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Abstract 
 
We formulate a generalized Chalker-Coddington network model that describes the effect of nuclear spins on 
the two-dimensional electron gas in the quantum Hall regime. We find exact analytical expression for 
spin-dependent transmission coefficients of a charged particle through a saddle point potential in a perpen-
dicular magnetic field. Spin-flip scattering creates a metallic state in a finite range around the critical energy 
of quantum Hall transition. As a result we find that the usual insulating phases with Hall conductance 

0,1,2xy   are separated by novel metallic phases.  
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1. Introduction 
 
Transition between the quantized values of Hall conduc-
tance in integer quantum Hall effect represents a pro-
found example of electronic delocalization. Properties of 
this transition remain a subject of intensive theoretical 
and experimental investigations since the discovery of 
the integer quantum Hall effect (QHE) [1]. Theory of the 
delocalization transition in the QHE predicts the exis-
tence of a single delocalized critical electronic state at 
the center of Landau level (LL) [2-5]. Other states of a 
given LL are localized by disorder due to the Anderson 
localization phenomenon. Effective theoretical treatment 
of QHE delocalization transition is provided in frame of 
the Chalker-Coddington (CC) network model [6]. In this 
model electrons move along unidirectional links that 
form closed loops in analogy with semiclassical motion 
on contours of constant potential. Scattering between 
links is allowed at nodes, in analogy with tunneling 
through saddle-point potentials in the semiclassical model. 
Subsequent generalizations of CC model allowed to in-
clude spin degree of freedom [7] and to describe systems 
belonging to various symmetry classes [8,9].  

In this paper we study the effect of spin-flip scattering 
by magnetic nuclei on the QHE transition. The spin-flip 
scattering by nuclei mixes two components of electron 
spin, and results in the mutual influence of electron and 
nuclear spins. The interplay of electron and nuclear spin 

degrees of freedom has been investigated earlier, focus-
ing on measurement of nuclear-spin-lattice relaxation 
mediated by hyperfine interaction with two-dimensional 
electron system in QH regime [10,11]. In contradistinc-
tion, we concentrate on the effect of nuclear spins on the 
electron motion and resulting changes in the QH phase 
diagram.  

We adopt the model of point-like exchange interaction 
between nuclear and electron spins intH J I s , where I 
and s denote the spins of the nucleus and of the electron 
respectively. Throughout the paper we assume spin-1/2 
nuclei. In the absence of spin-flip scattering there are two 
Zeeman-split critical energies for each Landau level, 
where the QH delocalization transition takes place. We 
find that the spin-flip scattering results in the appearance 
of a finite region of delocalized states around the critical 
QHE states. The energetical width of the delocalized 
region depends on the strength of the exchange interac-
tion relative to the Zeeman splitting in a nonmonotonous 
way. It increases with the exchange strength for weak 
exchange, reaches its maximum, and then shrinks back to 
two critical states at very large exchange interaction. Our 
results are summarized in phase diagram shown in Fig-
ure 1. To obtain this phase diagram, we constructed an 
effective network model based on the original CC model 
for the QH transition.  

In general, scattering of electrons by nuclear spins in-
duces many-electron Kondo correlations. In this paper  
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Figure 1. (a) Phase diagram at zero Zeeman splitting. (b) 
Phase diagram with finite Zeeman splitting. 

however we consider regime, when Kondo correlations 
are suppressed by large Zeeman splitting and/or tem-
perature larger than the Kondo temperature. In that case, 
collisions of different electrons with a nucleus lead to a 
loss of coherence of the nuclear wave function. In what 
follows we find a way to incorporate phenomenologi-
cally the loss of coherence of nuclear spins into modified 
CC network model.  As a starting point, we consider a 
many particle wave function  1, , , , Nt r R R  that 
describes a single electron and N nuclear spins. Here r 
denotes the coordinate of the mobile electron and Ri, (I = 
1, ..., N) are the coordinates of nuclear spins. Further-
more, the short range of interaction between the electron 

and a nuclear spin allows for a series of simplifications 
that lead to an effective description in frame of CC 
model formulated for the reduced two-particle wave 
function. This wave function is a bi-spinor that describes 
propagation of an electron and an effective nuclear spin 
through the network.  
 
