate-data test, qua-
siperiodicity test and Lyapunov exponent test. The con-
cept of the state of a system is powerful even for nonde-
terministic systems. There is very little research on un-
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 chatter.  



certainty of cutting state when the cutting system pro-
ceeds from chatter free to chatter, especially for irregular 
chatter. In this paper, the dynamic trait of the vibration 
acceleration time series evolution was studied in detail 
based on experiments during the transition from chatter 
free to
 
2. Theoretical Foundation of Experiment 

Research  
 
2.1. Time Delay  
 
The dynamics of machining systems are very complex 
due to the variety of nonlinear phenomena involved.  

It is well-known that models with constant time delay 
capture the main character of regenerative dynamics and 
can be used to describe linear stability properties in good 
agreement with experiments. However, some phenomena 
can only be explained using more sophisticated models 
that incorporate varying time delay as well. In the past 
century, scholars from all over the world have developed 
a lot of nonlinear analytical models to describe and ex- 
plain the fundamental properties of the process. Typical 
of the single-DOF models on which bifurcation studies 
have been proposed by Hanna & Tobias [4].  
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(1) 
where 0  is the natural frequency of the system, 0  is 
the damping coefficient of the system, 1  is the feeding 
speed index of cutting tools,   is the dynamic cutting 
force coefficients,  is the time delay, which means a 
period of one revolution, is the nonlinear dynamic 
term, and  
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where, i , (i = 2, 3) is the nonlinear coefficient. where 
( )x t T  denotes the delayed value of ( )x t .  
Since the tool experiences vibrations in the y direction 

as well, the time delay   is not equal to the rotation 
period  of the workpiece, but it is determined implic- 
itly by [14]  

T

  2 πR R x t x t               (3) 

Here Ω is the spindle speed given in [rad/s] and R is 
the radius of the workpiece. Thus, the regenerative delay 
is a state-dependent delay since it depends on the state, 
both current ( ( )x t ) and delayed ( (x t ) ).  

Based on the above model, we can use time series of 
cutting tool vibration experimental data which obtained 
from the experiment to reconstruct  dimensions of 
state space { (

m
(), ( ), ( 2 ) )}x t x t x t mx t      to invest- 

tigate the dynamic characteristics of evolution process of 

cutting vibration.  
 
2.2. Attractor and Chaos 
 
The space defined by the independent coordinates re-
quire to describe a motion is called a state space. For a 
given system of equation, the coordinates of the state 
space are well defined. Considering a set of initial condi-
tions, the time evolution of the system will describe tra-
jectories in the state space. These trajectories can be di-
vergent or convergent to a final state generall called at-
tractor. In other words, an attractor is something that 
“attracts” initial conditions from a region around it once 
transients have died out. More precisely, an attractor in a 
subspace A of the state space S with the property that 
there is a neighborhood of A such that, for every initial 
condition, the limit of the orbit as time goes to infinity is 
A. Thus, almost every trajectory in this neighborhood of 
A passes close to every point of A. Simple attractors can 
be: point(a system in equilibrium), periodic, quasiperi-
odic or strange. The strange attractors are divided into 
two kinds: chaotic and nonchaotic. The chaotic evolution 
is associated with an attractor with the property that the 
system decays to a final state, but this state is not peri-
odic and is extremely complex.  
 
2.3. Lyapunov Exponents 
 
Lyapunov exponents provide a measure of the sensitivity 
of the system to its initial conditions. They exhibit the 
rate of divergence or convergence of the nearby trajecto-
ries from each other in state space and are used to 
distingguish the chaotic and nonchaotic (periodic or qua-
siperiodic) behaviors. Periodic attractors show only nega-
tive and zero exponents which indicate convergence to a 
predictable motion, whereas there exists at least one 
positive exponent for a chaotic system. A positive expo-
nent demonstrates that a pair of very close trajectories 
diverge as the times evolve. Therefore, one needs to de-
termine the sign of the Lyapunov exponentts to charac-
terize the behavior of a dynamical system.  

The definition of the Lyapunov exponents given by 
Wolf et al. [15] is the following: considering a continu-
ous dynamically system in D-dimensional state space, 
one monitors the long-term evolution of an infinitesimal 
D-sphere of initial conditions. The sphere will become a 
D-ellipsoid due to the local deformed nature of the flow. 
The ith one-dimensional Lyapunov exponent is defined in 
terms of the length of the ellipsoidal principal axis   ( )ip t

 
 2

1
lim log

0
i

i
t

i

p t

t p



  

where i s  are ordered from largest to smaller. The 
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mm. An accelerometer was attached to a non-standard 
tool holder with a type SMC cutting insert YT15 and was 
always perpendicular to the axial line orientation of the 
workpiece. The overhanging length of the tool holder is 
30 mm.  

magnitudes of the Lyapunov exponents quantify dynam-
ics in information theoretic terms. The exponent meas-
ures the rate at which system processes create or destroy 
information. Thus, the exponents are expressed in bits of 
information per second. 
  
