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Abstract 
 
An exact analysis of the flow of an incompressible viscous fluid past an infinite vertical plate is conducted 
taking into account the presence of foreign mass or constant mass flux and ramped wall temperature. The 
dimensionless governing coupled linear partial differential equations are solved using the Laplace transform 
technique. Two different solutions for the fluid velocity are obtained–one valid for the fluids of Schmidt 
numbers different from unity, and the other for which the Schmidt number is unity. The effects of Prandtl 
number (Pr), Schmidt number (Sc), time (t) and mass to thermal buoyancy ratio parameter (N) for both aid-
ing and opposing buoyancy effects on the velocity and skin-friction are studied. Also, the heat and mass 
transfer effects on the flow near a ramped temperature plate have been compared with the flow near a plate 
with constant temperature. 
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1. Introduction 
 
Free convection flows past a vertical surface or plate have 
been studied extensively in the literature due to applica-
tions in engineering and environmental processes. Sev-
eral investigations were performed using both analytical 
and numerical methods under different thermal condi-
tions which are continuous and well-defined at the wall. 
Practical problems often involve wall conditions that are 
non-uniform or arbitrary. To understand such problems, 
it is useful to investigate problems subject to step change 
in wall temperature. For example in the fabrication of 
thin-film photovoltaic devices ramped wall temperatures 
may be employed to achieve a specific finish of the sys-
tem [1]. Periodic temperature step changes are also im-
portant in building heat transfer applications, for exam-
ple in air conditioning, where the conventional l assump-
tion of periodic outdoor conditions may lead to consid-
erable errors in the case of a significant temporary devia-
tion of the temperature from periodicity, as elaborated by 
Antonopoulos and Democritou [2]. Other examples in-
clude nuclear heat transfer control, materials processing, 

turbine blade heat transfer, electronic circuits and sealed 
gas-filled enclosure heat transfer operations [3]. Schetz 
[4] presented one of the earliest analytical studies for free 
convection flow from a vertical plate with discontinuous 
wall temperature conditions. Several investigations were 
continued on this problem using an experimental tech-
nique [5], numerical methods [6], and by using series 
expansions [7,8]. Lee and Yovanovich [9] presented a 
new analytical model for the laminar natural convection 
from a vertical plate with step change in wall tempera-
ture. The validity and accuracy of the model is demon-
strated by comparing with the existing results. Chandran 
et al. [10] have presented an analytical solution to the 
unsteady natural convection flow of an incompressible 
viscous fluid near a vertical plate with ramped wall tem-
perature and they have compared the results with con-
stant temperature. Recently, Saha et al. [11] investigated 
the natural convection boundary layer adjacent to an in-
clined semi-infinite flat plate subjected to ramp heating. 
The flow development from the start-up to an eventual 
steady state has been described based on scaling analysis 
and verified by numerical simulations. Chaudhary and 
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Jain [12] developed closed-form solutions to the un-
steady free convection flow past an infinite vertical os-
cillating plate for the scenario where the bounding plate 
has a ramped temperature profile using the Laplace- 
transform technique. 

Free convection flows occur not only due temperature 
difference, but also due to concentration difference or the 
combination of these two. The study of combined heat 
and mass transfer play an important role in the design of 
chemical processing equipment, nuclear reactors, forma-
tion and dispersion of fog etc. Both steady-state and 
transient double-diffusive convection flows are of im-
portance. The effect of presence of foreign mass on the 
free convection flow past a semi-infinite vertical plate 
was first studied by Gebhart and Pera [13]. Chen et al. 
[14] studied the combined double-diffusive mixed con-
vective boundary layer flow from vertical and inclined 
surfaces. Bég et al. [15] extended the study in [14] to 
consider the supplementary effects of chemical reaction 
and cross-diffusion (Soret and Dufour effects) on mixed 
convection heat and mass transfer flows from inclined 
plates, using a numerical method. Soundalgekar [16] has 
studied mass transfer effects on thermal convection flow 
past an impulsively started infinite isothermal vertical 
plate. Dass et al. [17] considered the mass transfer ef-
fects on flow past an impulsively started infinite iso-
thermal vertical plate with constant mass flux. Muthu-
cumaraswamy et al. [18] presented an exact solution to 
the problem of flow past an impulsively started infinite 
vertical plate in the presence of uniform heat and mass 
flux at the plate using Laplace transforms. 

However, mass transfer effects on free convection flow 
past an infinite vertical plate subject to discontinuous or 
non-uniform wall temperature conditions have not been 
studied in the literature. Hence it is now proposed to 

study the effects of mass transfer on the free convection 
flow of an incompressible viscous fluid past an infinite 
vertical plate subject to ramped wall temperature for the 
cases of i) foreign mass and ii) constant mass flux at the 
plate. In section 2 the mathematical analysis is presented. 
In section 3 exact solutions to the non-dimensional cou-
pled linear partial differential equations are derived by 
the Laplace transform method. 
 