2. Spin-Dependent Scattering: Exact  

Solution 
 
The spin-flip process requires conservation of energy 
between the initial and final states. However, because of 
the small nuclear magnetic moment, the change of its 
Zeeman energy cannot compensate the change in the 
Zeeman energy of the electron after the spin-flip. The 
energy conservation can still be fulfilled, if the center of 
mass of the electron wave function shifts in space in the 
act of spin scattering to the position with different poten-
tial energy. This difference has to compensate for the 
Zeeman energy. The favorable conditions for such proc-
ess occur close to the saddle points of the disorder poten-
tial [12], which correspond to the nodes in the network 
model. Therefore, in terms of CC model, the spin-flip 
scattering is effective only at the nodes of the network.  

Second, the act of scattering in each node involves 
only the coordinates of the electron and a single nucleus 
that is located at the node. Considered alone, this scat-
tering event can be described in terms of the scattering 
matrix for the two-particle wave function  , , it r R , 
where r is the coordinate of the electron and Ri is the 
coordinate of the nucleus in the node i.  

  ˆ, , , ,out in
i i it S t  r R r R i        (1) 

The explicit expression for the scattering matrix ele-
ments is obtained along the lines of [13] generalized on 
the problem with spin-flip scattering. We assume that the 
scattering at saddle points of the potential is accompa-
nied by the interaction with nuclear spin, and hence al-

lows for spin flips. Thereby, the states e N   and 

e N   (where indices e, N) correspond to the spin 

state of electron and nucleus respectively) cannot flip the 
spin because of conservation of the total angular mo-
mentum by scattering. The scattering matrix for these 
two states can be obtained directly from the expression 
of [13] by shifting the height of the saddle point by Zee-
man energy of the electron. In what follows we neglect 
Zeeman energy of a nucleus, which does not change the 
results of this paper qualitatively. We note, that the 
model that takes into account the Zeeman energy of the 
localized spin scatterers can also be applied to the scat-
tering by localized magnetic impurities as it takes place, 
for example, in semimagnetic semiconductors [14]. The 
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states e N   and e N   can be mixed in the 

spin-flip process. To obtain the transmission coefficients 
for those states, we find the eigenstates and eigenener-
gies of the Hamiltonian 0 int ZH H H H   , where H0 

is the Hamiltonian describing the motion of the electron 
in the scalar saddle point potential [13], and HZ describes 
the Zeeman energy. We choose the basis of singlet and 
triplet states that are the eigenstates of the interaction 
part of the Hamiltonian. The two-dimensional Hilbert 
space for the spin-flip scattering problem is then formed 

by the states  e N e N    00

1

2
  ,  

10

1

2
    e N e N     



. Similarly to [10] we 

seek the solution of the Schrödinger equation in the form 
 n   , ( )n nX s s  X , where ( )n s  and  n X

( )n

 

describe the cyclotron motion and the motion of the 
guiding center respectively, and n denotes the number of 
Landau level (LL). Explicit expression for s  is 

provided in [13]. Without the loss of generality we re-
strict the further consideration to the lowest Landau level 
and suppress the Landau level index. The equation for 
the guiding center wave function in the basis  

 is given by   10,
T 00

 

 

0

/ 4 2

            

n

n

B
0 2

3 / 4 0ˆ
0 1

                                     

0 1

1 0

   

H J X



X






 
 
  

 

 
1

0
ˆ

 
  

    (2) 

In writing Equation (2) we omitted the spatial de-
pendence of the exchange interaction. The transitions 
between different Landau levels caused by such depend-
ence can be neglected in high magnetic fields, while the 
transitions within a given Landau level can be taken into 
account by the random potential scattering term in the 
scalar part H . We seek for the solution of Equation (2) 
in the form  

    spinX X 

 
,            (3) 

where X  describes the spatial dependence of the 
wave function, and spin  is its spinor part. Let  X  
be the solution of the Schrödinger equation   

   0Ĥ X E X                (4) 

Diagonalization of the spinor part of Equation (2) for a 
fixed  leads to the two eigenvectors and correspond-
ing eigenergies 

E

2 2
1,2 0

1

4
E J J B              (5) 

The energies 
i
  correspond to the total energies of 

the two-particle states. By the energy conservation, both 

energies are to be equal to the energy of the incoming 
electron, 1 2 E   . This leads to the two different 
values for the energy  that determines the effective 
height of the potential barrier  

E

2 2
0

1 1

4 2
E E  J J B          (6) 

Following [13], we introduce the dimensionless meas-

ure of energy 1

1

4
/E J E

 
 
 

   , where E1 is the ener-

getic parameter characterizing the form of the saddle 
point potential. Furthermore, we denote the dimen-
sionless strength of the Zeeman coupling as 0 1/B E 

1/

, 

and the relative exchange strength as J E  .  

