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Abstract 
Consider an ephemeral sale-and-repurchase of a security resulting in the same posi-
tion before the sale and after the repurchase. A sale-and-repurchase is a wash sale if 
these transactions result in a loss within ±30 calendar days. Since a portfolio is essen-
tially the same after a wash sale, any tax advantage from such a loss is not allowed. 
That is, after a wash sale a portfolio is unchanged so any loss captured by the wash 
sale is deemed to be solely for tax advantage and not investment purposes. This pa-
per starts by exploring variations of the birthday problem to model wash sales. The 
birthday problem is: Determine the number of independent and identically distri-
buted random variables required so there is a probability of at least 1/2 that two or 
more of these random variables share the same outcome. This paper gives necessary 
conditions for wash sales based on variations on the birthday problem. Suitable vari-
ations of the birthday problem are new to this paper. This allows us to answer ques-
tions such as: What is the likelihood of a wash sale in an unmanaged portfolio where 
purchases and sales are independent, uniform, and random? Portfolios containing 
options may lead to wash sales resembling these characteristics. This paper ends by 
exploring the Littlewood-Offord problem as it relates capital gains and losses with 
wash sales. 
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1. Introduction 

Wash sales occur when a security is sold and quickly bought back with the sole intent to 
capture a tax loss from the sale. Wash sales impact a portfolio’s tax liabilities. Deter- 
mining the likelihood of wash sales is also important for understanding investment 
strategies and for comparing actively and passively managed portfolios. Wash sales 
apply to investors, but not to market makers. 

How to cite this paper: Bradford, P.G. 
(2016) Foundations for Wash Sales. Journal 
of Mathematical Finance, 6, 580-597. 
http://dx.doi.org/10.4236/jmf.2016.64044  
 
Received: June 13, 2016 
Accepted: October 14, 2016 
Published: October 17, 2016 
 
Copyright © 2016 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   
Open Access

http://www.scirp.org/journal/jmf
http://dx.doi.org/10.4236/jmf.2016.64044
http://www.scirp.org
http://dx.doi.org/10.4236/jmf.2016.64044
http://creativecommons.org/licenses/by/4.0/


P. G. Bradford 
 

581 

Taxes play a significant role in economics and finance. Taxes influence behavior, 
shape the engineering of financial transactions, and sometimes have unintended 
consequences. Therefore, thoughtful analysis is imperative for taxes. This paper adds 
firm mathematical foundations to aid the understanding of wash sale taxes. 

The main goal of this paper is: To provide foundations for certain wash sales-in cases 
when they may occur as well as the capital gain implications. This may also help 
differentiate managed funds and unmanaged index funds in terms of wash sales. 

Wash sales are sometimes created by the exercise of options, thus a portfolio 
manager may not be able to avoid a wash sale in some contexts. For example, suppose 
an in-the-money American-style put option is written in a portfolio. Provided this 
option remains in-the-money, it may be exercised by its holder1 at anytime up to its 
expiry. If the exercise of this put option replaces shares sold at a loss in the prior 30 
days, then this is a wash sale. This option’s exercise is beyond control of the portfolio 
manager. 

The foundations given here start with variations of the classical birthday problem 
from probability theory [1]-[3]. This work has implications on wash sales. Also, the 
Littlewood-Offord problem [4]-[6] is applied to understand capital gains for certain 
wash sales. The Littlewood-Offord problem is viewed from the perspective of the pro- 
babilistic method. 

For convenience, let [ ] { }1, 2, ,n n≡  . 

1.1. Wash Sales in Detail  

Suppose a security is sold at a loss on day 2d . This sale is a wash sale if substantially 
the same security is purchased within 30±  calendar days from 2d , see for example 
[7]. 

Definition 1 (US wash sale [7]) Consider three dates 1 2 3 1 2, , :d d d d d≤  and 1 3d d≤  
where 3 2 30d d− ≤  calendar days. Suppose s shares of a security are purchased on 
date 1d  at price 1p . At some later date 2d , s shares are sold for price 2 1p p< . Thus, 
the s shares are sold at a loss. Then within 30±  days on date 3d , s shares are 
repurchased for price 3p . This is a wash sale and since 3 2 30d d− ≤  days, then the 
next adjustments must be made [7]: 

1) The loss 1 2p p−  is not permissible for taxes. That is, this loss may not be 
subtracted from profits or gains and it may not be used to get a lower tax rate. 

2) The cost-basis of the shares repurchased on 3d  is set to ( )3 1 2p p p+ − . The 
shares purchased on 3d  have the start of their holding period reset to 1d . 

Short positions may also be wash sales. For example, consider holding a short 
position of 100 shares of a security starting on date 1d  in a portfolio Π . Then 
suppose this short position is closed at a loss by purchasing 100 shares on day 2d . 
Once this position is closed on day 2d , then Π  contains no shares of this security. 
Next re-short another 100 shares of substantially the same security on 3d  where 

 

 

1Options, like shares of stock, are fungible and there are specific option exercise assignment allocation me-
thods used to allocate exercised options [8]. 
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3 2 30d d− ≤  days. These transactions leave the portfolio the same while getting a tax 
advantage for the loss. This tax advantage is also disallowed by the wash sale rules. 