2.4. Kolmogorov Entropy 3.2. Experimental Data and Processing  
  

As shown in Figure 2, the vibration acceleration time 
history was taken from the cutter holder. The experi-
mental analysis shows that it is better to take 5120 Hz 
sampling rate for the subsequent analysis. The vibration 
acceleration time history was separated into three parts 
that were chatter free, transition, and chatter processes 
based on experiment. The data set applied for estimating 
the optimum number of embedding dimensions and the 
data number for computing the Lyapunov exponents is 
taken from chatter phase and processed with a 8th-order 
Butterworth band pass digital filter with cut off fre-
quency (60,500) Hz, because we know that the natural 
frequency of the cutting system is 350 Hz by modal 

The Kolmogorov entropy (K) is the rate of information 
loss per unit time (bits per second), and is the sum of the 
positive Lyapunov exponents. Positive, finite K is gener-
ally viewed as a clear indication that the process manifests 
chaotic dynamics. Very large entropy indicates a sto-
chastic (totally unpredictable) phenomenon. K is estimated 
from the average number of time steps, ib , for two 
Phase-space points, initially within 0  , to diverge to 

0  . We use the maximum-likelihood form of Grass- 
berger et al. [16]. log(1 1 )sK f b   , with i

i

b b M  

for M point pairs. The data-sampling rate is sf .  

 
 3. Experiment  

1

2

3

456

 

 
3.1. Experimental Setup and Condition 
 
Experiments were conducted on a CA6140 horizontal 
lathe (as shown in Figure 1) with a cutting speed of 500 
r/min, a feed rate of 0.08 mm/r and a cutting depth of 0.6 
mm. No coolants or lubricants were used. All the cutting 
parameters were kept constant during the cutting process. 
The workpiece was made of steel CS45 (ISO) with a 
nominal length of 600 mm and a nominal diameter of 50  

1-workpiece, 2-turnning cutter, 3-accelerometer, 4-amplifier, 
5-oscillograph, 6-AD converter and PC 

Figure 1. Schematic diagram of the experimental set-up.  

 

 
(a)                                   (b) 

 

 
(c)                                   (d) 

Figure 2. Diagram of the time history of chatter evolution. Spindle speed 500 r/min, Feed speed 0.08 mm/r, Cutting depth 0.6 
m. (1) Chatter free phase, (2) Transition phase, (3) Chatter phase.  m 
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analysis.  
 
3.3. Selection of Embedding Dimension and  

Data Number 
 
As we know that, it is important to select the suitable 
embedding dimension and data number for estimation of 
Lyapunov exponents by using Rostentein’s method [17]. 
The computing time of the Lyapunov exponents will be 
doubled when the embedding dimension increases by 
one. So it is necessary to optimize the number of embed-
ding dimensions for computing the Lyapunov exponents. 
With experiment and calculation analysis we find that 
the Lyapunov exponent will keep constant when the em-
bedding dimension is greater than 5 as shown in Figure 3.  

Therefore, we take the embedding dimension equal to 
five in the following analysis. In view of theory, the 
greater the data number the better the analysis result, but 
the computing time will become longer. The problem 
that needed to be solved is to find the smallest data 
number the ensures satisfactory analysis result. The re-
search shows that the fluctuation of the Lyapunov expo-
nent against data number is small as the number of data 
is more than two thousand and five hundred as shown in 
Figure 4. Therefore, we take the number of data to be 
equal to two thousand and five hundred in the following 
analysis.  
 
4. Experimental Analysis of Uncertainty of 

Evolution Process on Time Series from 
Chatter Free to Chatter  

 
As shown in Figure 2, the vibration acceleration time 
history from the cutter holder was separated into three 
parts; namely, chatter free, transition and chatter proc-
esses based on experiment. But the time series analysis 
methods applied here to analyze these segments require 
data to be taken from stationary processes. As defined 
above, the transition segment cannot fulfill this assump-
tion. So we will discuss the uncertainty of evolution 
process on time series from chatter free to chatter based 
on two parts, chatter free and chatter segment as shown 
in Figure 2. A large class of systems can be described by 
a set of states and some kind of transition rules which 
specify how the system may proceed from one state to 
the other [18]. If a nonlinear dynamical system is in a 
chaotic state, prediction of the time history of the motion 
is impossible because small uncertainties in the initial 
conditions lead to divergent orbits in the phase space. If 
damping is present, we know that the chaotic orbit lies 
somewhere on the strange attractor. Failing specific 
knowledge about the whereabouts of the orbit, there is 
increasing interest in knowing the probability of finding 