2. Mathematical Model 
 
Consider the flow of a viscous incompressible fluid past 
an infinite vertical plate. The x - axis is taken along the 
plate in the vertically upward direction, and the y - axis 
is taken normal to the plate. Initially, for time 0t  , 
both the plate and the fluid are assumed to be at the same 
temperature T , concentration , and stationary. At 
time 

C
0t  , the temperature of the plate is raised or 

lowered to   0twT T T t       when 0 , and there-
after, i.e. for 0

t t 
t t  , is maintained at the constant tem-

perature wT   and the concentration level at the plate is 
raised to wC  or concentration is supplied at a constant 
rate to the plate. Then under usual Boussinesq’s ap-
proximation, the unsteady flow past an infinite vertical 
plate is governed by the following equations [16-18]: 
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As the plate is assumed to be infinite in length, the 
physical variables are functions of y  and  only. Here 

 is the velocity in the 
 t

u x  direction, t  the time,  g  the 
acceleration due to gravity,   the volumetric coefficient 
of thermal expansion, *  the volumetric coefficient of 
expansion for concentration,  the temperature of the 
fluid near the plate,  the temperature of the fluid far 
away from the plate,  the species concentration near 
the plate,  the species concentration in the fluid far 
away from the plate, w  the plate temperature, w

T 
T
C

T




C

C  the 
species concentration at the plate, 0  the characteristic 
time, 

t
  the kinematic viscosity,   the density, pC  the 

specific heat at constant pressure, k  the thermal conduc-
tivity of the fluid, j  the mass flux per unit area at the 
plate and D is the mass diffusion coefficient. To facilitate 
analytical solutions we introduce the following 
non-dimensional quantities: 



Implementation of the non-dimensional variables (5) 
in Equations (1) - (4), leads to the following group of 
linear, second order, first degree, coupled partial differ-
ential equations for momentum, heat and species diffu-
sion conservation: 
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where u the dimensionless velocity, y the dimensionless 
coordinate axis normal to the plate, t the dimensionless 
time, θ the dimensionless temperature, C the dimension- 
less concentration, Gr thermal Grashof number, Gm 

mass Grashof number, Pr the Prandtl number, μ the coef-
ficient of viscosity, Sc the Schmidt number, and N is the 
buoyancy ratio parameter. According to the above non- 
dimensionalisation process, the characteristic time  
can be defined as: 
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The corresponding initial and boundary conditions in 
dimensionless form are: 
 
3. Analytical Laplace Transform Solutions 
 
These Equations (6) - (8) are a strongly coupled linear 
system of equations, which can be solved by the Laplace 
transform technique subject to the initial and boundary 
conditions (10). The solutions are readily yielded as: 

Case I: Pr 1, Sc 1   
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Case II:  Pr 1, Sc 1 
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where  is the unit step function defined, in gen-
eral, by: 
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Here a is a constant, z is a dummy variable and 1,F  2 ,F  

3 ,F  4F are functions of dummy variable. Moreover, 
concentration [10,12] and temperature [7] profiles given 
by Equations (11) and (12) respectively, are well known. 
Equations (11), (12) and (13) give analytical expressions 
for the concentration, temperature and velocity variables 
for flow near a vertical plate with ramped temperature. 

In order to highlight the effect of the ramped temperature 
distribution of the boundary on the flow, it may be 
worthwhile to compare such a flow with the one near a 
plate with constant temperature. Under the assumptions 
employed in this paper, it can be shown that the tem-
perature and velocity variables for the flow near a plate 
with constant temperature can be expressed as 
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Equation (16) is valid only in the case of Pr 1,  Sc   
1; for the case Pr 1,Sc 1   the velocity can be expressed 
as 
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and there is no change in the expression for concentra-
tion variable  ,C y t . From the velocity field, it is now 
proposed to study the effects of mass transfer on the 
skin-friction, the latter being defined in non-dimensional 
form as: 
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We obtain for the case of a ramped temperature plate: 
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and for the constant temperature (isothermal) plate, 
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It is seen that the expressions for   is valid for all 
values of Pr and Sc in both the cases. Also, we can see 
that   varies inversely with Pr  and Sc  in both cases. 
 