Consider a wash sale as described by Definition 1, where ( )1 2 3 1p p p p− + >  or in 
other words 3 2p p> . Suppose the shares are sold at price ( )4 1 2 3 1p p p p p> − + >  at 
the later date 4 3d d≥ . In the case with the wash sale, there is a capital gain of 

( )4 1 2 3p p p p− − +    which is smaller than the capital gain 4 1p p−  if the wash sale 
had not occurred. Capital gains are taxable. A capital gain 4 1p p−  is from the single 
purchase of the shares for price 1p  on 1d  and the single sale of the shares on date 

4d  for price 4p , thus skipping the sale at a loss and repurchase. 
This means such a wash sale gives ( )4 1 4 1 2 3p p p p p p − − − − +     or 3 2p p−  less 

taxable income than a single purchase of the security at price 1p  on date 1d  and a 
single sale for price 4p  on 4d . Of course, a wash sale’s loss is not allowed. 

Wash sales may be avoided by restricting each security in a portfolio to be either 
purchased or sold only every 31 calendar days. This restriction may not be suitable for 
many portfolios. In a portfolio containing options, it may be impossible to maintain 
this restriction. 

It has also been suggested, e.g. [9], wash sales may be avoided by purchasing or 
selling (moderately) correlated, but not substantially the same, securities. That is, if a 
security is sold at a loss then purchase a different but correlated security within 30 days 
maintaining some of a portfolio’s characteristics while keeping the tax advantage. 

Historically many securities are assumed to only trade on about 252n =  business 
days per year [10]. Although reflecting on global markets one may assume there are 

365n =  trading days. 

1.2. Background  

There has not been much research on wash sales, e.g., [9]. There is important work on 
taxation and its investment implications. Take, for example, [11]-[13]. 

The birthday problem is classical. 
Definition 2 (Birthday-Collision) Given two random variables 1 2,X X  mapping 

respectively to 1 2,x x  in the same range [ ]n , then a birthday-collision is when 1 2x x= .  
To model random wash sales, this paper assumes independent identically distributed 

random variables. A common statement of the birthday problem is: 
Definition 3 (Birthday Problem) Consider n days in a year and k independent 

identically distributed (iid) uniform random variables whose range is [ ]n  and n k≥ . 
What is the probability ( ),B n k  of at least one birthday-collision among these k 
random variables?  

According to a blog post by Pat B [14] the birthday problem may have originally 
been given by Harold Davenport as cited in [15] and later published by [1]. In any case, 
von Mises gave the first published version to the best of our knowledge. 

Bounds of day counts for the birthday problems include [16] who gives bounds for 
birthdays of distance d for both linear years as well as cyclic years. In a cyclic year, 
1-January is a single day from 31-December of the same year. Bounds for birthdays of 
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distance d for cyclic years are given by [17]. 
The birthday problem applied to boys and girls (random variables with different 

labels) are discussed in [18] as well as [19]. That is, how many birthdays are shared by 
one or more boys and one or more girls? A comprehensive view is provided by [20] 
including stopping problems with the boy-girl birthday problem. Non-uniform bounds 
for online boy-girl birthday problems are given by [21] and [22]. 

Tight bounded Poisson approximations for birthday problems are given by [23]. 
Poisson approximations to the binomial distribution for the boy-girl birthday problem 
is given by [19]. A Stein-Chen Poisson approximation is used by [24] to solve variations 
of the standard birthday problem. Matching and birthday problems are given by [25]. 
Incidence variables are used to study birthday problems with Pareto-type distributions 
in [26]. 

Applications of the birthday problem include: computer security [20] [21] [26] [27], 
public health and epidemiology [28], psychology, DNA sequence alignment, experi- 
ments, and games [29] [30]. Summaries of work on the birthday problem are in [29]- 
[31]. 

Results on the expectation for getting j different letter k-collisions are given by [32]. 
Their results are expressed as truncated exponentials or gamma functions. 

The Littlewood-Offord problem hails from complex analysis [6]. Erdös [5] improved 
Littlewood and Offord’s result by an elegant application of the probabilistic method. 
These and related results determine the concentration of sums of random variables 
multiplied by integers. The Littlewood-Offord problem is applied to certain capital 
gains. 

1.3. Structure of This Paper  

Section 2 reviews variants the birthday problem applied here. First the classical birthday 
problem is discussed. Next this section progresses through the d±  birthday problem. 
After the definition and key results are given about the d±  birthday problem, the 
boy-girl birthday problem is explored. Finally, the d±  boy-girl birthday problem is 
defined and several bounds are derived as they relate to a necessary condition for wash 
sales. 

Subsection 2.1 gives an example of wash sales based on boy-girl birthday collisions of 
a single day. 

Section 3 generalizes results of the previous sections. In particular, it shows how to 
compute ( ), ,dB n b g , the number of b boys and g girls that give a probability of 1/2 or 
more where a boy and a girl have birthdays within d days of each other over n days. 

Subsection 3.1 gives an example of wash sales based on boy-girl birthday collisions 
over a range of 30d± =  days. 

Finally, Section 4 explores how wash sales impact capital gains and losses. Since wash 
sales are capital losses, they may offset capital gains. Several results, including the 
Littlewood-Offord problem, are applied to capital gains and losses as they may be 
impacted by wash sales. 
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2. The Birthday Problem and Wash Sales  

The birthday problem is often applied to finding the probability of coincidences. So 
there is a rich literature on variations of the birthday problem [29] [30]. Asset sales are 
often viewed as carefully selected. However, portfolios using American-style options 
may exhibit asset sales or purchases beyond the control of the portfolio managers. 

