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Abstract 
Visual tracking has been widely applied in construction industry and attracted sig-
nificant interests recently. Lots of research studies have adopted visual tracking tech-
niques on the surveillance of construction workforce, project productivity and con-
struction safety. Until now, visual tracking algorithms have gained promising per-
formance when tracking un-articulated equipment in construction sites. However, 
state-of-art tracking algorithms have unguaranteed performance in tracking articu-
lated equipment, such as backhoes and excavators. The stretching buckets and 
booms are the main obstacles of successfully tracking articulated equipment. In order 
to fill this knowledge gap, the part-based tracking algorithms are introduced in this 
paper for tracking articulated equipment in construction sites. The part-based track-
ing is able to track different parts of target equipment while using multiple tracking 
algorithms at the same sequence. Some existing tracking methods have been chosen 
according to their outstanding performance in the computer vision community. 
Then, the part-based algorithms were created on the basis of selected visual tracking 
methods and tested by real construction sequences. In this way, the tracking perfor-
mance was evaluated from effectiveness and robustness aspects. Throughout the 
quantification analysis, the tracking performance of articulated equipment was much 
more improved by using the part-based tracking algorithms. 
 

Keywords 
Visual Tracking, Hydraulic Excavators, Construction Safety, Part-Based Tracking 

 

1. Introduction 

Visual tracking is one of the most popular research fields in vision-based technologies 
and has made huge progresses in recent decades. In 1981, B. D. Lucas and T. Kanade 
firstly began to adopt holistic templates in tracking fields [1]. Then, for better describ-
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ing the appearance changes, the subspace-based tracking methods have been widely 
used [2] [3]. So far, many visual features, such as histograms of Haar-like features [4], 
oriented gradients (HOG) [5] and co-variance region descriptor [6], have been devel-
oped in visual tracking. Recently, context information is considered as a helpful factor 
in visual tracking when the objects are partly or fully occluded [7].  

The visual tracking has a variety of practical applications, such as human computer 
interaction, motion analysis, activity recognition, surveillance and medical imaging [8] 
[9]. Also, this technology has been applied in the construction industry. For example, 
visual tracking could be used to manage construction resources [10] and help managers 
know how many resources have been wasted in order to address inefficiency issues 
[11]. Also, tracking moving objects in construction sites could prevent potential colli-
sions [12] and fall accidents [7]. Especially, vision-based tracking has been widely used 
in the earthmoving works to evaluate the productivity of equipment, such as excava-
tors, loaders, dozers, and backhoes [13]. 

Earthmoving works is an important factor which affects the quality and cost of a 
project. As a mainly employed equipment in the earthmoving, hydraulic excavators has 
different sizes and can be used in digging foundations, drilling piles, and handling ma-
terials. Therefore, tracking excavators is a necessary technique to estimate working 
productivity. Although visual tracking algorithms have gained promising performance 
when tracking un-articulated equipment such as dozers, loaders and trucks, there is not 
a mature tracking algorithms to track hydraulic excavators. This is because the opera-
tion of excavators is complex and the activity range is too wide to be predicted. Some 
researchers have made great efforts on tracking excavators. Sougho and Tomohiro [14] 
applied RFID (Radio Frequency Identification) technology to identify hydraulic exca-
vators in order to prevent collision accidents. And Ehsan et al. [15] tracked excavators 
through painting markers on the arms of excavators. However, all these techniques 
(marker and RFID sensor) are time- and money-consuming.  

To address these issues, this study introduced the part-based 2D tracking methods to 
track the hydraulic excavators. First of all, three tracking algorithms: SCM tracker [16], 
KCF tracker [17], and STC tracker [18] were selected due to the desirable tracking per-
formance in benchmark research studies of the computer vision community. These 
trackers were tested with multiple videos captured on real construction sites. Then, the 
KCF tracker is recognized as the most accurate tracker, while the STC tracker is recog-
nized the most robust tracker. The two trackers were used to create two multiple-object 
tracking methods (called M-KCF and M-STC) for part-based tracking of hydraulic ex-
cavators. For potential better performance, the multiple-object tracking methods 
(called M-K-S), which combined KCF tracker and STC tracker were introduced. The 
M-KCF, M-STC and M-K-S tracker were further compared and discussed. It is im-
proved that the part-based methods have significantly increased the tracking perfor-
mance of excavators. 

2. Related Work 

In this section, the recent research studies in 2D visual tracking methods were firstly 
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introduced. Then, state-of-art research focused on visual tracking construction work-
forces was reviewed. Also, some widely accepted evaluation metrics to assess the per-
formance of trackers in the benchmarks were illustrated. 

