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Abstract 
 
An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat 
and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equa- 
tions are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta 
shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (), 
Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- 
thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as 
on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the 
plate ( = 70 degrees), flow velocity (f ' ) is strongly increased i.e. accelerated, with thermal buoyancy force 
parameter (), in particular closer to the plate surface; further into the boundary layer,  has a much reduced 
effect. Conversely temperature () and concentration () is decreased with increasing thermal buoyancy pa-
rameter, . For negative plate inclination, the flow is accelerated whereas for positive inclination it is decel-
erated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concen-
tration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl 
number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts tempera-
tures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is 
reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive 
increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the 
domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at in-
termediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose 
each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed 
for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number 
respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret num-
ber cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and 
Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex

-1/2 with  Cos; for N 
= -1 the local Nusselt number remains constant for all values of parameter,  Cos. Local Sherwood number, 
ShxRex

-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The com-
putations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. 
(1980). 
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1. Introduction 
 
Combined heat and mass transfer from inclined surfaces 
finds numerous applications in solar energy systems, 
geophysics, materials processing etc. Many studies have 
appeared concerning natural and also mixed convection 
flows. Kierkus [1] studied isothermal inclined plate 
natural convection boundary layer flow using a perturba-
tion method for a Prandtl number of 0.7. Fujii and Imura 
[2] studied experimentally free convection from an in-
clined plate. Chen et al. [3] analyzed combined heat and 
mass transfer in mixed convection along vertical inclined 
plates. Uniform surface flux effects on inclined plate 
thermal convection were reported by Armaly et al. [4]. 
The combined buoyancy and wall transpiration effects on 
mixed convection along an inclined plate were studied 
by Lee and Hsu [5]. Wickern [6] examined the laminar 
boundary layer flow over an arbitrarily sloping plate 
showing that for opposing buoyancy forces singular as 
well as regular behaviour may prevail. Further studies 
have been communicated by Yan and Soong [7] in the 
context of evaporating inclined boundary layer convec-
tion and by Sheu and Lin [8] in combusting inclined flat 
plate flows. All the studies neglected Soret and/or Du-
four effects. Such effects are significant when density 
differences exist in the flow regime. The Soret or ther- 
mo-diffusion effect refers to mass flux produced by a 
temperature gradient and was first reported by Ludwig [9] 
and Soret [10], these studies showing an increase (de-
crease) of salt concentration at the cold (hot) end of a 
tube filled with salty water. The Dufour effect refers to 
heat flux produced by a concentration gradient. The 
Soret and Dufour effects are usually minor and can be 
neglected in simple models of coupled heat and mass 
transfer. According to Platten and Legros [11], the mass 
fraction gradient established under the effect of thermal 
diffusion is very small. However, it has a disproportion-
ately large influence on hydrodynamic stability relative 
to its contribution to the buoyancy of the fluid. They also 
argued that in most liquid mixtures the Dufour effect is 
negligible, but this may not be the case in gases. Mojtabi 
and Charrier-Mojtabi [12] have confirmed this by noting 
that in liquids the Dufour coefficient is an order of mag-
nitude smaller than the Soret effect. Many investigations 
of Soret/Dufour effects on convection flows have been 
presented. Twefik and Yang [13] experimentally inves-
tigated Helium mass transfer via a porous horizontal 
cylinder and also confirmed the major influence of Soret 
and Dufour phenomena on transpiration-cooled boundary 
layer flows. Sparrow et al. [14] studied convection along 
a horizontal cylinder for a Helium-air system. Sparrow et 
al. [15] further conducted experiments using Hydrogen, 
Helium, Carbon Dioxide and Freon-12, injected via a 
horizontal porous cylinder, showing the strong influence 