A key question is: Over n consecutive days for what integer k does  

( ) 1arg min ,
2k B n k ≥ 

 
 hold for k iid uniform random variables? In other words,  

given n days, what is the least k iid uniform random variables so that ( ), 1 2B n k = ? 

Solutions to this basic variation of the birthday problem are well known. The 
probability ( ),B n k  is the compliment of the probability of k iid uniform random 
variables having no birthday-collisions. Therefore, if there are no birthday-collisions,  

then k birthdays can be in !
n

k
k
 
 
 

 permutations out of all possible kn  mappings of 

the k random variables onto [ ]n . In other words, the 
n
k
 
 
 

 subsets of k distinct  

elements of [ ]n  is the exact number of subsets the k variables may map to without a 
collision. These k variables may be ordered in !k  permutations. That is, 

( ) ( )
! ! 1, 1 1 ,

!k k

n k nB n k
k n kn n
 

= − = − ⋅  − 
                   (1) 

for n k≥  and ( ), 1B n k =  otherwise. 
Starting with n and a probability ( ),p B n k= , then computing k is often done using 

the inequality 1 e xx −− ≤ . In particular, the smallest k giving a probability of 1/2 that 
there is at least one birthday-collision requires k to be roughly ( )2 ln 2 n  or about 
1.18 n . See for example, [1] [33] [34]. 

Another classical approach is to look at the random variable X as the sum of all 
birthday-collisions of k people over n days, see for example [19] [25] [35] [36]. A 
concise exposition is given in [36] which we follow. Presume the birthday of person 

[ ]i k∈  is given by the random variable [ ]iY n∈ . Since a potential birthday collision is  

a Bernoulli trial, so X is binomially distributed. Thus, 0,1, 2, ,
2
k

X
   ∈  
   


 where 

2
k 
 
 

 is the maximum number of potential birthday-collisions. The expectation of the 

maximum number of birthday collisions possible is 
2
k 
 
 

 with probability  

[ ]1 | ,i jY t Y t t n
n

 = = = ∈   where { } [ ],i j k⊆ . The expected maximum number of 

birthday-collisions is 1
2
k

n
 
 
 

. If n is sufficiently larger than k, then X is approximately 

Poisson where 1
2
k

n
λ

 
=  

 
. Thus, [ ] 21 1 e

k
n

X
 

− 
 ≥ ≈ − . 
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In the case of the d±  birthday problem, if two random variables 1 2,X X  map 
within d days of each other, then this is a d±  birthday-collision [16]. 

Two birthdays 1x  and 2x  of distance 1 2x x−  demark a span of size 1 21 x x+ − . 
For example, 4 _ July 3 _ July 1− = , so these dates are in a 2d± = ±  span, but not in 
a span of 1d± = ± . 

The next definition is based on [16] [17] [29]. 
Definition 4 (±d Birthday Collisions) Consider n days in a year, spans of less than 
d±  days, and k iid uniform random variables with range [ ]n : Then ( ),dB n k  is the 

probability at least two such random variables have a d±  birthday-collision. That is, 
these two random variables have ranges in less than d days of each other.  

In n days with a d±  span, then ( ) 1arg min ,
2k dB n k ≥ 

 
 gives the smallest k so  

there is a probability of at least 1/2 where at least two such random variables are fewer 
than d days from each other. 

Definition 5 (Blocks of days) Let : 1i k i> > . Suppose birthdays are ordered as 

1 2 kx x x≤ ≤ ≤ , then for a birthday ix  its nearest birthday pairs are ( )1,i ix x−  and 
( )1,i ix x + . There are no birthdays between 1ix −  and ix  and there are no birthdays 
between ix  and 1ix + . 

A block of days contains a single birthday on one of its end-points. The birthday ix  
is associated with two blocks: ( ]1,i ix x−  and [ )1,i ix x + .  

The days between 1x  and 2x  form a block of size 1 2x x−  since there are no 
birthdays between 1x  and 2x . Thus, two nearest birthday pairs contained in a span of 

d±  are separated by a block of size 1d − . 
Take k iid uniform random variables and consider d±  birthday-collisions over [ ]n  

days. Naus [16] gives the next idea: If there are no d±  birthday-collisions, then there 
must be at least size 1d −  blocks of no birthdays between each nearest birthday pair. 
This gives a total of ( ) ( )1 1k d− −  days with no birthdays in 1k −  contiguous blocks 
of at least 1d −  days each. Therefore, if there are no d±  birthday-collisions, then k 

birthdays can be in ( ) ( )1 1
!

n k d
k

k
− − − 

 
 

 permutations out of all possible kn  map-  

pings of the k random variables. Thus, to get the probability of at least one d±  
birthday collision, take the compliment of the probability of having no d±  birthday- 
collisions. The next result follows. 

Theorem 1 ([16]).  

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

1 1 !1 1 ! 1, 1 1 ,
1 1 !d k k

n k dn k d kB n k
n nn k d kk

− − −− − − 
= − = − ⋅  − − − − 

       (2) 

for ( ) ( )1 1n k d k≥ − − +  and ( ), 1dB n k =  otherwise.  

Using the bound 1 e xx −− ≤  on Naus’ result gives k of about 0.83
4

n
d −

, see [16]. 

