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Abstract 
This paper presents a global optimization approach to solving linear non-quadratic 
optimal control problems. The main work is to construct a differential flow for find-
ing a global minimizer of the Hamiltonian function over a Euclid space. With the 
Pontryagin principle, the optimal control is characterized by a function of the adjoint 
variable and is obtained by solving a Hamiltonian differential boundary value prob-
lem. For computing an optimal control, an algorithm for numerical practice is given 
with the description of an example. 
 
Keywords 
Linear Non-Quadratic Optimal Control, Pontryagin Principle, Global Optimization,  
Hamiltonian Differential Boundary Value Problem 

 

1. Primal Problem. 

In this paper, the notation .  represents a norm for the specified space concerned. 
The primal goal of this paper is to present a solution to the following optimal control 
problem (primal problem ( ) in short). 

( ) ( ) ( )
0

min d
T

F x P u t+  ∫                  (1.1) 

( ) [ ]s.t. , 0 , 0, , , ,n mx Ax Bu x a t T x R u R= + = ∈ ∈ ∈�        (1.2) 

where ( )F x  is twice continuously differentiable on nR , ( )2 0, nF x x R∇ ≥ ∀ ∈ , ( )P u  
is twice continuously differentiable on mR , ( )2 0, mP u u R∇ > ∀ ∈ . In the control 
system, ,A B  are given matrices in n nR ×  and n mR ×  respectively and α stands for a 
given vector in nR . We assume that  

( )
2lim inf 0.

u

P u
u→∞

>                          (1.3) 
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If ( )P u  is a positive definite quadratic form with respect to u and ( )F x  is a posi- 
tive semi-definite quadratic form with respect to x, then the problem ( ) is a classical 
linear-quadratic optimal control problem [1]. 

The rest of the paper is organized as follows. In Section 2, we focus on Pontryagin 
principle to yield a family of global optimizations on the adjoint variable. In Section 3, 
we deal with the global optimization for the Hamiltonian function. In Section 4, we 
show that there exists an optimal control to the primal ( ) and present a mathe- 
matical programming. In Section 5 and 6, we discuss how to compute the global 
minimizer by a differential flow and present an algorithm for the numerical practice 
with the description of an example. 

2. Pontryagin Principle 

Associated with the optimal control problem ( ), let’s introduce the Hamiltonian fun- 
ction  

( ) ( ) ( ) ( ), , TH x u Ax Bu F x P uλ λ= + + +                (2.1) 

with the state and adjoint systems  

( ) ( ), , , 0 ,x H x u Ax Bu x aλ λ= = + =�                   (2.2) 

( ) ( ) ( ), , , 0.T T
xH x u A F x Tλ λ λ λ= − = − −∇ =�              (2.3) 

We know from Pontryagin principle [2] that if ( )ˆ .u  is an optimal control to the 
problem ( ), then it is an extremal control. Associated with the state variable ( )ˆ .x  
and the adjoint variable ( )ˆ .λ , we have  

( ) ( )ˆˆ ˆ ˆ ˆ ˆ ˆ, , , 0 ,x H x u Ax Bu x aλ λ= = + =�                   (2.4) 

( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ, , , 0,T T
xH x u A F x Tλ λ λ λ= − = − −∇ =�               (2.5) 

and  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( ) [ ]

ˆ ˆˆ ˆ ˆ, , min , ,

ˆ ˆ ˆmin , . . 0, .

m

m

u R

T

u R

H x t u t t H x t u t

t Ax t Bu F x t P u a e t T

λ λ

λ
∈

∈

=

 = + + + ∈ 

        (2.6) 

Since in (2.6) the global optimization is processed on the variable u over mR  for a 
given t, it is equivalent to deal with the optimization (for obtaining a global minimizer):  

( ) ( )ˆmin .
m

T

u R
P u t Buλ

∈
 +                          (2.7) 

Therefore we turn to consider the following optimization with respect to a given 
parameter vector nRλ ∈   