of Soret effects on the flow regime for injected gases 
with a lower density than air (i.e. Helium and Hydrogen). 
Abreu et al. [16] used the Adomian’s polynomial method 
to study both forced and free convection laminar bound-
ary layer heat and mass transfer with Soret and Dufour 
effects. Hort et al. [17] analyzed in detail the thermal 
convection and mass transfer in binary gas mixtures with 
Dufour effects. Coelho and Silva Telles [18] studied the 
Graetz problem with thermo-diffusion effects with con-
duction in the axial and transverse directions plus longi-
tudinal advection. Weaver and Viskanta [19] reported 
numerical results for the Soret/Dufour effects on free 
convection heat and mass transfer in a cavity, indicating 
that species interdiffusion reduces the overall heat trans-
fer, but increases the mass transfer through the cavity. 
They also showed that heat transfer due to Dufour effects 
is comparable to that by heat conduction and that the 
total mass flux through the cavity due to Soret diffusion 
can reach 10% to 15%. Further excellent studies of Soret 
and/or Dufour effects on mixed-free-forced convection, 
have been communicated by Kafoussias and Williams 
[20] for temperature-dependent viscosity and for the case 
of a Darcian porous regime by Anghel et al. [21]. Postel-
nicu [22] studied the influence of chemical reaction on 
heat and mass transfer from vertical surfaces in porous 
media considering Soret and Dufour effects. Bég et al. 
[23] presented the first computational study of micropo-
lar convection boundary layers in nonlinear porous me-
dia with Soret and Dufour cross-diffusion effects, em-
ploying a finite element method with a focus on suspen-
sion polymer chemical process engineering applications. 
More recently Bég et al. [24] investigated (using the 
Sparrow- Quack-Boerner local non-similarity numerical 
method) the collective first order chemical reaction and 
Soret and Dufour diffusional  influence on heat transfer 
from an inclined plate, with applications in solar energy 
systems. Bég et al. [25] have further studied numerically 
the effects of transverse magnetic field on magnetohy-
drodynamic convection from a stretching polymeric sheet 
embedded in a porous medium in the presence of Soret 
and Dufour effects. Bhargava et al. [26] extended the 
model in [25] to consider the oscillatory magneto-conve- 
ction and species diffusion in a porous medium with 
Soret and Dufour effects with applications in magnetic 
materials processing. Rawat and Bhargava [27] studied 
viscous dissipation (Eckert number) effects in buoyancy- 
driven micropolar convection heat transfer in a Darcian 
porous medium. Very recently Bég et al. [28] employed 
the implicit Keller box method to study Soret/Dufour 
effects on micropolar convection flow from a spherical 
body. Osalusi et al. [29] have used numerical shooting 
methods to study the rotating hydromagnetic disk flow 
with Soret/Dufour and Ohmic heating effects. In the 
context of combustion systems, Miller et al. [30] have 
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described the effects of Soret and Dufour diffusion on 
laminar flame diffusion dynamics. Partha et al. [31] have 
analyzed the interaction of dispersion, buoyancy (Ray- 
leigh number), mass transfer (Lewis number) an Soret/ 
Dufour gradients on magnetohydrodynamic convection 
in a porous regime. OKong’o and Bellan [32] have also 
studied Soret and Dufour effects in compressible gas 
flow with binary species mixing for mixtures of super-
critical heptane and nitrogen and oxygen and hydrogen 
using fluctuation dissipation theory. They derived simi-
larity solutions for velocity, temperature and mass frac-
tion profiles, highlighting the strong influence of Soret 
and Dufour effects. The objective of the present work is 
to investigate the combined Soret and Dufour effects and 
also the influence of the inclination of the plate on the 
mixed convection heat and mass transfer over an inclined 
plate (solar energy collector) system using boundary layer 
theory. The effects of governing thermophysical parame- 
ters on heat and mass transfer characteristics are analy- 
zed in detail. Numerical solutions are obtained using the 
Sparrow-Quack-Boerner local non-similarity numerical 
method and very efficient Runge-Kutta shooting quadra-
ture., incorporating the applicable criteria that follow. 
 
