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Abstract 
A theoretical approach is developed for solving for the Reynolds stress in turbulent 
flows, and is validated for canonical flow geometries (flow over a flat plate, rectangu-
lar channel flow, and free turbulent jet). The theory is based on the turbulence mo-
mentum equation cast in a coordinate frame moving with the mean flow. The for-
mulation leads to an ordinary differential equation for the Reynolds stress, which can 
either be integrated to provide parameterization in terms of turbulence parameters 
or can be solved numerically for closure in simple geometries. Results thus far indi-
cate that the good agreement between the current theoretical and experimental/DNS 
(direct numerical simulation) data is not a fortuitous coincidence, and in the least it 
works quite well in sensible ways in canonical flow geometries. A closed-form solu-
tion for the Reynolds stress is found in terms of the root variables, such as the mean 
velocity, velocity gradient, turbulence kinetic energy and a viscous term. The form of 
the solution also provides radically new insight on how the Reynolds stress is gener-
ated and distributed. 
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1. Introduction 

We present a theoretical development and a solution for the Reynolds stress in turbu-
lence. Turbulence is considered one of the most difficult problems in fluid physics, or 
some say, physics in general. It is also quite important as many issues of practical con-
cern, such as weather, aerodynamics, combustion flows and many industrial processes 
depend on turbulence, and much work has been done on finding some adequate ap-
proximations so that immediate problems of turbulent flows can be solved (we do not 
attempt to list the vast literature in this area). As finding the entire absolute (mean + 
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fluctuations) velocity field is quite difficult, or as some argue an overflow of informa-
tion, here we focus on finding the Reynolds stress as a function of the “root” turbulence 
parameters, such as the mean velocity and its gradient, turbulence kinetic energy, in 
particular its longitudinal component, and also a viscous term. This has been the goal 
of turbulence theory and modeling: parameterizing the Reynolds stress in terms of 
known or readily available variables, or so-called the closure problem. 

2. Mathematical Formulation  

The current theoretical framework leads to the “integral formula” explicitly giving the 
Reynolds stress in terms of the “root”, calculatable turbulence parameters. In Rey-
nolds-averaged Navier-Stokes (RANS) equation, non-linear terms involving turbulent 
fluctuation velocities arise since the absolute velocity is decomposed into mean (U) and 
fluctuating ( u′ ) component: u U u′= + . The non-linear terms that develop during the 
averaging process in the RANS are called the Reynolds stress, which involves 
time-averaged components of products of fluctuating velocities, i ju u′ ′ . Here, we omit 
the bar above 2 ,u u v′ ′ ′ , etc., for simplicity, and take the fluctuation parameters to be 
time-averaged. Figuring out how the Reynolds stress is related to the mean and other 
“root” turbulent parameters has been the topic of numerous studies, for quite some 
time. However, we notice that the decomposition is necessary only in the absolute 
coordinate frame, and if we move or displace the control volume at the mean speed of 
the flow (see Figure 1) then the mean velocity drops out of the momentum equation. 
That is, RANS is greatly simplified in the relative coordinate frame, or for a control vo-
lume moving at the mean velocity of the fluid. Therefore, the x-momentum equation, 
for an incompressible boundary-layer flow, becomes: 

( )2 2

2
1 d

d
u vu u p u

t x y x y
ν

ρ
′ ′∂′ ′ ′ ′∂ ∂ ∂

+ + = − +
∂ ∂ ∂ ∂

                  (1) 

In Equation (1), t, x, and y are the time and coordinates, while u′ , v′ , and p′  are 
the turbulent fluctuations with respect to the mean. 

If the time mean of the fluctuating velocity does not vary appreciably in time, then 
we can write a “steady-state” momentum equation, and solve for the gradient of the 
Reynolds stress. 
 