Also [29] approximate k to about 1.2
2 1

n
d +

 for the cyclic version. 
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Note, Theorem 1 with 1d =  gives the solution to the standard birthday problem of 
Definition 3. That is, a span of 1d =  and blocks of size 1 0d − = . 

The falling factorial is  

( ) ( )1 1 !k m
m m m m k k

k
 

= − − + =  
 

                    (3) 

In these terms, Theorem 1 may be expressed as ( ) ( ) ( )( )1 1
, 1

k

d k

n k d
B n k

n
− − −

= − . 

The next classic result is important. 
Lemma 1 (Classical) Let 1m k≥ ≥ . The falling factorial km  is the number of 

injective mappings of 1k ≥  elements to the range [ ]m .  
The next definition is based on [18] [20] [23]. 
Definition 6 (Boy-Girl Birthdays) Consider n days in a year and two sets of dis- 

tinctly labeled iid uniform random variables all with range [ ]n : g of these variables are 
girls and b of these variables are boys. Then ( ), ,B n b g  is the probability at least one 
girl and one boy have a birthday-collision.  

For instance, in n days, ( ) 1arg min , ,
2k b g

b g

B n b g
= +
=

 ≥ 
 

 gives the value k b g= +  and  

b g=  so there is a probability of 1/2 where at least one girl and one boy have the same 
birthday. 

Stirling numbers of the second kind [37] count the number of non-empty partitions 
of a given set. For example given the set [ ]m , the number of partitions of [ ]m  into i  

non-empty subsets is 
m
i

 
 
 

. 

Due to their nature, it is common to define Stirling numbers of the second kind  

recursively [37]: 
1 1

1
m m m

i
i i i

− −     
= +     −     

 with the base cases 1
1
m 

= 
 

 and 1
m
m
 

= 
 

. 

Finally, 0
m

m i
 

= + 
 for any 0i > . As an example, 

{ } { }{ } { } { }{ } { } { }{ }{ }3
1, 2 , 3 , 1,3 , 2 , 1 , 2,3 3.

2
 

= = 
 

              (4) 

The next classical equality counts the number of functions from [ ]n  elements to 
[ ]m  elements, m n≥ ,  

1

n
n i

i

n
m m

i=

 
=  

 
∑                              (5) 

expressed as the number of non-empty i partitions of the [ ]n  elements and the 
number of surjections from the i partitions by Lemma 1. 

Theorem 2 ([18] [20]) Consider n days in a year and two sets of distinctly labeled iid 
uniform random variables all with range [ ]n : g random variables are girls and b 
random variables are boys. Then ( ), ,B n b g  is the probability at least one girl and at 
least one boy have a birthday-collision and  
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( ) ( )
1

1, , 1 .
g

b i
b g

i

g
B n b g n i n

in +
=

 
= − −  

 
∑                      (6) 

The next Lemma is from [18] [38]. 
Lemma 2 ([18] [38]) Consider n days in a year and two sets of distinctly labeled iid 

random variables all with range [ ]n : g random variables are girls and b random 
variables are boys. Then ( ), ,B n b g  is the probability that at least one girl and at least 
one boy have a birthday-collision and  

( )
1 1

1, , 1 .
g b

i j
b g

i j

b g
B n b g n

j in
+

+
= =

  
= −   

  
∑∑                     (7) 

Wash Sale Example 1: Same Day Purchase and Sale  

Consider a portfolio { }1, , ka aΠ =   where : 1ia k i≥ ≥  is asset (security) i held in 
Π . At the end of business on day  , consider portfolio { }1, ,, , ka aΠ =

  

  the 
market value of asset i in Π



 is ,ia


 and the total value of Π


 is ,1
k

ii a
=

Π = ∑
 

. 
Just before the start of each tax year, asset i has market value ,0ia  and Π  has total 
market value 0Π . Assume each asset is sufficiently liquid so our purchases or sales do 
not impact its market price. 

Suppose portfolio Π  has T total iid uniform and random transactions during the 
business days of one calendar year. Assume trades are distributed on an asset-weighted 
basis from the initial weight of each asset in the portfolio just before the trading year 
commences. Thus, just prior to the first trading day and with no other information,  

asset ia  is expected to have ( ) ,0

0

ia
t i T=

Π
 trades in one year. 

Take ( )t i  transactions and define the independent Rademacher2 random variables 

( )1, , t iη η  representing buys or sells of portions of asset class i in portfolio Π :  

1 if transaction is a buy of asset
1 if transaction is a sell of assej

j i
j t i

η
+

= −
                  (8) 

for ( ): 1j t i j≥ ≥ . That is, the b independent Rademacher random variables where 
1jη = +  represent buys (boys) and the g random variables where 1jη = −  represent 

sells (gals). 
To apply a suitable version of Chernoff's bound ([39], Appendix A) where  

11 1
2j jη η   = + = = − =     , then for any 0c >  

( )( ) ( )( )2 2
1 e .c t i

t i cη η − + + > <                        (9) 

So, for example, take 1c = , then 1b g− ≤  holds with high probability as ( )t i  
gets large. Of course, as ( )t i  gets large, the likelihood of wash sales increases. That is, 
the total number of buys and sells is expected to converge to be about the same as the 
total number of transactions grows. However, along the way, the number of buys or 
sells may not be as balanced [2] [40]. 