2. Mathematical Model 
 
Consider the combined thermal convection and diffusion 
mass transfer in laminar boundary layer flow parallel to a 
flat plate which is inclined to the vertical with angle,  , 
with free stream velocity, , as depicted in Figure 1. 
The temperature of the ambient medium is  and wall 
temperature is w . The flow along the plate contains a 
species, A, slightly soluble in the fluid, B with the con-
centration at the plate surface being w  and the solubil-
ity of A in B far away from the plate is 

u

T

T

C
C . The 

streamwise coordinate, x, is measured from the leading 
edge of the plate, parallel to the plate and the transverse 
coordinate, y, normal to the plate in the outward direction, 
for flow regimes both above and beneath the plate. Fol-
lowing Sparrow et al. [15], we assume the Dufour effect 
may be described by a second order concentration de-
rivative with respect to the transverse coordinate in the 
energy conservation equation, and the Soret effect by a 
second order temperature derivative in the concentration 
equation. 

The forced flow, following Chen et al. [3] exists above 
the plate for  > 0 in the clockwise direction and beneath 
the plate for  < 0 (in the anti-clockwise direction). The 
fluid properties are assumed to be constant except the 
density variation in the buoyancy force term. Along with 
the Boussinesq approximation, the laminar boundary layer 
equations can be written with Soret and Dufour effects as 
follows: 
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The first two terms on the RHS of Equation (2) corre-
spond to the streamwise pressure gradients induced by 
the combined buoyancy forces, with the plus and the 
minus signs representing, respectively, flows above and 
below the plate. The third and fourth terms correspond to 
the buoyancy forces generated by thermal and mass dif-
fusion, with the plus and minus signs referring, respec-
tively, to upward and downward forced flows. The final 
term in (2) on the right hand side is the viscous diffusion 
term. The initial and boundary conditions at the plate and 
in the free stream are: 

u u , T T , C C   at x = 0 

0u  , 0v  , wT T ,  at y = 0 wC C

u u , T T , C C  as         (5) y 
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Figure 1. Physical model and coordinate system. 
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where u and v denote the velocity components in the x- 
and y-directions respectively, v is the kinematic viscosity, 
  and    are the coefficients of thermal expansion 
and concentration expansion, respectively, T and C are 
the temperature and concentration, respectively,   is 
the density, Dm is the mass diffusivity, cp is the specific 
heat capacity, cs is the concentration susceptibility,   
is the thermal diffusivity, Tm is the mean fluid tempera-
ture, KT is the thermal diffusion ratio. Also, as indicated 
by Chen et al. [3], Equation (2) indicates the existence of 
both buoyancy induced streamwise pressure gradient 
terms and the buoyancy force terms for an inclined sur-
face. The relative magnitude of these terms, however is 
controlled by the angle of inclination of the plate to the 
vertical,  . Chen et al. [3] have shown using an order- 
of-magnitude analysis that the buoyancy-induced stream- 
wise pressure gradient terms can be neglected in com-
parison with the buoyancy force terms provided: 

Tan 1
x

                    (6) 

Chen et al. [3] have further shown that in terms of di-
mensionless boundary layer thickness   (the   value 
for which y  ), the condition (6) is also equivalent to 
the following condition: 

1 2Re
Tan x






                (7) 

where Rex u x v  denotes the local Reynolds number. 
Effectively the condition (6) or (7) is valid for Tan    
3 ~ 30 i.e. angles of inclination,    72 ~ 88 degrees. 
In this situation, the buoyancy-induced streamwise pres-
sure gradient terms are omitted in Equation (2) which 
reduces to the much simpler form: 
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The governing boundary layer equations then com-
prise Equations (1), (3), (4) and (8), with boundary con-
ditions (6) subject to the condition given by (6) and (7). 
The special case of a vertical plate is retrieved from (8) 
for  i.e. 0   cos 1  . Proceeding with the analysis 
we introduce the following dimensionless variables: 
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where  is the pseudo-similarity variable,  is trans-
formed x-coordinate which represents the thermal buoy-

ancy effect, f is a reduced stream function,  is dimen-
sionless temperature and  is the dimensionless concen-
tration function. The stream function  , x y  satisfies 
the mass conservation Equation (2) with 
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            (10) 