( )min .
m

T

u R
P u Buλ

∈
 +                           (2.8) 

In this paper, for a given adjoint variable, we solve the optimization (2.8) to create a 
function ( )u h λ= . Then in Hamiltonian boundary problem (2.2), (2.3) we replace the 
variable u with the function ( )h λ  and solve the following equation  
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( ) ( ) ( )ˆ, , , 0 ,x H x u Ax Bh x aλ λ λ= = + =�                  (2.9) 

( ) ( ) ( ), , , 0.T T
xH x u A F x Tλ λ λ λ= − = − −∇ =�              (2.10) 

3. Global Optimization 

In this section, for a given parameter vector nRλ ∈ , we deal with the following global 
optimization problem   [3] [4] 

( )min
m

T

u R
P u Buλ

∈
 +                           (3.1) 

to create a function ( ) ( ),n mu h C R Cλ= ∈ . 
It follows from (1.3) that there exist positive numbers β  and r such that  

( ) 2 , .P u u u rβ≥ >                         (3.2) 

It follows from (1.3) that there exist positive numbers β  and r, such that, when  
u r> ,  

( ) 2 .P u uβ≥                            (3.3) 

Without loss of generalization, we assume that ( )( ){ }11min , 0 1 .r Pβ
−−< +  

Lemma 3.1. For given nRλ ∈ , let 
1 TB

λ

λ
α

β

+
= , then the global problem   is  

equivalent to the the following global problem * :  

( )min .T

u
P u Bu

λα
λ

≤
 +                          (3.4) 

proof: Let nRλ ∈  be given. Since ( )( ){ }11min , 0 1 0r P β
−− + > > , it is clear that  

( )0 1Pλα > +  and rλα > . Then, when u λα> , we have  

( ) ( ) ( )2 .
TT T TP u B u u B u u B u uλ β λ β λ+ ≥ − = − >  

On the other hand, for u λα≤ ,  

( ) ( ) ( )min .
TT T

u
P u B u P u Bu

λα
λ λ

≤
 + ≥ +   

But, since ( ) ( ) ( ) ( )0 1 0 0 min mu R
P P P P u

∈
+ > ≥ ≥ , when u λα>  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 0 0 min .
T TT T T

u
P u B u u P P P B P u Bu

λ
λ α

λ α λ λ
≤

 + ≥ > > + > = + ≥ +   

Since we have shown above that, for all mu R∈ ,  
( ) ( ) ( )min

TT T
uP u B u P u Bu

λα
λ λ≤

 + ≥ +  , noting that { } mu Rλα≤ ⊂ , we have  

( ) ( )min min .
m

T T

uu R
P u Bu P u Bu

λα
λ λ

≤∈
   + = +     

The lemma has been proved. 
Consequently, by Lemma 3.1 we conclude the following lemma. 
Lemma 3.2. Let uλ  be a minimizer of ( )min T

u P u Bu
λα

λ≤
 +  . Then uλ  is a mini- 

mizer of ( ) TP u Buλ+  over mR . Moreover, ( ) 0TP u Bλ λ∇ + =  and  
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1 TB
uλ

λ

β

+
≤ . 

Remark 3.1. Since ( )2 0P u∇ > , mu R∈ , uλ  is the unique minimizer of  
( ) TP u Buλ+  over u λα≤ . Then, it follows by Lemma 3.2 that uλ  is also the unique 

minimizer of ( ) TP u Buλ+  over mR . Therefor uλ  is uniquely determined by the equ- 
ation  

( )( ) ( ) 0.T TP u Bu P u Bλ λ∇ + = ∇ + =  

By elementary calculus [5], the above equation defines an implicit function of the 
variable λ , denoted by ( ) :u h uλλ= =  which is continuously dependent of the 
parameter λ . 