the orbit somewhere on the attractor. One suggestion is 
to find a probability density in phase space to provide a 
statistical measure of the chaotic dynamics [19,20]. We 
now begin by examining the trajectories in the three- 
dimensional reconstructed phase space (x(t), x(t + delay), 
x(t + 2 delay)), as shown in Figure 5, where the delay 
equals to 3 t  ( t  equals to 1/5120). The first case is 
random, since the trajectory continues to be in place as 
shown in Figure 5(a). The situation in Figure 5(b) is 
more complicated. Although it is difficult to tell exactly 
what has happened from this diagram, it looks like it is in 
a week chaotic state the reconstructed attractors becomes 
stretched and folded. Secondly, we observed the prob-
ability density distribution for two stages of cutting vi-
bration corresponding to Figure 2(c). The distributions 
have been projected onto the position axis as shown in 
Figure 6.  

The distribution of the first stage shows a shape similar  
 

 

Figure 3. Sketch of Lyapunov exponent versus embedding 
dimension with 3000 datum.  
 

 

Figure 4. Sketch of Lyapunov exponent versus data number 
here embedding dimension m = 5.  
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Figure 5. Reconstructed attractor for the two stages corre- 
sponding to Figure 2(c).  
 

 

Figure 6. Probability density distribution of time series for 
chatter free and chatter corresponding to Figure 2(c).  

to a bell shaped curve (Figure 6, curve-a). This distribu-
tion is similar to that of a stability vibration. The ampli-
tudes of displacements are smaller and most of them are 
near zero. In the second stage, the distribution of dis-
placements shows a shape similar to a Gaussian bell 
shaped curve, but with a fluctuating curve at the top 
(Figure 6, curve-b). It suggests that the amplitudes of 
displacements would begin to show diversity. And the 
displacement of cutting vibration distributes in a wide 
range. It is difficult to predict the state of cutting vibration. 
We can deduce that the cutting vibration is of a chaotic 
characteristic. Reconstructed attractors and probability 
density distribution of the amplitude of displacements, 
when they can be obtained, can often provide graphical 
evidence for nonlinear behavior, such as chaos. However, 
quantitative measures of nonlinear dynamics are also 
important. We now discuss the property of evolution of 
Lyapunov exponents and Kolmogorov entropy with time. 
As it is known, the Lyapunov exponents are the average 
exponential rates of divergence or convergence of nearby 
orbits in phase space and they may be used to obtain a 
measure of the sensitive dependence upon initial condi-
tions that is characteristic of chaotic behavior [21]. The 
entropy may be interpreted as a measure of the amount 
of disorder in the system or as the information necessary 
to specify the state of the system [22]. The property of 
evolution of the Lyapunov exponents with time is shown 
in Figure 7.  

The gradient to the curve at any point is equal to the 
Lyapunov exponent of dynamics system. It is obvious 
that we cannot find the chaos property at the first stage, 
because the gradient of the curve-a drops directly from 
infinity to zero. But the gradient of the curve-b corre-
sponding to the third stages is obviously not equal to 
zero and bigger than that of the curve corresponding to 
the first stage. In fact, data analysis showed that the  
 

 

Figure 7. The curves for estimating the lyapunov exponent 
of the two stages corresponding to Figure 2(c) t = N  1000/ 
5120 (ms).  
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Lyapunov exponent corresponding to the third stage is 
equal to 0.00392. It is obvious that the cutting dynamic 
system shows more and more strong chaotic property 
with time although the Lyapunov exponent is smaller. 
We also know that the Kolmogorov entropy can be in-
terpreted as a measure of the amount of disorder in the 
system. In the non-chaotic state, the Kolmogorov entropy 
corresponding to the flat curve is low. But in the chaotic 
state, the Kolmogorov entropy corresponding to the flat 
curve is higher. There is no flat part in the curve of the 
Kolmogorov entropy, the motion of dynamic system is a 
random process.  

As shown in Figure 8, the transformation that the state 
of system varies corresponding to three stages is obvious. 
In the first stage, the curve of the Kolmogorov entropy 
does not show any flat part, the state of motion of the 
cutting system is of a random nature. As expected, the 
Kolmogorov entropy corresponding to the flat curve in-
creases from the first stage to the third stage. That means 
the motion state of the cutting system becomes disor-
derly. As shown in the above research, the short term 
correlation between the process of chatter up building 
and chaotic motion do exist, but not strong enough for a 
chaotic feature. 
 