Implementing Equations (9) and (10) into Equations (8) 
and (3), (4), (5), we obtain: 
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The transformed dimensionless boundary conditions 
are: 

0 : 0, 0, 1, 1,f f           (14a) 

: 1, 0,f 0               (14b) 

where denotes differentiation with respect to  , Pr is 
the Prandtl number, Sc is the Schmidt number, the ther-
mal buoyancy force parameter, 2

, Rex t x  (which is a 
measure of thermal buoyancy force effect on forced 
convection), 
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is the Soret number. The engineering design quantities of 
physical interest include the skin-friction coefficient (a 
function of local Reynolds number), Nusselt number 
function and Sherwood number function, which in di-
mensionless form are given by: 

1 21
Re ,0

2 f xC f             (15) 
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1 2Re ,0x xSh                (17) 
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3. Numerical Solutions 
 
We now obtain approximate solutions to Equations (11) - 
(13) based on the local similarity and local nonsimilarity 
methods developed by Sparrow et al. [33]. More recently 
this approach has been employed by Bég et al. [34] to 
simulate electromagnetic induction flows. Chang et al. 
[35] employed local nonsimilarity modeling to investi-
gate unsteady rheological flow. Bég et al. [36] studied 
gravity-driven magneto-micropolar flow on a slope using 
both local nonsimilarity and network simulation methods. 
Details and convergence aspects are described in [34] to 
[36]. For the first level of truncation the   derivatives 
in Equations (10) - (13) can be neglected. Thus, the gov-
erning equations for the first level of the truncation are: 
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For the second level of truncation, we introduce, 
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and restore all of neglected terms in the first level of 
truncation. Thus, the governing equations are: 
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subject to the boundary conditions: 
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The introduction of the three new dependent variables 
 in the problem requires three additional equa-

tions with appropriate boundary conditions. This can be 
obtained by differentiating Equations (21) with respect to 

, ,F  

  and neglecting the terms ,F    ,   and   , 

which leads to: 

    

 



 

     

   

2

1
cos cos

2
1

Pr 2
  

1

Sc 2
  

F fF Ff N N

F F F f F f F f F

Du

F F f F f F

Sr

F F f F

    

 

 

 

  



      

              

 
            

 
        

 

(23) 

     
     
 

,0 0, ,0 0, ,0 0,

,0 0, ,0 0, ,0 0,

,0 0

F F

F

  

  



   

   

 

          (24) 

The coupled non-linear Eqautions (18), (21) and (23) 
with the boundary conditions (19), (22) and (24) are so- 
lved using fourth order Rung-Kutta method with a shoot- 
ing technique. This method has also been applied very 
recently to simulate viscoelastic flow in porous media by 
Bég and Makinde [37] and nanofluid thermal convection 
by Rashidi et al. [38], showing excellent efficiency com- 
pared with semi-analytical methods such as the differen-
tial transform technique with Padé approximants. The 
step size 0.05   is used to obtain the numerical solu-
tion with five-decimal place accuracy as the criterion of 
convergence. 
 
4. Results and Discussion 
 
The values of Sr and Du have been selected to ensure 
that the product Sr Du is constant, assuming that the 
mean temperature is constant. The default values for the 
control parameters are selected as: Pr = 0.7 (air), Sr = 1, 
Du = 0.05 [i.e. Sr Du = 0.05], N = 1, Sc = 0.2 (hydrogen 
gas as the species diffusing in air). In all computations 
we present the variation of f ' ,  and  versus  for the 
velocity, temperature and species diffusion boundary 
layers, and also 

   1 2 1 21
Re ,0 , Re ,0

2 f x x xC f Nu      

and  1 2Re ,0x xSh      versus  as a simulation of 
skin friction function, Nusselt number function and 
Sherwood number, respectively. In Figures 2 to 4 we 
have plotted the variation of dimensionless velocity, 
temperature and concentration function with the thermal 

buoyancy parameter, 2
, Rex t xGr  . 