4. Results and Discussion 
 
In order to get physical insight into the problem, the nu-
merical values of the velocity and skin-friction are com-
puted as functions of time for different values of the sys-
tem parameters such as Pr, Sc and N. In the present ana-
lytical solutions, we have only considered 2 values of Pr 
i.e. 0.71 and 7.0. The two most frequently encountered 
fluids in engineering are air and water and these values 
of Pr correspond to these two cases, respectively. This 
approach was established by Ostrach at NASA [19] in 
the early 1950s. It has subsequently been implemented 
by many leading researchers working in analytical ther-
mosciences. Other examples of this approach, which have 
subsequently been used for numerical benchmarking, are 
the works of Takhar and Perdikis [20], Takhar and Ram 
[21]. Furthermore, even in some very recent numerical 
(and experimental) studies, Pr has been fixed, since when 
many parameters are involved e.g. Grashof number, 
Schmidt number etc, it is more worthwhile to fix the only 
parameter which is a “physical property” of a fluid i.e. Pr 
and to parametrically study other parameters. Vallis [22], 
one of the leading atmospheric fluid dynamicists in the 
world, of Princeton University’s Geophysical Fluid Dyna- 
mics Laboratory (GFDL) has as very recently expounded 
the benefit of studying single Prandtl number thermal 
convection flows. In [22] it is stated: “In most of our ex-
periments we change the Rayleigh number by changing 
the diffusivity and viscosity, keeping the Prandtl number 
fixed.” Reference [22] used a single Pr = 10. Similarly 
other leading mathematicians working in analytical ther- 
mal convection have used a single Prandtl number. An 
example is the work of Siggers et al. [23].  

The buoyancy ratio parameter, N, represents the ratio 

between mass and thermal buoyancy forces. When 
0N  , there is no mass transfer and the buoyancy force 

is due to the thermal diffusion only.  implies that 
mass buoyancy force acts in the same direction of ther-
mal buoyancy force i.e. the buoyancy-assisted case, 
while 

0N 

0N   means that mass buoyancy force acts in 
the opposite direction i.e. the buoyancy-opposed. The 
present results for the case of the ramp heating of the 
plate include the results of Chandran et al. [10] in the 
case of the absence of the buoyancy ratio parameter N. 

The velocity profiles for different values of buoyancy 
ratio parameter (N) for both aiding and opposing effects 
of mass transfer are shown in Figures 1 and 3 for both 
ramped and isothermal plate temperature boundary con-
ditions in the presence of foreign mass and constant mass 
flux respectively. It is observed that the velocity in-
creases in the presence of aiding flows   whereas 
it decreases in the presence of opposing flows 

0N 
 0N  . 

Reverse flow is observed near the plate as the opposing 
buoyancy forces become dominant. It is also clear that 
the velocity near the plate is augmented with increasing 
time. Close observation of the curves for aiding flows 
from both figures reveals that the velocity is greater in 
the presence of foreign mass than that in the presence of 
constant mass flux. Foreign mass injection therefore ac-
celerates the flow. 

In Figures 2 and 4 the velocity profiles are shown for 
different values of the Schmidt number (Sc) for aiding 
flows in the presence of foreign mass and constant mass 
flux respectively. It is observed that the velocity de-
creases with increasing Schmidt number. An increasing 
Schmidt number implies that viscous forces dominate 
over the diffusional effects. Schmidt number in free 
convection flow regimes, in fact represents the relative 
effectiveness of momentum and mass transport by diffu-
sion in the velocity (momentum) and concentration (spe-
cies) boundary layers. Smaller Sc values correspond to 

 

 

Figure 1. Velocity profiles for different N and t (Foreign 
mass). 
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Figure 2. Velocity profiles for different Sc (Foreign mass). 

 

 

Figure 3. Velocity profiles for different N and t (Constant 
mass flux). 

 

 

Figure 4. Velocity profiles for different Sc (Constant mass 

lower 

flux). 

molecular weight species’ diffusing e.g. Hydrogen 
in air (Sc ~ 0.16) and higher values to denser hydrocar-
bons diffusing in air e.g. Ethyl benzene in air (Sc ~ 2.0). 
Effectively therefore an increase in Sc will counteract 
momentum diffusion since viscosity effects will increase 
and molecular diffusivity will be reduced. The flow will 
therefore be decelerated with a rise in Sc as testified to 
by Figures 2 and 4. It is also important to note that for 
Sc ~ 1, the velocity and concentration boundary layers 
will have the same thickness. For Sc < 1 species diffu-
sion rate greatly exceeds the momentum diffusion rate 
and vice versa for Sc > 1. Inspection of Figures 1 to 4 
also indicates that the fluid velocity is greater in the case 
of an isothermal plate than for the case of ramped tem-
perature at the plate. This is expected since in the case of 
ramped wall temperature the heating of the fluid takes 
place more gradually than in the isothermal plate case. 
This feature is important in for example achieving better 
flow control in nuclear engineering applications, since 
ramping of the enclosing channel walls can help to de-
crease velocities. The distribution of dimensionless sur-
face shear stress i.e. skin-friction with time is depicted in 
Figures 5 and 6 for different values of buoyancy ratio 
parameter (N) and Schmidt number (Sc) in the presence 
of foreign mass and constant mass flux respectively. It is 
observed that the skin friction is enhanced for the case of 
aiding flows  0N   but is reduced in the case of op-
posing flows  0N  . Our results also indicate that skin 
friction is sup with increasing species concentra-
tion for the case of aiding flows. From Figures 5 and 6 
we also infer that the skin friction is greater in the case of 
an isothermal plate than in the case of ramped tempera-
ture of the plate, in consistency with the discussion ear-
lier for Figures 1 to 4, since ramping decelerates the 
flow and lowers skin friction. It is also noted that for 
small values of t (i.e, t < 1), there is a sharp ascent in the 
skin friction in the case of an isothermal plate whereas 
the friction increases more gradually with increasing 
time for the case of ramped temperature at the plate. That 
is, the friction curves assume parabolic shapes for the 
time 0 1t