 
Figure 1. A schematic illustration of the concept of the theory. 
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In conventional calculations, the x-derivatives would have been set to zero for ful-
ly-developed flows, and we would be left with a triviality. However, we note that Equa-
tions (1) and (2) have been written for a control volume which is moving along with the 
mean flow velocity, as shown in Figure 1 for a boundary-layer flow as an example. For 
a flow over a flat plate, the boundary layer grows due to the “displacement” effect. The 
mass is displaced due to the fluid slowing down at the wall, as is the momentum, and it 
turns out other turbulence parameters as well. The boundary layer thickness grows at a 
predictable rate, depending on the Reynolds number. Thus, if one rides with the fluid 
moving at the mean velocity, one would see a change in the all of the turbulence prop-
erties, as illustrated in Figure 1. This displacement effect can be mathematically ex-
pressed as: 

1C U
x y
∂ ∂
=

∂ ∂
                               (3) 

The mean velocity, U, appears as a multiplicative factor in Equation (3). C1 is a con-
stant that depends on the Reynolds number. Similarly, the gradient of the pressure 
fluctuation will not be zero in general. However, this term is expected to be significant 
only for compressible flows, so we omit this term from further analysis in this phase of 
the work. In Equation (2), we now have a simple integrable expression to find the Rey-
nolds stress, after using Equation (3). If we integrate by parts, we obtain: 

2 2
1 0

d d
d

y
m

U uu v C Uu c u y
y y

ν
′  ∂′ ′ ′ ′= − − +  ∂ 

∫                   (4) 

For axi-symmetric flow, the results are similar, leading to the following expression 
for the Reynolds stress. 
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1 0 0

d 1d d
d

r rz z
z z m

u uUu v C Uu c u y r
r r r r

ν
′ ′∂ ∂  ′ ′ ′ ′= − − + +   ∂ ∂   ∫ ∫            (5) 

3. Results and Discussion 

Figure 2 shows the comparison of the Reynolds stress obtained from Equation (4) with 
experimental data of DeGraaf and Eaton [1]. In that work, data on various turbulence 
quantities and the Reynolds stress (all normalized by the friction velocity) are provided, 
and also various scaling approaches tested with the data, in a well-designed experiment 
for flows over a flat plate with zero pressure gradient. The Reynolds number based on 
the momentum thickness (Reθ) ranged from 1430 to 31,000 [1]. In Equation (2), we use 
their measured parameters, U and 2u′ , and input them into Equation (4). Gradients of 
U and 2u′  are calculated from the experimental data. As the experimental data are 
discontinuous, and at times hard to transcribe, there are some fluctuations and poten-
tial errors in the final calculations of the Reynolds stress, particularly close to the wall 
where the gradients are very steep and the data points all clustered. We can nonetheless 
input the root parameters into Equation (4) to compute accordingly, and compare with  
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Figure 2. Comparison of the Reynolds stress in boundary layer flows over a flat 
plate. The data (symbols) are for Reθ = 1430 - 31,000 [1]. Lines represent current 
result (Equation (4)), which are identified the color from pink (triangle data 
symbol) for Reθ = 1430 to blue (circle data symbol) to Reθ 31,000. 

 
the measured Reynolds stress as in Figure 2. In spite of dealing with discontinuous ex-
perimental data and their gradients, the comparison of Equation (4) result with expe-
rimentally observed Reynolds stress is in general quite good.  

2u′  profiles have a sharp negative peak, near the wall, and gradually decrease as the 
distance from the wall increases [1] [2]. Although this is somewhat attenuated by the 
mean velocity term in Equation (1) (the first term on the RHS of Equation (4)), the re-
sulting contribution of 2u′  is still high near the wall. However, the sharp peaks in the 

2u′  are also associated with a large gradient in 2u′ , which increases the magnitude of 
the viscous “dissipation” term, offsetting the large “transport” effect. As noted above, 
dealing with experimental data does lead to some errors, and some “leakage” in the 
Reynolds stress is found in Figure 2. Unless the gradients are accurately entered as in-
put, and their y coordinates are perfectly aligned, this kind of leakage can occur. Also, 
the method is not able to track the Reynolds stress at the lowest Reynolds number close 
to the wall for the same reason, which is somewhat surprising as the requirements for 
spatial and measurement resolutions are the least at that condition. 