For positive inclination angle of the plate ( = 70 de-
grees), we observe flow velocity ( f ' ) is strongly increased 
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i.e. accelerated, with a rise in thermal buoyancy force 
parameter (), in particular closer to the plate surface; 
further into the boundary layer, the profiles begin to 
converge for all values of  i.e. they tend towards unity 
as specified in the boundary conditions. A distinct veloc-
ity overshoot is identified for  values greater than or 
equal to unity; for  = 0 and 0.1, this overshoot vanishes. 
Strong thermal buoyancy therefore has a significant ac-
celeration effect on the boundary layer flow. Tempera-
ture function ( )  however, as illustrated in Figure 2 is 
adversely affected with increasing thermal buoyancy 
parameter, . Profiles all descend smoothly from the 
maximum value at the wall to zero in the free stream. 
The value N = 1 implies that the thermal and concentra-
tion (species diffusion) buoyancy forces are of the same 
order of magnitude. Dimensionless concentration func-
tion () is decreased also with increasing thermal buoy-
ancy parameter, , as shown in Figure 4. The differences 
in values are however smaller over the same range of  
values, compared with the temperature distribution 
(Figure 3). In all cases the velocity, temperature and 
concentration are minimized with  = 0. 

In Figures 5 to 7 the effects of plate inclination on the 
dimensionless velocity, temperature and concentration 
function with coordinate transverse to the plate () are 
illustrated, again with both Soret and Dufour effects pre-
sent, for N = 1. When  < 0 i.e. negative plate inclination, 
in Figure 5, the velocity ( f ' ) is reduced at first i.e. flow 
is initially decelerated nearer the plate surface; however 
further away it is accelerated and infact overshoots. For 
the case of the vertical plate ( = 0 degrees) and for posi-
tive inclination, velocities are always monotonic distri-
butions and no overshoot is present. 

With  > 0 i.e. 30 degrees and 80 degrees, velocity is 
reduced i.e. flow is decelerated, largely owing to gravita-
tional effects. Conversely in Figure 6, with negative plate 
inclination ( < 0) the temperature () decreases slightly; 
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Figure 2. f '  versus η for various ξ values. 
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Figure 3. θ  versus η for various ξ values. 
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Figure 4.   versus η for various ξ values. 
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Figure 5. f '  versus η for various γ values. 
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Figure 6. θ  versus η for various γ values. 
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Figure 7.   versus η for various γ values. 

 
for a vertical plate temperatures are greater than for the 
negatively inclined plate; temperatures are further in-
creased marginally with positive inclination of the plate. 
In Figure 7, a similar response is observed for the con-
centration distributions () which as with temperature are 
reduced with negative plate inclination, but enhanced 
with positive inclination and also for a vertical plate 
scenario ( = 0 degrees). 

Figure 8 shows the response of temperature function 
through the boundary layer regime to Prandtl number, Pr. 
Larger Pr values imply a thinner thermal boundary layer 
thickness and more uniform temperature distributions 
across the boundary layer. Smaller Pr fluids have higher 
thermal conductivities so that heat can diffuse away from 
the vertical surface faster than for higher Pr fluids (thic- 
ker boundary layers). Physically Pr = 0.7 is representa-