5. Experimental Research of the Relation 

between Machining Parameters and 
Lyapunov Exponent and Entropy 

 
The dynamics of a cutting process is generally very 
complex. It depends on not only material properties and 
tool geometry but also on the cutting parameters. Irregu-
lar vibration is not necessarily as dramatic as chatter, but 
it can also leave irregular rippling which can affect the 
processing quality. The Lyapunov exponent and Kol-
mogorov entropy are both important criteria for measur-
ing the uncertain dynamic traits. Therefore, it is neces-
sary to study the relationship between machining pa-
rameters and the Lyapunov exponent and Kolmogorov 
entropy, and to grasp how machining parameters can 
affect the irregular vibration characteristics of the cutting 
system.  

Test conditions are as that described in Section 3. For 
the obtained vibration acceleration time history under 
different machining parameters conditions, take out a set 
of data (test data comes from stable vibration stage and is 
filtered and noise reduced by the eighth-order Butter-
worth band-pass filter), choose three overlapping parts in 
the above data (500 - 1000, 750 - 1250, 1000 - 1500 ms), 
choose 2500 data points in each part, and calculate the 
Lyapunov exponent and Kolmogorov entropy of the 
three parts of data. The results are as shown in Figures 
9-11.  

 
(a) 

 

 
(b) 

Figure 8. Ko1mogorov entropy as a function of the initial 
neighborhood size for the two cutting process stages (r is 
the initial neighborhood size).  

 
The curves of the Lyapunov exponent and Kolmo-

gorov entropy against feed have the same trend, as 
shown in Figure 9. Meanwhile, we can find the optimal 
feed as 0.1 mm/r to decrease the uncertainty of the cut-
ting vibration system. The relationship curves of the 
Lyapunov exponent and entropy versus the depth of cut 
look like the stability lobes as shown in Figure 10.  

It shows us the influence of the cutting depth on the 
cutting state. We can select the optimal depth of cut to 
decrease uncertainty of the cutting vibration system. 
From Figure 10, it is obvious that the uncertainty of the 
cutting vibration system is smallest when the depth of cut 
is 0.4 mm with 0.08 mm/r feed and 500 rpm spindle 
speed. Figure 11 shows us the relationship of Lyapunov 
exponent and Kotropy versus spindle speed. We find that 
the optimal spindle speed as 710 rpm for decreasing un-
certainty of cutting vibration. We find the curves of the 
Lyapunov exponent and Kolmogorov entropy against 
spindle speed have the same trend as shown in Figures 9 
and 10, which, means we can use one of them to discuss 
the uncertainty of cutting vibr n system. As we know,  atio   
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(a)                                                            (b) 

Figure 9. The plots for lyapunov exponent and entropy versus feed; spindle speed: 500 rpm, cutting depth: 0.6 mm. (a) 
lyapunov exponent versus feed; (b) the Kolmogorov entropy versus feed.  
 

     
(a)                                                            (b) 

Figure 10. The plots for Lyapunov exponent and entropy versus the depth of cut; feed is 0.08 mm/r, spindle speed is 500 rpm 
(a) Lyapunov exponent versus depth of cut ; (b) Kolmogorov entropy versus depth of cut.  
 

     
(a)                                                            (b) 

Figure 11. The plots for Lyapunov exponent and entropy versus the depth of cut; feed is 0.08 mm/r, the depth of cut is 0.6 
mm. (a) Lyapunov exponent versus spindle speed; (b) Kolmogorov entropy versus spindle speed.     
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the stability lobes that different integration of process 
parameters can result in a different cutting state. The 
same situation from Figures 9-11 can be found. They 
show us the relationship between the uncertainty of cut-
ting vibration and different integration of cutting process 
parameters.  

Figures 9-11 display the change of the Lyapunov ex-
ponent and Kolmogorov entropy with the change of cut-
ting conditions. We can observe the same trend in each 
curve. However, those figures have not display a regular 
effective characteristic. In an actual cutting process, even 
all cutting conditions are the same except the location of 
workpiece, the systematic motion state and the degree of 
chaotic characteristic in each state will be different. By 
analyzing the amplitude of the collected data, we can 
find that the amplitudes are higher when chaotic charac-
teristic is stronger. As shown in Figure 9, the amplitude 
with feed 0.09 mm is 1600 mv, which is higher than the 
adjacent data amplitude (1400 mv). We can also see in 
Figure 10 that the amplitude with depth 0.3 mm is 1500 
mv, which is higher than the amplitude (1200 mv) with 
depth 0.7 mm. The same phenomenon is found in Figure 
11. Then, can we speculate the relationship between the 
systematic motion amplitudes and the degree of chaotic 
characteristics?  