Therefore, there are two solutions of Equation (2) cor-
responding to the energy E of the incoming electron, 

   1,2 1,2pinX1,2 , sX    , where 2 2
1,2

1

2
     , 

and  1,2 , X 

1,2E
 is the solution of Equation (4) for the 

energy  respectively. The explicit form of  1,2 ,   

X  is given in [13]. The relations between the functions 

 1,2 X  and e N  , e N   are given by  

   
1,2 1/222

e N e ND D

D D

 



          
 

  
, (7) 

where 2 2D    . 
The energies 1,2  together with the energies 

,    
/ 2 / 2     of the states e N   and e N   

determine the transmission coefficients [13]  

1ˆ| | ( )
1 exp( π )

i j i ij

i

T t ij  


   
 

.   (8) 

Using Equations (7) and (8) we obtain the transmis-
sion coefficients for the scattering with spin flip:  

 

1,2 1,2

1,2

1 2

ˆ   | |

ˆ| | | |

| ( ) |

ˆ( ) ( ) | |
2

out in

e N e N

out in

e N i i j j e N
i j
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e N i i j e N
i

out in

e N e N

T

T

t

t t T
D


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 



   

        

      

      

 


 (9) 

The transmission coefficients without spin flip are ob-
tained in the similar way  

1 2
ˆ| | ( ) ( )

2 2

out in

e N e N

D D
T t

D D
t    

      , (10) 
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1 2
ˆ| | ( ) ( )

2 2

out in

e N e N

D D
T t

D D
t    

      , (11) 

ˆ| | ( )
out in

e N e NT t      ,        (12) 

ˆ| | ( )
out in

e N e NT t      ,        (13) 

The reflection coefficients are given by the exchange 
2( ) ( ) 1 ( )i i it r t      everywhere. 

Furthermore, using the expressions for transmission 
and reflection coefficients, we construct the scattering 
matrix in the node relating the incoming and outgoing 
waves (see Figure 2). From that we derive the transfer 
matrix relating the waves on the left and on the right 
sides of the node. The system is, on average, invariant 
under  rotation if the transmission and reflection (of 
each channel) are interchanged at the next neighbor node, 
i.e. i

90

i    [6].  
 
3. Bi-Spinor Network Model 
 
In the standard formulation of the CC network model, 
the outgoing wave after the scattering at the node i and 
acquiring a random phase on the link plays the role of the 
incoming wave for the scattering by the next node (let’s 
number it with i + 1). The latter allows to get the infor-
mation about the propagation through the network by 
dividing the network into slices and multiplying the 
transfer matrices slice by slice. Such a direct approach is 
inapplicable if one replaces the exact many-particle scat-
tering matrix by the two-particle scattering matrix though. 
Namely, the outgoing two-particle wave function from 
the node i contains no information about the phase and 
the spin direction of the nucleus in the node i + 1. How-
ever, both being the spin-1/2 state, the outgoing state of 
the nucleus i and the state of the nucleus i + 1 can always 
be transformed to each other by a unitary rotation  

1 1,
ˆin out

i i i iN U N  ,           (14) 

 

Figure 2. Incoming and outgoing states at a single node. 

where 1,  is a matrix of SU(2) group. One can imag-
ine the matrix 1,  as residing on the link connecting 
the nodes i and i + 1. Therefore, if one had a knowledge 
of matrices 1,  on all links connecting the neighbor 
nuclei, one could replace the many-particle wave func-
tion of all nuclei by a single spin-1/2 spinor that changes 
its state by propagation through each link according to 
the states of real nuclei. Taking into account the electron 
part of the wave function, the propagation of an electron 
though the network with scattering by nuclear spins can 
be described as a propagation of a bi-spinor that consists 
of the electron and nuclear parts. The scattering of the bi- 
spinor at each node is described by Equations (9)-(13). 
To illustrate this procedure, let us consider propagation 
of an electron through a single path in the network, and 
number the nodes on that path consequently from 1 to n. 
The many-particle wave function can be expanded in the 
basis of states 

ˆ
i iU 

ˆ
i iU 

i iÛ

 1...
1, , , ( )n i

n i
i

     r R R r , 
where i

i
  denotes the wave function of the nucleus at 

node i,  denotes the electron wave function, ( r)   
is the spin-index of the electron, and i  is the spin in-
dex of the nucleus at site i (both  and ( ) r i

i
  have 

a structure of spin-1/2 spinors). The incoming and out-
going amplitudes at a given node i are related through 
the scattering matrix ,  ˆ

iS
   ' ' ' ,S

'

i i i i i
  r r    



  , the states of nuclei on 
other nodes being unchanged. According to the construc-
tion of CC network, the electron amplitude acquires a 
spin dependent random phase 1,i i   at each link. The 
spin projection of the electron propagating on the link 
remains conserved. Therefore, we obtain the relation 
between the electron  amplitude outgoing from the node 
i, and the one incoming to the node i + 1, 