tive for air or hydrogen and Pr = 1 for water. Pr = 10, 20 
may correspond to oils and lubricants. Pr encapsulates 
the ratio of momentum diffusivity to thermal diffusivity. 
With a decrease in Pr temperatures as seen in Figure 8 
are substantially increased. The lowest temperatures cor-
respond to the highest value of Prandtl number (Pr = 20). 
No temperature overshoot is observed. In Figure 9 the 
effect of Schmidt number, Sc on temperature profiles () 
is plotted, for low value of thermal buoyancy parameter 
( = 0.1). Larger values of Sc correspond to Methanol 
diffusing in air (Sc = 1.0) and Ethylbenzene in air (Sc = 
2.0), as indicated by Gebhart et al. [39]. When Pr and Sc 
differ, then the thermal and species diffusion regions are 
of different extents. Temperature is continuously de-
creased from the wall for Sc = 0.1 and Sc = 0.5. For Sc = 
0.5 the profile is almost linear in decay. For Sc = 1, the 
concentration and velocity boundary layers will have 
approximately the same thickness; temperatures also 
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Figure 8. θ  versus η for various Pr values. 
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Figure 9. θ  versus η for various Sc values. 
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decrease smoothly from the plate surface to the free 
stream. For Sc > 1 we observe a significant temperature 
overshoot a short distance from the plate surface. The 
highest temperature corresponds to Sc = 5 (maximum 
Schmidt number). For both Sc = 3 and 5, temperature 
profiles descend sharply after attaining the velocity 
overshoot. Figure 10 indicates that concentration () is 
reduced continuously throughout the boundary layer, 
however, with increasing Schmidt number. Sc measures 
the relative effectiveness of momentum and mass trans-
port by diffusion. Larger values of Sc are equivalent to 
reducing the chemical molecular diffusivity i.e. less dif-
fusion therefore takes place by mass transport. As a re-
sult concentration is decreased in the boundary layer. 

The influence of the concentration-to-thermal-buoy- 
ancy ratio parameter, N, on dimensionless velocity ( f ' ), 
temperature () and concentration function () with co-
ordinate transverse to the plate () are shown again with 
both Soret and Dufour effects present, in Figures 11 to 
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Figure 10.   versus η for various Sc values. 
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Figure 11. f '  versus η for various N values. 

13. A positive rise in N clearly induces an increase in 
velocity as seen in Figure 11; the flow is significantly 
accelerated for N = 20, where once again a velocity 
overshoot is computed at intermediate distance from the 
plate surface ( ~ 3). For N = 0.5, 1, 5, 10, no velocity 
overshoot is apparent although velocities are increased in 
the regime continuously. For N < 0 i.e. -1, the thermal 
and species buoyancy forces oppose each other and this 
causes a decrease in flow velocity compared with the 
scenario where both forces are absent (N = 0) or are aid-
ing each other (N > 0). In Figure 12 negative N causes a 
very slight rise in fluid temperature i.e. heats the fluid 
regime slightly; for N = 0, and for positive N (thermal 
and concentration buoyancy forces assisting each other), 
this trend is reversed with a decrease in temperature i.e. 
cooling of the boundary layer regime. In Figure 13, a 
similar response for the concentration distribution is ob-
served as in the case of the temperature distribution, with 
 values increasing fractionally with a negative N value 
and decreasing with positive N values. Opposing buoy-
ancy forces (N < 0) therefore enhance species diffusion 
in the regime whereas aiding buoyancy forces (N > 0) 
inhibit species diffusion in the boundary layer. A similar 
response was reported by Rawat and Bhargava [27] and 
also Partha et al. [31]. 

In Figures 14 and 15 the combined effect of Dufour 
number (Du) and Soret number (Sr) on the temperature 
and concentration distributions, respectively, in the regime 
are shown. We study the simultaneous increase (and de-
crease) of these parameters so that their product remains 
constant at 0.05, following Anghel et al. [21] and Postel-
nicu [22]. Increasing Dufour number causes a rise in 
temperature whereas an increase in Soret number cools 
the fluid i.e. reduces temperature, as observed in Figure 
14. Conversely in Figure 15, we observe that a rise in 
Du decreases the concentration values in the boundary 
layer, whereas a rise in Soret number increases values. 
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Figure 12. θ  versus η for various N values. 
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Figure 13.   versus η for various N values. 
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Figure 14. θ  versus η for various Du & Sr values. 
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Figure 15.   versus η for various Du & Sr values. 