 

 

2We used Bernoulli random variables for { }0,1  outcomes and we use Rademacher for { }1, 1− +  outcomes. 



P. G. Bradford 
 

588 

Select the probabilities that the number of buys and sales are the same, given ( )t i  
total trades, in asset class ia  are: 

 
( )t i  10 20 30 40 50 

( )( )1 2e t i−  0.951 0.975 0.983 0.987 0.990 

 
Let h be half the total trades ( )t i . That is, ( ) 2h t i← . Assuming  
{ }252,365n∈  trading days gives the probabilities of same-day girl-boy birthday 

collisions for a single asset-type as: 
 

h 1 5 10 15 20 25 30 35 

( )252, ,B h h  0.0040 0.0946 0.3280 0.5909 0.7957 0.9162 0.9717 0.9921 

( )365, ,B h h  0.0027 0.0663 0.2399 0.4605 0.6660 0.8196 0.9150 0.9650 

 
In fact, ( )252,13,13 0.4891B =  and ( )252,14,14 0.5410B = . So, considering only 

equal numbers of sales and buys over 252n =  days of the same asset type, 14 girls and 
14 boys is the first case where there is greater than a 50% chance of a (same-day) boy- 
girl birthday collision. 

Assuming the portfolio Π  already holds this single asset type, a boy-girl collision 
only is a necessary condition for a wash sale. A birthday collision must be accompanied 
by a sale at a loss and a repurchase of substantially the same security within 30 calendar 
days. 

3. General Wash Sales  

Necessary conditions are given here for wash sales where a purchase and sale are within 
d±  calendar days. Since the purchase and sale are not known to be at a loss while 

keeping substantially the same portfolio before and after the d±  birthday collision. 
Definition 7 (Boy-Girl d±  Birthdays) Consider n days in a year, spans of d±  

days, and two sets of distinctly labeled iid uniform random variables all with range [ ]n : 
g random variables are girls and b random variables are boys. Then ( ), ,dB n g b  is the 
probability at least one girl and one boy are mapped to less than d days of each other.  

For example, starting with ,n d  and k g b= +  and g b= , then  
1arg min , ,

2 2 2k d
k kB n   ≥  

  
 gives k so there is a probability of 1

2
≥  so at least one girl  

and one boy have d± -birthday collisions. 
The next result is based on [16] [18] [20] [38]. 
Theorem 3. Consider n days in a year, a span of d±  days, and two sets of distinctly 

labeled iid uniform random variables all with range [ ]n : g random variables are girls 
and b random variables are boys. Then ( ), ,dB n g b  is the probability at least one girl 
and one boy have a d±  birthday-collision and:  

( ) ( ) ( )( )
1 1

1, , 1 1 1 .
gb i j

d b g
i j

b g
B n g b n i j d

i jn
+

+
= =

  
= − − + − −  

  
∑∑           (10) 
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Proof. This proof calculates the probability of not having no boy-girl d±  birthday 
collisions. That is, one minus the probability of no boy-girl d±  birthday collisions. 
This gives the probability of at least one boy-girl d±  birthday collision. 

Given n days, a d±  span, and iid uniform random variables separated into g (girls) 
random variables and b (boys) random variables. Then the total number unconstrained 
mappings of the b and g variables to [ ]n  is b gn +  giving the denominator in front of 
the double sum. 

The value ( ), ,dB n g b  is not impacted if either any number of boys have the same 
birthday or separately any number of girls have the same birthday. Rather ( ), ,dB n g b  
is impacted by boy-girl collisions. Therefore, consider partitions of b boys and g  girls. 
To prevent the girls’ partitions and boys’ partitions from colliding into d±  spans of 
the same range, count the number of places these i and j non-empty partitions may be 
mapped so there is no 1d± >  birthday-collision. By Lemma 1 there are  

( ) ( )( ) ( ) ( ) ( )1 1
1 1 !

i j n i j d
n i j d i j

i j
+ − + − − 

− + − − = + + 
           (11) 

injective functions to [ ]n  for sets of [ ]i b∈  boys and sets of [ ]j g∈  girls with 
( )1i j+ −  blocks of ( )1d −  contiguous days with no boy or girl in them. 

Now, consider placing the i and j partitions in separate locations among the  
( ) ( )( )1 1

i j
n i j d

+
− + − −  function mappings to [ ]n , see Naus [16]. That is, the i 

partitions of [ ]b  where each partition is in a different location and j partitions of [ ]g  
where each partition is also in a different location by Equation (11). That is, given  

[ ]i b∈  and [ ]j g∈ , then the product 
b g
i j
  
  
  

 is the total number of injective  

mappings of boys to i non-empty partitions and independently the number of injective  
mappings of girls to j non-empty partitions. 

This completes the proof.  