'

(  1,) i i
'1i i( ) | ie




 r r 

  Then the discussed am-
plitude P can be written as a chain of scattering events by 
subsequent nodes and propagations on the links 


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














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
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2,1 1 1 1 1
'

2 1

,
1

i
S
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r
 (15) 

Note that in Equation (15) the spin states of the nuclei 
before ( i

i
 ) and after (

'
i

i
 ) the scattering are fixed by 

initial and final many-particle states, while summation 
over the repeating indices of intermediate states of elec-
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trons is implied (the indices ' '
2 1 2,n n 1     

ˆ

).  
To rewrite Equation (15) in bi-spinor notations, we in-

troduce an SU(2) matrix  on each link according to 
Equation (14), 

U
'

1, 1i i i iÛ    , where '
i  is the 

outgoing state of the nucleus i and 1i   is the incom-
ing state of the nucleus i + 1 as chosen by the many-par- 
ticle amplitude in Equation (15). Now we can describe 
the evolution of the states of the nuclei by a single space- 
depentend spinor . The propagation of this spinor 
on the link between the nodes i and i + 1 is governed by 
the matrix 1, . So, if the state of the spinor after the 
scattering by the node i equals the final state of the nu-
cleus i in the many particle formulation, 

 i r

ˆ
i iU 

 ' '
i i r

 '
1,

ˆ
iU  r

, 
then the matrix 1,  transforms this state into initial 
state of the nucleus at the node i + 1, 1,i i i  

1 . Introducing now a bi-spinor 

ˆ
i iU 


Û  i

1 i r'
i i     r  

, we obtain the for the propagation on the link (i 
+ 1, i)  

  r

         1,
1 1

i ii
i i i i e U    
   r r r r 1,i i

i 

 (16) 

where  is the diagonal ma-
trix of phases acquired by the electron wave function.  

  1, 1, 1,diag ,i i i i i ii ie e e  
 

Using Equation (16) we can represent the amplitude in 
Equation (15) in the equivalent form  
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
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
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


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'

2 1

,
2,1 1U S


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 


r



 (17) 

Let us stress that in contrast to Equation (15), summa-
tion over repeating indices in Equation (17) extends on 
the intermediate states of the nucleus  

 as well. However, due to the special form of ma-
trices 1, , the only nonzero contributions to the sum 
over nuclear indices are provided when the indices 

 '
2 1, , , , ,n  

'
i

'
1n 

ˆ
i iU 

  
and 1i   correspond to the states of nuclei i and i + 1 
chosen in the many particle amplitude Equation (15). 
Therefore, in the bi-spinor formulation, the information 
about the many-particle state is contained in the special 
choice of SU(2) matrices on links.  

The explicit form of matrices 1,  is determined by 
the states of the two nuclei connected by the link in a 
given partial trajectory, and is unknown. In general, the 
matrices 1,  depend not only on the position of the 
link but also on the form of the whole trajectory. More-

over, as it was mentioned above, due to collisions of nu-
clear spins with different electrons, matrices 1,  ac-
quire stochastic time-dependence that eventually leads to 
decoherence of the bi-spinor wave function, and hence to 
the appearance of delocalized states. We incorporate this 
effect phenomenologically, replacing the SU(2) matrices 

1,  by a random ensemble of 2  and 

ˆ
i iU 

ˆ
i iU 

ˆ
i iU 

ˆ
i iU  1 x  matrices, 

appearing with probability 1/2 on each link and acting on 
the state of the nucleus. As it is shown below by nu-
merical simulations, finite regions of delocalized states 
appear in frame of this model.  
 
4. Results and Discussion 
 
Our numerical calculations proceed as follows. We study 
a system of size M L  where M is the width of the 
system and L is its length. For a given M, the eigenvalues 
of  †T T , where T is the full transfer matrix, behave as 

 exp 2 n L  defining the Lyapunov exponents n ; the 
smallest positive one, /2M , defines the localization 
length M . The M dependence of renormalized localiza-
tion length /M M  identifies the phases: 1) a decreas-
ing ratio corresponds to localized state, i.e., an insulator, 
2) a constant ratio corresponds to a critical state, and 3) 
an increasing ratio corresponds to a metallic phase.  