4. Hamiltonian Boundary Value Problem 

In this section we solve the following Hamiltonian boundary value problem:  

( ) ( ) ( ), , , 0 ,x H x u Ax Bh x aλ λ λ= = + =�                 (4.1) 

( ) ( ) ( ), , , 0.T
xH x u A F x Tλ λ λ λ= − = − −∇ =�               (4.2) 

Equation (4.2) can be rewritten by the integral form  

( ) ( ) ( )( )= e d .
TT A t

t
t F xνλ ν ν− ∇∫                     (4.3) 

Substituting it into Equation (4.1), we have  

( ) ( ) ( ) ( )( )( ) ( ) 0e d , 0 .
TT A t

t
x t Ax t Bh F x x xν ν ν−= + ∇ =∫�          (4.4) 

In the following we show that Equation (4.4) has a solution, then together with (4.3) 
we obtain a solution to Hamiltonian boundary value problem (4.1), (4.2). 

Since ( )F x  is twice continuously differentiable on nR , we may define  

( )
1

max ,
x a

K F x
− ≤

= ∇  

and  

( )1 1 e .
A TB

M A a B KT
β

 = + + + 
 


  

Let  

[ ]( )0, , .nX C T R=  

Consider the ball centered at a in X   (regarding a as a function constantly equal to 
the vector a): 

( ) [ ]{ }: 1, 0, .x X x t a t TΩ = ∈ − ≤ ∀ ∈  

For a real number   such that 
10 min ,T
M

 < <  
 

 , define an operator  

:G XΩ→ , which acts on each element x∈Ω  to produce an image Gx  satisfying 
(noting that the integral in (4.4) needs the information of ( )x ν  on the whole interval 
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[ ]0,T ), for [ ]0,t∈  ,  

( )( ) ( ) ( ) ( )( )( )0
: e d d ,

t T A s

s
Gx t a Ax s Bh F x sν ν ν− = + + ∇  ∫ ∫


         (4.5) 

while for [ ],t T∈  ,  

( ) ( ) ( ) ( ) ( )( )( )0
: e d d .

T A s

s
Gx t a Ax s Bh F x sν ν ν− ≡ + + ∇  ∫ ∫


 

By an elementary estimation we have, for [ ]0,t∈  ,  

( ) ( ) ( )
( )

( )
0

1 e
d 0 1,

A T s
t B KT

Gx t a A x s B s M t M
β

−  +  − ≤ + ≤ − ≤ ≤  
    

∫




 (4.6) 

while for [ ],t T∈  ,  

( ) ( ) ( )
( )

0

1 e
d 1,

A T s
B KT

Gx t a A x s B s M
β

−  +  − ≤ + ≤ ≤  
    

∫





  

which implies that Gx∈Ω . It is also clear that G is a continuous and compact mapping. 
Then by Schauder fixed-point theorem, there is an element x̂∈Ω  such that ˆ ˆGx x= . 
It follows that ( )ˆ .x  is a solution to (4.4) for [ ]0,t∈  . For [ ]0,t∈  , let  

( ) ( ) ( )( )ˆ ˆe d .
T A t

t
t F xνλ ν ν−= ∇∫


                  (4.7) 

By a traditional approach in the classical theory of ordinary differential equation, we 
see that the solution ( ) ( )( ) [ ]ˆ , , 0,x t t tλ ∈   can be extended to [ ]0,T . Then by (4.4), 
(4.3) we see that ( ) ( )( )ˆˆ . , .x λ  is a solution to Hamiltonian boundary value problem 
(4.1), (4.2). We conclude the following result. 

Theorem 4.1. There exists a solution pair ( ) ( )( )ˆˆ . , .x λ  to Hamiltonian boundary 
value problem (4.1), (4.2). 

Let ( ) :h uλλ =  and ( ) ( )( )Tˆˆ . , .x λ  be a solution of the Hamiltonian boundary value 
problem (4.1), (4.2). Then by the definition of the Pontryagin extremal control, we 
conclude that ( ) ( )( ) [ ]ˆˆ , 0,u t h t t Tλ= ∈  is an extremal control to the primal problem 
( ). 