2.1. 2D Visual Tracking Methods 

In 1981, B.D. Lucas and T. Kanade [1] firstly adopted holistic templates for tracking. In 
order to seek better templates, lots of visual features, such as histograms of oriented 
gradients (HOG) [4], Haar-like features [5] and co-variance region descriptor [6], have 
been used for tracking technologies. Furthermore, the subspace-based tracking me-
thods have been widely employed to describe the appearance changes. Meanwhile, the 
sparse-representation-based algorithms, which were proposed by Ling and Mei [2], 
have been improved [3]. So far, the deep learning [19] and machine learning [20] were 
widely developed in current researches and have got promising performance when 
tracking occlusion objects. 

Generally, most short-term single-object model-free trackers are considered in the 
same framework which breaks a tracker into five components [21]. These components 
include motion model, feature extractor, observation model, model updater and en-
semble post-processor. A tracking system is always initialized with given the position 
information of the bounding box of the target, then the motion model generates many 
candidate regions for prediction. Then the feature extractor converts these candidate 
regions into different features. And the observation model estimates the candidate re-
gions’ possibility of being targets. Finally, the motion updater updates the observation 
model and provide the tracking results. In a tracking system, there may not include on-
ly one tracker, the ensemble post-processor would combine the prediction results of 
each tracker and provide the best estimation result. 

2.2. Visual Tracking in Construction 

The visual tracking technology has been recently applied in the construction industry to 
facilitate construction automation. For example, it was used to do pothole distress as-
sessment in pavement design [22], identify construction cumulative trauma disorders 
[23], recognize dirt loading cycles in excavation [13], and manage construction work-
forces in real-time [10]. Another essential application of tracking in construction is 
safety monitoring. It is well known that the possibility of fatalities in construction sites 
is quite large when compared to the scale of the workforce and to other industries. Vis-
ual tracking technologies help project managers to enhance the safety of workers when 
they are working in heights [7]. It is also feasible to locate workers and equipment in 
order to protect workers from potential collisions [12]. 

As an important equipment in construction, hydraulic excavators have attracted lots 
of interests in visual tracking. Some researchers used RFID technique to track excava-
tors [14]. The RFID system consists of a reader and a tag. The RFID tag periodically 
makes the object identifiable by a battery, which has a unique ID, and the RFID reader 
receives this ID number information from the RFID tag. Therefore, excavators can be 
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tracked through attaching a tag on it. Also marker-based methods are intended to 
detect excavators in harsh construction environments [15]. This technique requests 
painting different markers on the arms of excavator. Algorithms could even precisely 
detect and estimate the arm poses through detecting the boundaries of markers. Many 
effective libraries have been developed in marker-based research field, such as AR-
ToolKit [24] and ARTag [25]. However, both installing RFID tags and painting markers 
are cost-consuming. Many construction sites cannot adopt these technologies due to 
the inconveniences. So it is important to develop a visual tracking method to track ex-
cavators with high performance in real time. 

2.3. Evaluation Criteria 

How to fairly evaluate tracker’s performance remains a task in visual tracking fields. A 
reasonable evaluation system will help researchers to grasp tracker’s strengths and 
weaknesses. Typically, popular evaluation metrics, which adopted by lots of bench-
marks are introduced as fellow:  
• The region overlap score [26] calculates the overlap region of prediction region 

from the whole area combing the tracker and the ground truth area. It is defined as 
 S = Rt Ra Rt Ra , while   and   mean the intersection and union of two 

areas, respectively.  
• The center error [27] measures the average Euclidean distance between the central 

location of manual ground truths and tracked results. The average central location 
error over all frames is usually adopted to evaluate the performance of trackers. 

• The tracking length [28] reflects the robustness performance of trackers. This metric 
is calculated as the number of the frames from the first frame to the frame where its 
first failure.  

• The failure rate [29] is calculated as possibility of tracking failure in per image dur-
ing the whole sequence. And this metric needs manually re-initialization when a 
tracker fails to track its targets. 

Single evaluation metric is hard to reflect the robustness and effectiveness at the same 
time. So these evaluation metrics are always combined together. Nawaz and Cavallaro 
[30] proposed the Combined Tracking Performance Score (CoTPS) method to gain a 
comprehensive evaluation. In the CoTPS, the accuracy score is calculated as the num-
ber of successfully tracked frames, while the failure information is calculated on the 
base of the tracking length. On the other hand, Matej et al. [31] also considered the ac-
curacy and robustness effectiveness into one graph in order to decide which tracker 
shows the better performance both in accuracy and robustness. The accuracy is reflect-
ed by the overlap score, while the robustness is measured by the times which the tracker 
fails to track the object during tracking. 