In Figures 16 and 17, we have presented the variation 
of the local Nusselt number, 1 2Rex xNu   and local Sher-
wood number, 1 2Rex xSh  , respectively with the product 
of the thermal buoyancy force parameter, , and Cos i.e. 

2
, cos Rex t xGr     as originally computed by Chen et al. 

[3], with Soret and Dufour effects neglected. Our results 
agree almost exactly with the computations in [3]. We 
infer from Figures 16 and 17 that in the absence of Soret 
and Dufour effects, the situations where N = 0 (buoyancy 
forces absent) and N > 0 (aiding buoyancy forces), gen-
erate a continuous increase in local Nusselt number, 

1 2Rex xNu   with thermal buoyancy force parameter, ; 
for N = -1 (opposing buoyancy forces) the local Nusselt 
number remains unchanged for all values of thermal buoy-
ancy parameter, . Local Sherwood number, 1 2Rex xSh   
as seen in Figure 17, is boosted considerably with an 
increase in Schmidt number from 0.7 through 1.0 to 7.0, 
for N > 0; however it is reduced with N < 0 compared 
with N = 0 and N > 0. 
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Figure 16. Local Nusselt number results. 
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Figure 17. Local Sherwood number results. 
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We finally note that the local nonsimilarity method 
(LNM) has been extensively validated by the authors re- 
cently, as has the numerical shooting quadrature used in 
the present article, with other techniques including net-
work simulation, finite elements and differential quadra-
ture methods. Details of validation are provided in Bég et 
al. [24,25] and also in Bég et al. [34], Chang et al. [35] 
and Bég et al. [36]. There is great confidence therefore in 
the present numerical solutions and comparisons have 
been omitted herein for conservation of space. 
 
5. Conclusions 
 
Numerical solutions have been obtained for the mixed 
convection heat and mass transfer boundary layer flow 
along an inclined plate in the presence of Soret and Du-
four thermo-diffusion effects, using the local nonsimilar-
ity method and a Runge-Kutta shooting technique. For 
positive inclination of the plate ( > 0), a rise in Dufour 
number (Du) increases temperatures in the boundary layer 
but decreases the concentration; conversely an increase 
in Soret number (Sr) reduces temperature and elevates 
concentration values. For positive inclination angle of the 
plate ( = 70 degrees), flow is accelerated, with thermal 
buoyancy force parameter () whereas temperature () 
and concentration () are reduced with increasing ther-
mal buoyancy parameter, . For negative and positive 
plate inclinations ( < 0 and  > 0), the flow is acceler-
ated and decelerated respectively; for these plate orienta-
tions however the temperature and concentration func-
tions are decreased and increased respectively. Tem-
peratures are enhanced and concentrations reduced in the 
regime with increasing Schmidt number. A positive in-
crease in concentration-to-thermal-buoyancy ratio pa-
rameter, N, significantly increases flow velocity with the 
converse effect for negative N. A velocity overshoot is 
also identified for N = 20, at intermediate distance from 
the plate surface. With Soret and Dufour effects neglected, 
N > 0 induces a continuous rise in local Nusselt number, 

1 2Rex xNu   and local Sherwood number, 1 2Rex xSh  . 
The present study is being extended to consider Soret/ 

Dufour effects in rotating disk flows [40] of interest in 
membrane oxygenators and also consider dusty (fluid- 
particle suspension) effects in photovoltaic collector sys-
tems [41]. It is also envisaged that homotopy methods 
will be employed in such studies [42]. The results of 
these investigations will be reported in the near future. 
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