Remark 4.1. Moreover, noting that ( ) ( )2 0 nF x x R∇ ≥ ∀ ∈  and  
( ) ( )2 0 mP u u R∇ > ∀ ∈ , by (2.1) we see that the Hamiltonian function is convex on the 

state and control variables respectively. Meanwhile, noting that ( )u h λ=  does not 
depend on the state variable, by traditional optimal control theory, we know that the 
extremal control ( ) ( )( )ˆû t h tλ=  is also an optimal control to the optimal control 
problem ( ). 

In other words, in the practice for solving (  ), we only need to compute a solution 
of the following differential boundary value problem:  

( ) ,x Ax Bh λ= +�                          (4.8) 

( ) ,TA F xλ λ= − −∇�                         (4.9) 
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( ) ( ) [ ]0 , 0, 0, .x a T t Tλ= = ∈                    (4.10) 

We present a numerical method to deal with the differential boundary value Equation 
(4.9), Equation (4.10) as follows. Define a mesh by dividing the time interval [ ]0,T  
evenly  

0 10 ,N Nt t t T−< < < < =�  

1 : , 0,1, , 1.i i
Tt t i N
N

τ+ − = = = −�  

Consider solving for 0 1, , , Nx x x� , with ix  the intended approximation of ( )ix t . 
For the requirement on the adjoint variable ( ) 0Ntλ =  (due to the boundary condition 
of the differential boundary value Equation (4.9), Equation (4.10)), we consider the 
following difference equation:  

1 ;i i
i i

x x Ax Bz
τ

+ −
= +  

( )1 ;Ti i
i iA F xλ λ λ

τ
+ −

= − −∇  

( ) ;i iz h λ=  

0 ; 0;Nx a λ= =  

0,1, 2, , 1.i N= −�  

Solving the differece equation above we can get the valyue 0λ . According to classical 
numerical analysis theory, the solution of above difference equation will converge to 
the solution of differential boundary value problem (4.8) - (4.10). Apparently, we need 
to compute ( )h λ  numerically. It will be given in next section. 

5. Computing h(λ) by a Differential Flow 

In this section we study how to compute ( )h uλλ = . For a given parameter vector  
nRλ ∈ , we solve the following global optimization problem    

( )min
m

T

u R
P u Buλ

∈
 +                          (5.1) 

to create a function ( )u h λ= . In the following we will determine the value of ( )h λ  
by a differential flow. 

Since the Hessen matrix function of ( )P u  is positive definite, by the classical 
theory of ordinary differential equation, for given nRλ ∈ , the following Cauchy initial 
value problem [3] [6] creates a unique flow ( ) , 0λξ ρ ρ ≥ :  

( ) ( ) [ )
12d 0, 0 , 0, ,

d
P I uλ

ξ ξ ρ ξ ξ ρ
ρ

−
 + ∇ + = = ∈ ∞             (5.2) 

such that  

( )( ) ( )T 0,P Bλ λξ ρ λ ρξ ρ∇ + + =                    (5.3) 

noting that ( ) 0TP u Bλ λ∇ + =  since uλ  is the minimizer of ( ) TP u Buλ+  over mR  
(Lemma 3.2). To explain the uniqueness of ( )λξ ρ , we refer to the fact that  
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( )2 0, mP u I u Rρ∇ + > ∀ ∈  for [ )0,ρ ∈ ∞ . Thus, combining (5.3), ( )λξ ρ  is the unique 
solution of the equation ( ) 0TP u B uλ ρ∇ + + = . 

In what follows we choose a real number * 1ρ >  such that, on 1u ≤ ,  

( )
* 1.

TP u B λ

ρ

−∇ −
≤  

By Brouwer Fixed-Point theorem ([7]), there is a point { }* 1u u∈ ≤ , such that  

( )*
*

* .
TP u B

u
λ

ρ

−∇ −
=                        (5.4) 

Moreover, we have  
* * 1.u Cρ −≤                            (5.5) 

where the positive constant C is only dependent of the parameters λ . In the following 
there are several times of appearing the character C which may denote different positive 
constants only dependent of the parameters λ . 