pressed 

  . Ramping therefore acts to stabilize the 
skin friction esponse and again this characteristic is im-
portant in industrial transient heat transfer control sys-
tems. 

Figu

 r

res 2, 4 and 5, 6 also include various computa-
tions for different Prandtl numbers, namely Pr = 0.71 
and Pr = 7; the former corresponds to air, the latter to 
water. In all cases a noticeable reduction in skin friction 
is identified with an increase in Pr. Prandtl number quan-
tifies the relative effectiveness of momentum and energy 
transport by diffusion in the velocity and thermal bound-
ary layers. For Pr < 1, energy i.e. heat diffuses faster than 
momentum. For Pr > 1, momentum diffuses faster than 
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 transform) solutions 
pr

heat. For the special case of Pr = 1, the momentum and 
thermal boundary layers will have the same thickness. In 
consistency with this we observe that in Figures 2 and 4 
velocity is decreased (profiles I and IV) and in Figures 5 
and 6 skin friction is reduced with an increase in Pr from 
0.71 to 7 (profiles I and VI i.e. weakly buoyancy-aided 
flows with N = 0.2) since higher Pr fluids will possess 
greater viscosities and this will serve to reduce velocities, 
thereby lowering the skin friction. 

The present analytical (Laplace
ovide other researchers with solid benchmarks for nu-

merical comparisons. The authors have used this method 
in other articles where they have benchmarked numerical 
methods against analytical (Laplace transform) solutions 

 

 

Figure 5. Skin-friction for different N and Sc (Foreign ass). m

 

 

Figure 6. Skin-friction for different N and Sc (Constant 

4-28]. Various techniques have been 

. Conclusions 

 general analytical solution for the problem of the un-

nce of aiding flows 
an

ng values of the 
Sc

ing time.  
ign mass 

th
 for assisted flows and di-

m
d with increasing species 

co
th an increase in Prandtl 

nu
kin-friction in the present case 

ha

he authors wish to express their gratitude to the re-

mass flux). 

in the same article [2
used to confirm the accuracy of Laplace transform solu-
tions in these complex multi-physical and geophysical 
fluid dynamics problems by the authors, including as-
ymptotic analysis [24], complex variables [25,26] and 
electrical network simulation computational techniques 
based on the PSPICE software [27,28]. There is therefore 
great confidence in our solutions presented, based on Lap- 
lace transforms. 
 
5
 
A
steady free convection flow past an infinite vertical plate 
subjected to a ramped wall temperature in the presence 
of i) foreign mass and ii) constant mass flux at the plate 
has been determined without any restrictions. The dimen- 
sionless governing equations are solved by the Laplace 
transform technique. The effects of the governing ther-
mophysical parameters i.e. buoyancy ratio parameter (N), 
Schmidt number (Sc), Prandtl number (Pr) and time (t) 
on the velocity field and skin-friction has been discussed. 
Our computations have shown that: 

I) velocity increases in the prese
d it decreases with opposing flows.  
II) velocity decreases with increasi
hmidt number for aiding flows.  
III) velocity increases with increas
IV) velocity is greater in the presence of fore
an with constant mass flux. 
V) skin-friction is increased
inished for opposing flows. 
VI) skin friction is reduce
ncentration for aiding flows.  
VII) skin friction is reduced wi
mber for aiding flows. 
The fluid velocity and s
s also been compared with that for the case of an iso-

thermal plate. For this scenario our solutions indicate 
that velocity and skin-friction are greater in the case of 
isothermal plate than in the case of ramped temperature 
at the plate. The present results are useful in further elu-
cidating the important class of flows in which the driving 
force is induced by a combination of the thermal and 
chemical diffusion effects. Such results have immediate 
relevance in industrial thermofluid dynamics, transient 
energy systems and also buoyancy-driven geophysical 
and atmospheric vertical flows. 
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