3. Methodology 
3.1. Trackers Selection 

In this paper, authors selected three trackers (KCF, SCM and STC) from computer vi-
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sion as the experiments trackers based on our knowledge. There exists many popular 
benchmark works which provide directions to us. KCF tracker and SCM tracker were 
selected because they have shown the promising performance in existing visual tracking 
benchmarks. In Wu’s benchmark work [20], the Robust Object Tracking via Sparsity- 
based Collaborative Model (SCM) [16] was ranked the first in occlusion, illumination 
and background clutter conditions and the second in the scale variation condition. 
From the comparisons in [31] by Matej et al., trackers were evaluated through the ac-
curacy-robustness graph. In this benchmark, the Kernelized-Correlation Filter tracker 
(KCF) showed the best performance in accuracy and the second in overall performance. 
On the other hand, a super-fast algorithm which employed the spatio-temporal context 
information (STC) [18] was used. The STC tracker creates a spatial context model be-
tween the object and the background near the object in one scene. Then, this model will 
be updated with a spatio-temporal context model in the next frame and the best results 
is predicted when maximizing the confidence map.  

In order to assess these single-object tracking algorithms’ strengths and weaknesses 
in construction scenarios, these trackers were tested by construction sequences which 
includes excavators, backhoes, trucks and workers. And the trackers are evaluated from 
accuracy and robustness respectively. For the accuracy evaluation, the average overlap 
score and center location error are employed for analysis. Because these two metrics are 
considered as the easiest to compute, interpret and describe the entire sequence. For the 
robustness analysis, the failure rate is employed here as its minimal annotation re-
quirement. Also the failure rate can better describe the entire performance of trackers 
in robustness when comparing with the tracking length. Part of comparison results is 
showed in Table 1. According to the comparison work, the KCF tracker is the most 
accurate one with the better overlap score and lower center error, while the STC tracker 
showed the better performance in robustness with the lowest failure rate. 

3.2. Part-Based Tracking 

It can be noticed that single-object tracking algorithms perform un-guaranteed in 
tracking excavators, especially in dirt-loading activities from comparison works. It is 
because the excavator buckets always rotate and move quickly in operations. Generally, 
an excavator includes four mainly tracking components: boom, dipper, bucket and 
“house” (driving cab). An excavator model which illustrates each component clearly is 
showed in Figure 1. The single-objects tracking algorithms usually focus on the house 
of the excavators because this component has biggest area and moves slowly. Because of 
the buckets move fast, it results in the ground truth tracking box changes quickly and 
hard to be predicted. Therefore, there are two initial tracking boxes adopted in this 
study, which is showed in the Figure 2. The first part is the “house” and grab rails, and 
the second part is bucket and dipper. And we find the two tracking boxes can always 
reflect the tracking box of the whole excavator. 

Based on the STC algorithm of Zhang et al. [18], one more rectangle was added to 
represent the second target at the beginning of the algorithm. Therefore, two sets of 



B. Xiao et al. 
 

106 

confidence map and context prior models can be produced at the same time. So far, it 
has learned two spatial context models respectively. The maximum point of two confi-
dence map will be the two targets’ location separately. This two-object algorithm is 
called M-STC. Adopting the similar concept of M-STC, the M-KCF tracker were 
created based on the KCF tracker. At the beginning of the KCF algorithm, two initial 
targets are defined in the first frame. Hence, for every frame, we extract dense features 
from the image in order to train the Gaussian kernel model. The target’s location in  
 
Table 1. Part of comparison of trackers in construction site. 

Videos KCF SCM STC 

1 

Average Overlap score 0.71 0.77 0.40 

Center error (pixels) 8.97 12.45 14.06 

Failure rate (350 frames) 0.29% 0.57% 0 

2 

Average Overlap score 0.78 0.85 0.61 

Center error (pixels) 78.78 58.32 61.48 

Failure rate (500 frames) 0.20% 0.40% 0.20% 

3 

Average Overlap score 0.79 0.84 0.73 

Center error (pixels) 79.96 29.65 17.04 

Failure rate (500 frames) 0 0 0 

4 

Average Overlap score 0.85 0.75 0.74 

Center error (pixels) 7.60 17.16 10.20 

Failure rate (400 frames) 0.25% 0 0 

5 

Average Overlap score 0.82 0.81 0.50 

Center error (pixels) 47.05 51.13 47.92 

Failure rate (500 frames) 0 0 0 

 

 
Figure 1. Model of the excavator structure (CAT@5100B). 