It follows from (5.4) that  

( )* * * 0.TP u B uλ ρ∇ + + =                       (5.6) 

By (5.3) and the uniqueness of the flow ( ) , 0λξ ρ ρ ≥ , we see that  

( )* *,uλξ ρ =                            (5.7) 

and that the flow ( ) , 0λξ ρ ρ ≥  can also be got by the following Cauchy initial value 
problem  

( ) ( ) [ )
12 * *d 0, , 0, .

d
P I uξ ξ ρ ξ ξ ρ ρ

ρ
−

 + ∇ + = = ∈ ∞            (5.8) 

Certainly, ( )0 uλ λξ = . Although it is hard to get uλ  and *u  exactly, we can com- 
pute numerically another vector instead of *u  by the following result. 

Theorem 5.1. Let the flow ( )ξ ρ  be got by the following backward differential 
equation  

( )
12d 0,

d
P Iξ ξ ρ ξ

ρ
−

 + ∇ + =                     (5.9) 

( ) ( )( ) ( )( ) [ )
1* 2 *0 0 , 0, .Tu P I P Bξ ρ ρ λ ρ
−

= = − ∇ + ∇ + ∈ ∞       (5.10) 

Then  
* * 2 ,u u Cρ −− ≤                        (5.11) 

( )( ) ( )* 1 * 10 , 0 ,TP B C u Cλξ λ ρ ξ ρ− −∇ + ≤ − ≤            (5.12) 

where the positive constant C is only dependent of the parameters λ  and *ρ  is 
selected to be sufficiently large satisfying (5.4), (5.5). 

Proof: When * 1ρ >  is sufficiently large, *u  is near the origin. In a neighborhood 
of the origin, by (5.4), we have  
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( ) ( ) ( ) ( )22 * * * * *0 0 ,TP P u O u P u u Bρ λ∇ +∇ + = ∇ = − −  

and  

( )( ) ( ) ( )22 * * *0 0 .TP I u P B O uρ λ∇ + = −∇ − +  

Noting ( )2 0 0P∇ > , consequently, we have  

( )( ) ( )( ) ( )1 2* 2 * *0 0 .Tu P I P B O uρ λ
−

= − ∇ + ∇ + +  

Let  

( )( ) ( )( )12 *: 0 0 ,Tu P I P Bρ λ
−

= − ∇ + ∇ +  

we have  

( )2* * .u u O u− =  

Thus, by (5.5),  
* * 2.u u Cρ −− ≤                         (5.13) 

where the positive constant C is only dependent of the parameters λ . By the way, we 
deduce that * * 1u u u u C≤ + − ≤ + , noting that * 1ρ > . 

In the following we need to keep in mind that  

( )* * * 0.TP u u Bρ λ∇ + + =                     (5.14) 

By (5.13), (5.14), for sufficiently large *ρ , we have  

( )

( ) ( )( )
( )

*

* * * *

* * 2 *

1

* * 2 *

* 1 * 2 * 1

max

,

T

u C

P u u B

P u u P u u

u u P u u u

C C u u

C C C

ρ λ

ρ ρ

ρ

ρ ρ

ρ ρ ρ

≤ +

−

− − −

∇ + +

= ∇ + − ∇ +

 ≤ − + ∇ − 
 

≤ + −

≤ + ≤

               (5.15) 

noting that in the inequality process the value of the constant C has been changed 
several times but only dependent of given information like , ,P Bλ . 