Wash Sale Example 2: d = ±30 Calendar Days  

Start with the same setup as the previous wash sale example from subsection 2.1. 
Let h be half the total trades ( )t i  in day i. That is, ( ) 2h t i← . Assuming 
{ }252,365n∈  trading days and 30d = ±  calendar days gives the probabilities of girl- 

boy 30± -day birthday-collisions for a single asset type is: 
 

h 1 2 3 4 

( )30 252, ,B h h  0.220 0.819 0.994 0.99998 

( )30 365, ,B h h  0.155 0.667 0.953 0.99840 

 
Consider only a single asset type. The intuition behind these probabilities is straight- 

forward. For instance, consider 365n =  days and to avoid boy-girl collisions each girl 
and boy must be separated by at least 30 days before and after their birthday from the 
other gender. So the 365 days may be broken into about six blocks of about 60 days. 
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4. Wash Sale and Integral Capital Gains and Losses  

Capital gains or capital losses may be rounded to the nearest integer for US tax 
calculations. Provided all trades are rounded. Rounding drops the cents portion for 
gains whose cents portion is 50-cents or below. Rounding adds a dollar to the dollar 
portion of gains whose cents portion is greater than 50 cents while dropping the cents 
portion. Losses work the same way. Gains and losses must all be rounded or none must 
be rounded. So, from here on, let all gains or losses be integers. 

Long term capital gains and losses are aggregated and at the same time short term 
capital gains and losses are aggregated. At the end of the tax year the long term and short 
term aggregates are added together to get the final capital gain or loss for taxation. 

The focus here is capital gains or losses for capital assets that may have wash sales. 
Wash sales are losses, but losses may offset gains. The study of options and their 
associated premiums is classical [10] and we do not address it here. So, option 
premiums are ignored. 

In a portfolio, individual capital gain values and individual capital loss values are 
usually distinct. Though rare, identical capital gains and capital losses are possible. 
Identical capital gains or losses are possible for portfolios built using options. We are 
ignoring option premiums. That is, asset purchases may be done via the exercise of 
cash-covered American-style put options. Also asset sales may be done via the exercise 
of American-style covered-call options. In these cases with options that become 
in-the-money, a portfolio manager has no control of the asset sales or purchases or 
timing of such trades. See Figure 1. 

Most often, put or call option strike prices are at discrete increments. For example, 
many put and call equity options have strike prices in $5 or $10 increments. Suppose a 
portfolio is built only using the exercise of American-style options. Many asset gains 
and losses may be for identical amounts. Of course, this depends on the size of the 
underlying positions or the number of options written. Options with the same expiry 
on identically sized underlying assets may have very different values [10]. 

 

 
Figure 1. A potential wash sale with American-style options. Each row represents the same underlying asset type. 

 
In such option-based portfolios assume uniform, independent, and random capital 

gains and capital losses. This may be modeled by the Littlewood-Offord Problem. 
Definition 8 is classical and extensive discussion may be found in the likes of [6] [41]. 
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It is based directly on [4] [6] [41]. 
Definition 8 (Littlewood-Offord Problem) The integer Littlewood and Offord’s 

problem is given an integer multi-set { }1 2, , , nV v v v=   where [ ]1,iv i n≥ ∀ ∈  and  

1 1 2 2v n nS v v vξ ξ ξ= + + +  so each iξ  is such that [ ] [ ] 11 1
2i iξ ξ= − = = + =  , for  

[ ]i n∈ , then what is [ ]max x vS x∈ =  ?  
Assuming equal probability of gains and losses and no drift [10]. Given an integer 

multi-set { }1 2, , , nV v v v=   so [ ]1,iv i n≥ ∀ ∈ . The multi-set V represents capital 
gains and capital losses. Capital gains and capital losses are all from sales. The iid 
Rademacher random variables { }1, 1iξ ∈ + −  determine if a iv  is a capital gain or loss. 
All iv  are positive since all the Rademacher variables have range { }1, 1− + , see also [5] 
and [40]. 

Over a tax year, the total capital gain or loss is  

1 1 2 2 .v n nS v v vξ ξ ξ= + + +                       (12) 

In an optimal solution of this version of the Littlewood-Offord problem, [5] showed  

the n-element multi-set { }1,1, ,1V =   has [ ]{ } 1max x vS x O
n∈

 = =  
 

  . 

The next lemma’s proof follows immediately from the linearity of expectation given 
Rademacher random variables. See, for example, [39]. 

Lemma 3. Consider any integer multi-set { }1 2, , , nV v v v=   where [ ]1,iv i n≥ ∀ ∈  
and the random variable 1 1 2 2v n nS v v vξ ξ ξ= + + + , where  

[ ] [ ] 11 1
2i iξ ξ= − = = + =  , for all [ ]i n∈ , then [ ] 0vS = .  

For any Rademacher random variable iξ , it must be [ ] 0iξ =  and 2 1iξ  =  . 
Since iv  is constant [ ]22 2 2 2

i iv i i i i iv v vξσ ξ ξ = − =   . Thus, a proof of the next 
theorem follows since the variance of a sum of independent random variables is the 
sum of the variances. 

Theorem 4. Consider any non-negative integer vector v and the random variable  

1 1 2 2v n nS v v vξ ξ ξ= + + + , where [ ] [ ] 11 1
2i iξ ξ= − = = + =  , for all [ ]i n∈ , then  

2 2 2 2
1 2v nS v v v  = + + +    and 2 2 2

1 2vS nv v vσ = + + +
.  