Figure 3 is a similar comparison of Reynolds stress as calculated by Equation (4), 
with DNS results for fully-developed channel flows [3] [4]. DNS results are highly re-
solved (we had access to the entire data set through the authors’ website [4]), and con-
tinuous, and therefore inputting the root parameters and taking the gradients do not 
lead to much fluctuations or misalignments, as was the case in Figure 2. Iwamoto and 
co-workers [3] [4] have performed DNS, using established methods [3] [4] for Reτ = 
110 - 650, where Reτ is the Reynolds number based on the friction velocity and channel 
half-width. The entire data set from the DNS is available on their website [4], including  
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Figure 3. Comparison of the Reynolds stress in boundary layer flows over a flat 
plate. Lines are theoretical results, using Equation (4). Data symbols: circle (Reτ = 
110), diamond (150), square (300), triangle (400), + (650). Line that track the 
data correspond to the same Reynolds number. 

 
the mean velocity, turbulent fluctuating velocity components, and various moments of 
their products. We input the necessary root turbulence parameters into Equation (4), 
and compare with the Reynolds stress from DNS. The agreement is nearly perfect at 
low Reynolds numbers in Figure 3, which gives some confidence that we have captured 
the true physics of turbulent transport, and that the results are not a fortuitous coinci-
dence.  

There is an interesting departure at higher Reynolds numbers, as the solution starts 
to overshoot the DNS data as y approaches the centerline. The y location where this 
departure starts to occur decreases (further away from the centerline) at higher Rey-
nolds numbers. This departure is due to the fact that the symmetry boundary condition 
for channel flows, at the centerline, has not yet been imposed. As noted earlier, the 
integral term is a “displacement” term accumulating from the wall, and at the center-
line the displacement must cancel out. For example, the integral formula (Equation (4)) 
and its preceding transport equation (Equation (3)) have been derived for flows 
bounded on one side, such as the flow over a flat plate, and the solution proceeds from 
y = 0 (wall) onward. For channel flows, the flow is bounded on both sides, leading to 
the requisite symmetry condition at the centerline. One way to impose the symmetry 
boundary condition is to force the constant C1 to be proportional to the velocity gra-
dient. For example,  
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With m = 1/3, indeed the calculated Reynolds stress tracks the DNS data fairly well at 
the Reynolds number of 400, as shown in Figure 4. There are small undulations now 
that derivatives of mean flow velocity are used in the multiplicative constant. Although 
this approach may not seem so elegant, Equations (3) and (4) have been derived based 
on the displacement of turbulence parameters, so that symmetry or other boundary 
conditions should be applied as in Equation (6). For low Reynolds numbers, the dis-
placement apparently is insignificant and Equation (6) was not needed, as shown in 
Figure 3.  

4. Conclusions 

We have found a method to derive an expression for the Reynolds stress in simple flow 
geometries, leading to an “integral formula”. This formula, and the method, works 
quite well in determining the Reynolds stress based on inputs of root turbulence para-
meters, such as streamwise component of the turbulence kinetic energy, the mean ve-
locity and its gradient. The predicted Reynolds stress is in good agreement with expe-
rimental and DNS data. In particular, if the data are continuous and aligned, then 
agreement is nearly perfect. There are some nuances and corrections that need to be 
examined, such as applying symmetry boundary conditions and relating the displace-
ment effect to the flow geometry and Reynolds number. Thus far, the theory has been 
tested against relatively simple geometries. Would this method be useful in full three- 
dimensional turbulent flows? That is a question that is being thought of at this time. 
The fact that u'v' is related to u'2 is easier to implement in computational applications as 
the turbulent kinetic energy can be related to u'2, assuming isotropy, or an equation for 
u'2 can be numerically solved in conjunction with Equation (4). For simple flows, the 
displacement effect could be effectively treated with Equation (6). Extensions to fully 
three-dimensional flows will require this displacement effect to be parameterized,  
 

 
Figure 4. Correction for the symmetry condition, using Equation (6). Reτ = 400. 
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which may not be a simple matter. On the other hand, it was considered difficult to pa-
rameterize the Reynolds stress even in simple flows, for quite some time. 
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