B. Xiao et al. 
 

107 

 
Figure 2. Example of initial positions of tracking boxes. 

 
next frame will be automatically stored and visualized. The STC tracker was assessed 
the better robust tracker in the comparison part. Therefore, it may be better if we use 
STC to track the part of bucket and dipper, which is hard to be tracked because of the 
high moving speed. So the STC and KCF tracker are combined together to track two 
targets respectively, which named M-K-S. For the results of three multiple trackers, 
each algorithm computes the coordinator of two targets tracking boxes. Based on these 
coordinators, the extra code is added to plot a big rectangle which contains two targets. 
After that, the performance of multiple trackers can be compared with manually anno-
tated ground truths. 

4. Experiment Results 

In this experiment, the datasets were tested in the platform of Matlab R2014b, a 64-bit 
operating system, Microsoft Windows 7 Enterprise. And the hardware configuration 
includes an Intel® i7-4720HQ CPU @2.60 GHz (central processing Unit), a 16 gigabytes 
memory, and an NVIDIA® GeForce® GTX 965M with 2GB GDDR5 GPU (graphic 
processing unit). Three sequences were used in this study and all sequences are loading 
dirt and in the night time. It means the tracking conditions such as the motion blur, 
low resolution and background clutter are tough. In this study, it used average overlap 
score, center location error to evaluate the performance of three single-object algo-
rithms and three multiple algorithms. The overlap score reflects the accuracy of track-
ers. And the center error measures the ability that tracking boxes follow the ground 
truth boxes. Some example sequences of evaluation results are showed in the Figure 3. 
The tracking performance is illustrated in the following Table 2. 

5. Conclusions 

It is obvious that the part-based algorithms have more accurate and effective perfor-
mance than three single-object algorithms. The mean value of average overlap score of 
M-STC, M-KCF, and M-K-S is 0.86, while the mean value of rest of trackers is 0.57. 
And part-based algorithms also perform remarkable in center error with 15.47 pixels in  
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(a)                                            (b) 

  
(c)                                            (d) 

  
(e)                                            (f) 

Figure 3. Examples of tracking results in the Frame 300 of testing trackers. (a) KCF tracking re-
sult in Frame 300; (b) SCM tracking result in Frame 300; (c) STC tracking result in Frame 300; 
(d) M-STC tracking result in Frame 300; (e) M-KCF tracking result in Frame 300; (f) M-S-K 
tracking result in Frame 300. 

 
Table 2. Tracking performance of experiment trackers. 

Video 
Single-object Trackers Part-based Trackers 

KCF SCM STC M-STC M-KCF M-K-S 

1 
Average Overlap score 0.64 0.63 0.44 0.78 0.87 0.93 

Center error (pixels) 86.01 94.00 89.96 13.58 18.89 13.94 

2 
Average Overlap score 0.68 0.68 0.54 0.71 0.87 0.75 

Center error (pixels) 116.44 120.77 118.23 36.18 25.53 44.90 

 
average, while single-object algorithms got 89.99 pixels in average center error. It 
proves that dividing the excavators into two parts and tracking them separately at the 
same time really enhances the tracking results. In this study, we created the M-K-S 
tracker which combines STC and KCF together. This tracker used STC to track the 
bucket part, which moves with high-speed and accurate KCF to track “house” part. And 
the M-K-S tracker actually achieved the best performance among these six trackers with 
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0.93 in average overlap score. 
In this study, the part-based 2D tracking methods were introduced to track the hy-

draulic excavators. Three tracking algorithms: SCM, KCF, and STC were selected out 
based on the desirable performance in benchmark studies. These trackers were tested 
and compared with construction videos. Then, the KCF tracker and STC tracker were 
used to create part-based trackers for tracking hydraulic excavators. Finally, all six 
trackers were tested by excavator videos and the part-based methods have better per-
formance than single-object algorithms. 

In fact, this concept also could be used in tracking other equipment. The two-object 
algorithms can be changed to three, four or more objects algorithms in order to track 
more complex equipment and activities in construction. On the other hand, the single- 
object trackers used in this study can be replaced with other better performed trackers 
and it is supposed to receive better results. There exist certain limitations here. Because 
of the limited space of this paper, the tracking time and robustness of trackers have not 
been considered which are important in visual tracking. More objects tracked, much 
time is spent. When the target is divided into some parts, it is easier to lose the quickly 
moving part and results in the decreasing of robustness. And the part-based algorithms 
may not make breakthroughs in tracking occlusions because it cannot exceed the ability 
of original trackers. 
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