Thus, the lowest variance, 2
vSσ , for the integer Littlewood-Offord problem occurs 

exactly when { }1,1, ,1V =   and V n= . Assuming the [ ],i i nξ ∀ ∈  are all Rade- 
macher random variables, then [ ]x vS x∈ =  is maximized [6] [40] [41] as ( )1O n  
and 

vS nσ = . 
Theorem 4 implies the next corollary. 
Corollary 1. Assume 1 21 nv v v= = = =  and 1 1 2 2v n nS v v vξ ξ ξ= + + +  where  

[ ] [ ] 11 1
2i iξ ξ= − = = + =  , for all [ ]i n∈ , then the standard deviation of vS  is  

vS nσ = .  
Corollary 1 highlights an exceptional case where all capital gains and capital losses 

are the same. Wash sales require the loss and gain to be from essentially the same 
security. 
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The generality of Theorem 4 asserts large variances too. Consider the set  

{ }0 1 12 , 2 , , 2nV −=  , then by Theorem 4, 
2

12 2
0

2 12
3v

n
n i

S iσ −

=

−
= =∑ . This last equality  

follows since the sum is a geometric series. 
Definition 9 (Distinct sums of a set or multi-set V) Consider a set or multi-set 
{ }1 2, , , nV v v v=   and let each element of the lists 1 1,1 2,1 ,1

ˆ ˆ ˆ, , , nH ξ ξ ξ= 
 and  

2 1,2 2,2 ,2
ˆ ˆ ˆ, , , nH ξ ξ ξ= 

 be fixed values from { }1, 1− + . The two sums of V, 

,1 1,1 1 2,1 2 ,1
ˆ ˆ ˆ

v n ns v v vξ ξ ξ= + + +                      (13) 

,2 1,2 1 2,2 2 ,2
ˆ ˆ ˆ ,v n ns v v vξ ξ ξ= + + +                     (14) 

are distinct iff there is some ,1 ,2
ˆ ˆ
i iξ ξ≠ , for [ ]i n∈ .  

Given any multi-set of positive integers { }1 2, , , nV v v v=  , enumerate all 2n  dis- 
tinct sums as [ ] [ ]1 2 2n

v v vs s s  ≥ ≥ ≥   , for example, see Figure 2. Given any set of 
positive integers { }1 2, , , nV v v v=  , where none of the 2n  distinct sums add to the 
same value gives [ ] [ ]1 2 2n

v v vs s s  > > >   . 
An important observation by [5], is that for any fixed sum s the values is v+  and 

is v−  differ by 2 iv . Next, this observation is used to show the set { }0 1 12 , 2 , , 2nV −=   
has no distinct sums that add to the same value. 

In particular, take any distinct sums ,1vs  and ,2vs  with associated fixed values 
{ },1

ˆ 1, 1iξ ∈ − +  and { },2
ˆ 1, 1iξ ∈ − + , respectively, for all [ ]i n∈ . Suppose, for the sake of 

a contradiction, that ,1 ,2v vs s= . Building on Erdös’ observation, the values ,1vs  and 

,2vs  may be written as ,1 12 1 2n
vs m= − −  where 

1

1
1 2i

i Im −
∈

= ∑  and { }1 ,1
ˆ: 1iI i ξ= = −  

and likewise ,2 22 1 2n
vs m= − −  where 

2

1
2 2i

i Im −
∈

= ∑  and { }2 ,2
ˆ: 1iI i ξ= = − , for all 

[ ]i n∈ . Finally, the uniqueness of binary-number representations means 1 2m m=  
which in turn means ,1 ,2

ˆ ˆ
i iξ ξ= , for all [ ]i n∈ . So, in fact, the sums ,1vs  and ,2vs  are 

equal, giving a contradiction. 
Thus, the set { }0 1 12 , 2 , , 2nV −=   satisfies the antecedent of the next theorem. 
 

 
Figure 2. The case where 1 2 3 1v v v= = =  and vs  is made of 

3 3 3 3
, , ,

0 1 2 3
       
       
       

 elements of 3,1, 1, 3− − , respectively. 

 
Theorem 5. Among all sets of distinct positive integers where no two distinct sums 

add to the same value, the set { }0 1 12 , 2 , , 2nV −=   has a minimal sum  
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1 2 2 1n
v ns v v v= + + + = − .  
Proof. Suppose, for the sake of a contradiction, that 1 2 2 1n

v ns v v v= + + + < −  for 
some set of distinct positive integers { }1 2, , , nV v v v=   where no two distinct sums 
add to the same value. 

Take the next enumeration of the 2n distinct sums, [ ] [ ]1 2 2n
v v vs s s  > > >   , and 

by our supposition, [ ]2 2 1n
vs− ≥  and 2 2 2n n

vs   ≥ − +  , so [ ] 11 2 2 4n n
v vs s + − ≤ −  . 

Let { } [ ] [ ]{ },1 ,2, 1 , 2 , , 2n
v v v v vs s s s s  ⊆    where sum ,1vs  has the list of fixed values 

1,1 2,1 ,1
ˆ ˆ ˆ, , , nH ξ ξ ξ=   so that ,1 1 2, , ,v ns v v v H= ⋅ , where ⋅  is the vector dot pro- 

duct. Likewise, the sum ,2vs  has the list of fixed values 1,2 2,2 ,2
ˆ ˆ ˆ, , , nξ ξ ξ . 