The results of our numerical calculations lead to phase 
diagrams presented in Figure 1. The phase diagram in 
Figure 1(a) corresponds to the spin-degenerate case with 
zero Zeeman splitting. In the absence of spin-flip scat-
tering 0   there is a transition between the two insu-
lating phases with Hall conductances xy 0   and 

xy 2   at energy 0  . At nonzero  , a metallic 
phase appears in the finite range of energies, as described 
above.  

As a typical example of numerical results we show 
renormalized localization length /M M  as a function 
of energy   for zero Zeeman splitting , and 
fixed exchange interaction 

0 
0.5 

0.45

 in Figure 3. Dif-
ferent point-sets correspond to different widths M of the 
system. The data imply that the region within approxi-
mate boundaries 0.2     demonstrates a typical 
metallic behavior with M / M  increasing with M. We 
cannot completely rule out that this increase is still an 
artifact of finite-size errors. But even if the latter is true, 
the data still provide a strong indication of a drastic in-
crease in the localization length caused by spin-flip 
processes.  

The phase diagram for finite Zeeman splitting 1   
is shown in Figure 1(b). Without the spin-flip scattering 
there are two critical energies / 2c    separating 
the insulating phases with xy 0,1, 2  . A finite spin-flip 
scattering induces the appearance of two metallic regions 
around each critical energy, in analogy with Figure 1(a).  
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Figure 3. Renormalized localization lengths Mξ / M  as 
functions of energy   for zero Zeeman splitting , 
and fixed exchange interaction . Different point-sets 
correspond to different widths M of the system.  

Δ = 0
0.5δ =

As the spin-flip scattering rate grows further, the size of 
each metallic region diminishes and finally collapses to 
single critical states at energies / 2 / 2c    .  

The appearance and the subsequent collapse of delo-
calized phase with the increase of the spin-flip scattering 
  can be qualitatively explained by the mutual influ-
ence of the spin-flip scattering at nodes and mixing of 
the states on links. To simplify the consideration, let us 
use the eigenfunctions of the Hamiltonian in Equation (2) 
as basis states.  

The basis states can be united into the vector 
 1 2, ,

T

e N e N      



. In this basis, the scatter-
ing matrix on the nodes becomes block-diagonal, con-
sisting of four blocks corresponding to the four basis 
states. The states are mixed however on the links. By 
transformation to the new basis, the mixing matrix 
 2 x1  goes over into the matrix   

  1 2 x x xc c z             (18) 

The coefficients 1 2  are given by the transforma-
tion matrix between the vectors 

,c c
 ,

T

e N e N      and 
 1 2

T
   , they can be read off from Equation (7) 

 
1 1/222

D
c

D D

  




  
, 

 
2 1/222

D
c

D D





  


  
  (19) 

The matrix elements  provide the mixing of the 
states 

1c

1  with e N

 

Figure 4. (a) Eigenenergies of Hamiltonian in Equation (2). 
Blue ovals and connected red circles show the states mixed 
on the links by the matrix elements 1c  (blue) and  
(red). (b) Matrix elements 1c 2c  of the mixing mat  

2c
rix , 

  (Equation (18)) as functions of exchange coupling  . 

pairs of states, 1  with e N  , and 2  with 

e N  . If the energy is equal to the critical energy of 
one of the states, for instance the state e N  , this 
state is extended but the mixing on the links couples it to 
other states that are localized at the given energy. As 
long as the critical energies of the mixed states are close, 
the localization length of the admixed state is large, and 
the overall effect of the mixing results in the appearance 
of a finite energy region of delocalized states. This is the 
case for relatively small exchange couplings  . In the 
regime of small  , the coefficients 2  of the mixing 
matrix 

c
  are small, and the mixing occurs only be-

tween the states with close critical energies due to the 
matrix element  (see Figure 4(b)). 1

For large 
c

 , the coefficients 1c , 2  become ap-
proximately equal to 

c
1 2 . At the same time, the criti-

cal energy of the state 2  moves far away from the 
critical energies of other states (the lowest line in Figure 
4(a)). As a result, at the critical energy 2 , the extended 
state 2  is coupled to strongly localized states, and 
becomes localized itself. The upper three lines in Figure 
4(a) show the critical energies for the states (from top to 
bottom) e N  , 1 , e N  .   , and 2  with e N  . 

At finite Zeeman splitting and exchange coupling, the 
critical energies of those states lie close to each other 
(see Figure 4). The matrix elements  mix the other  2c

The distance between 
the critical energies of those states saturates at large   
to the value of half of the Zeeman splitting / 2 . Due to 

elatively small energy distance between the critical the r
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