We can receive a variety of different data with the 
change of feed, cutting depth, spindle speed and the lo-
cation of cutting workpiece. Calculate the Lyapunov 
exponent and Kolmogorov entro

 enhanced with the increase of am-
pl

system is strengthening. In other words, chaos informa-
tion of the cutting system is strengthening. 

In this paper, we carried out experiments with differ-
ent process parameters. Through the experiments we 
found the relationship between Lyapunov exponent and 
Kolmogorov entropy and process parameters behave like 
the stability threshold figure. If we say that the stability 
threshold map can assist the engineering technicians 
choose stable cutting parameters, then the relation curve 
among Lyapunov exponent and Kolmogorov entropy and 
the process parameters obtained in this paper can assist 
us to choose the best process parameters. According to 
this figure we can choose the best cutting parameters 
which can minimize the u ainty of the cutting vibra-
tion, and reduce the vibration irregularity of the ma-
chined workpiece surface, and then obtain a higher pre-
cision. 
 
Physical Interpretation 
The phase space is 

py of those sets of data 
respectively and arrange them in accordance with the 

rder of the chatter stability amplitude from small to o
large, and the amplitude changes curves are drawn as 
shown in Figure 12, we can find with the logarithmic 
trend line of two sets of data that the Lyapunov exponent 
and Kolmogorov entropy ascend with the increase of 
amplitudes, which means the chaotic characteristics of 
systematic motion are

itudes.  
 
6. Results and Discussion 
 
We try to find some dynamic characteristics associated 
with the chatter formation process in this research. Spe-
cifically, we are interested in chaos or dynamical uncer-
tainty. We divided the acquired vibration acceleration 
signal into three parts, chatter free, transition, and chatter 
processes. The signal of the transition process is in a un-
steady state and cannot be digitally computed, so we 
studied the kinetic characteristics of the chatter-free and 
the chatter processes only. Both quantitative and qualita-
tive research show that the Lyapunov exponent and the 
Kolmogorov entropy are on the rise from chatter-free to 
chatter. It shows that the irregular vibration of the cutting 

ncert

{ ( ), ( ), ( 2 ) ( )}x t x t T x t T x t mT    
 by experimental data of computing which is structured

Lyapunov exponent and Kolmogorov entropy. T is 
Workpiece period of rotation. If the striation on the 
workpiece surface produced by vibration in the previous 
cutting can generate continuously modulating action on 
the striation of the workpiece surface in the subsequent 
cutting, then the reconstruction phase trajectory and the 

rov entropy will be 
netic character-

 like spindle speed, back 

 illustrate the correlation. The drawing 
of

v entropy increase with the increase of the 
mplitude. In other words, chaos motion characteristics 

crease of the amplitude 
om the trend line in Figure 12. We believe that the 

 

Lyapunov exponent and Kolmogo
changed. Figures 5, 7 and 8 reflect the ki
istics from chatter-free to chatter process. It is well 
known that process parameters
cutting depth, and feeding speed are closely related to the 
stability of the cutting system. Most literatures use the 
threshold figure to

 the threshold figure is based on state information. The 
threshold figure cannot reflect the status characteristics 
but only the process characteristic. However, the 
Lyapunov exponent andKolmogorov entropy in recon-
structing the phase space not only reflect the dynamic 
system state information but also reflect the evolutionary 
process information. Figures 9-11 show that Lyapunov 
exponent and Kolmogorov entropy have indeed changed 
with the changes of process parameters in cutting sys-
tems, but there is no clear patterns, such as increased or 
decreased trend with the increase of the process parame-
ters. However, we can see that Lyapunov exponent and 
Kolmogoro
a
of the system increase with the in
fr
reason is: the greater the motion amplitude in the proc-
essing, the stronger influence of nonlinear factors there is, 
and therefore the stronger chaos characteristics. In this 
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(a) 

 

 
(b) 

Figure 12. The plots for Lyapunov exponent and entropy 
versus the depth of cut; feed is 0.08 mm/r, the depth of cut 
is 0.6 mm. (a) lyapunov exponent versus spindle speed; (b) 
the Kolmogorov entropy versus spindle speed.  
 
paper, in the phase space which was built based on ex-
perimental data, we make use of Lyapunov exponent and 
Kolmogorov entropy tracking the changes of the dynam-
ics characteristics of the cutting system during the trans-
formation process from the chatter-free to the chatter.  
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