The difference of any two distinct sums ,2,1 vv ss −  must be even since any fixed 
values { },1

ˆ 1, 1iξ ∈ − +  and { },2
ˆ 1, 1iξ ∈ − + , for [ ]i n∈ , are so that,  

{ },1 ,2
ˆ ˆ 0, 2, 2 ,i iξ ξ− ∈ − +                          (15) 

giving  

( ),1 ,2 ,1 ,2
1

ˆ ˆ
n

v v i i i
i

s s v ξ ξ
=

− = −∑                        (16) 

which must be even. 
Starting from [ ]1vs  and going to 2n

vs     contains 2 1n −  intervals. Since all 
[ ]vs i , for 2ni  ∈   , are different and their differences must be even so [ ]1 2n

v vs s  −    
spans at least ( ) 12 2 1 2 2n n+− = − . That is, [ ] 11 2 2 2n n

v vs s + − ≥ −  . This gives a 
contradiction of the assumption [ ] 11 2 2 4n n

v vs s + − ≤ −  , completing the proof.  
Given a set of distinct positive integers V where V n= , Theorem 5 indicates that  

[ ]{ } 1max
2x v nS x∈ = ≤  . So in the case where all distinct sums of V add to different  

values, erasing a wash sale loss may have a very large impact. In particular, the multi-set 
{ }1,1, ,1V =   has largest loss 2n

vs n  = −  , where Theorem 5 indicates  
{ }0 1 12 , 2 , , 2nV −=   has the largest loss 2 2 1n n

vs   = − +  . In this case, when no distinct 
sums add to the same value, let ( ){ }2 2 1 : 2n nU i i  = − − ∈    giving  

[ ]{ } 1max
2x U v nS x∈ = = . Assuming wash sales occur with the same random and 

uniform probability among all losses, the expected disallowed loss is 2 1n

n
− . This is  

because all losses are of the form ( )12i−− , for [ ]1i n∈ + , and by assumption these 
losses all have the same probability of occurring. 

Since [ ] 0vS =  by Lemma 3, Littlewood-Offord results are useful for under- 
standing likely values for vS . That is, { } [ ]{ }0max vx S x∈ − =   gives most likely capital 
gains or losses outside of the expected value [ ] 0vS = . None of the vs  values in 
Figure 2 are 0, but if V has an even number of 1s, then the most common value is 0. 

The following tail bound is given by [42] where 2 2 2
1 2 1 22
, , , n nv v v v v v= + + +  , 

2 2
1 2 2

1
, , , e

n
t

i i n
i

v t v v vξ −

=

 > ≤  
∑                         (17) 

22 2 2 2
1 2 e t

v nS t v v v − > + + + ≤  
                        (18) 
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2 2e
v

t
v SS tσ − > ≤                              (19) 

Since by Theorem 4, 2 2 2
1 2vS nv v vσ = + + +

. 

Suppose { }1,1, ,1V =   and V  is odd. Since no sum of V is 0, there are 
2
n

 capital 

gains and 
2
n

 capital losses. This means if vS tσ= , then there are 
2 2
n tσ
+  capital 

gains and 
2 2
n tσ
−  capital losses. Losses are necessary for wash sales. Therefore, the 

bound 
2 2e

v

t
v SS tσ − > ≤   gives the probability there are at least 

2
vStσ

 more gains 

than losses. That is, there are 
2

vStσ
 fewer opportunities for wash sales. 

Following Figure 2, given V n=  then [ ]1vs n=  is the case with zero capital losses. 
Likewise, 2n

vs n  = −   is the case with zero capital gains. By Lemma 3, since [ ] 0vS =  
and [ ]1 2 0n

v vs s  + + =  , thus [ ]2 2n
v vn s s  − = + +   . Also suppose a single wash 

sale disallows a capital loss among all identical capital gains and losses. The single wash 
sale disallows a single capital loss giving the expected capital gain or loss:  

[ ]( ) [ ]( ) ( )2 1 3 1 2 1
.

2 1

n
v v v

n

s s s  + + + + + + 
−



                   (20) 

The term [ ]1vs  is excluded since it has no losses, hence no wash sales. 
The boy-girl 30±  birthday problem gives a necessary condition for wash sales of 

substantially identical securities. Recall ( )30 252, ,B g b  is the probability of at least one 
boy-girl 30±  birthday collision, so ( )301 252, ,B g b−  is the probability of no such 
birthday collision. 

Given any number of boy-girl 30±  birthday collisions of the same security and 
suppose these birthday collisions produce at most a single wash sale. In this case let G 
be a total taxable gain or loss where all gains and losses are the same. Suppose these 
gains and losses are all 1. This gives, 

[ ] ( )( )
[ ] [ ]

30

1 2 2
1 252, ,

2

n
v v v

n

s s s
G B g b

 + + +  = −


              (21) 

( )
[ ]( ) ( )

30

2 1 2 1
252, ,

2 1

n
v v

n

s s
B g b

 + + + + +
−



                 (22) 

( ) ( ) ( ) ( )30 301 252, , 252, ,
0 2 1

2 1 2 1
n

n n

B g b B g b
n

−
= + − −

− −
               (23) 

( )30 252, , 1 .
2 1n

nB g b  = − − 
                        (24) 

5. Conclusions and Further Directions  

This paper shows the probabilistic method may be used to model some tax implications 
for wash sales. Variations of the birthday problem and the Littlewood-Offord problem 
are applied to certain tax implications of wash sales. 
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Modeling and simulating taxes are important in both public policy settings as well as 
in practical tax planning. In public policy settings, conflicting fiscal and social policies 
make tax rules contentious. In tax planning, unexpected events may have serious 
consequences. Thus, reducing certain taxes to mathematical terms gives an unusual 
level of percision. Such percision can only benefit public policy and tax planning. 
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