Since ( )( ) ( )P ξ ρ ρξ ρ∇ +  is a constant along the flow ( )ξ ρ , noting that (5.9) 
(5.10) we have  

( )( ) ( ) ( ) * .P P u uξ ρ ρξ ρ ρ∇ + = ∇ +  

Consequently for 0ρ =  we have  

( )( ) ( ) *0 ,P P u uξ ρ∇ = ∇ +  

Thus, by (5.15),  

( )( ) * 10 .TP B Cξ λ ρ −∇ + <                     (5.16) 

Further, noting that ( ) 0TP u Bλ λ∇ + = , we have  
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( ) ( )( ) ( )

( )( ) ( )

( )( ) * 1

0 0

0

0 ,

T T

T

u C P P u

C P B P u B

C P B C

λ λ

λ

ξ ξ

ξ λ λ

ξ λ ρ −

− ≤ ∇ −∇

= ∇ + −∇ −

= ∇ + ≤

 

noting that ( ) 0TP u Bλ λ∇ + =  and also noting that in the inequality process the value 
of the constant C takes different positive values which are only dependent of given 
information like , ,P Bλ . The theorem has been proved. 

Remark 5.1. Comparing with ( ) 0TP u Bλ λ∇ + = , in the computation practice, we 
can solve the Cauchy initial problem (5.9) (5.10), instead of (5.8) to get ( )0ξ  as an 
approximation of uλ . 

In what follows, we give an algorithm to compute ( )h uλλ =  numerically in finding 
a discrete solution to Hamiltonian boundary value problem (4.1), (4.2). 

Algorithm 5.1. 
1) Given nRλ ∈ ; 
2) Given *0, 1ρ> > ; 
3) Get the flow ( )ξ ρ  by solving the following Cauchy initial problem  

( ) ( ) ( )( ) ( )( )112 * 2 * *d 0, 0 0 , 0, ;
d

TP I P I P Bξ ξ ρ ξ ξ ρ ρ λ ρ ρ
ρ

−−
   + ∇ + = = − ∇ + ∇ + ∈     

4) if ( )( ) ( ) ( )0 , 0TP B h uλξ λ λ ξ∇ + ≤ = ≈ , stop; Otherwise, go to 5); 
5) * *10ρ ρ= , go to 3). 
Remark 5.2. For the step 3) of above algorithm, we present a numerical method to 

deal with the Cauchy initial problem as follows. Define a mesh by dividing the time 
interval [ ]0,T  evenly  

*
0 10 ,M Mρ ρ ρ ρ−< < < < =�  

*

1 : , 0,1, , 1.j j s j M
M
ρρ ρ+ − = = = −�  

Consider solving for 0 1, , , Mξ ξ ξ� , with jξ  the intended approximation of ( )jξ ρ . 
We deal with the following difference equation.  

( ) 11 2
1 1 1, 1, 2, , ,j j

j j jP I j M
s

ξ ξ
ξ ρ ξ

−−
− − −

−
 = − ∇ + =  �  

( )( ) ( )( )12 *0 0 .T
M P I P Bξ ρ λ

−
= − ∇ + ∇ +  

6. A Description of an Example 

Let’s consider to solve the following optimal control problem numericaly:  

( )1 2 4 2
0

dx u u t+ +∫  

( )s.t. , 0 ,x x u x a= + =�  

where state and control variables all take values in 1R . Let ( ) 4 2P u u u= + . We have 
( ) 34 2P u u u′ = + , ( ) 212 2P u u′′ = + , ( ) ( ) 2 4 2, , .H x u x u x u uλ λ= + + + +  We have 

the following Hamiltonian boundary value problem and a global optimization problem:  
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( ), 0 ;x x u x a= + =�  

( ) ( ) [ ]2 , 1 0, 0,1 .x tλ λ λ= − + = ∈�  

( ) ( ){ } [ ]
1

4 2arg min , . . 0,1 .
u R

u t u u t u a e tλ
∈

 = + + ∈   

We need to solve the following differential boundary value equation:  

( ) ( ), 0 ;x x h x aλ= + =�  

( ) ( )2 , 1 0,xλ λ λ= − + =�  

which yields the corresponding difference equation:  

( )1
1 1 ,i i

i i
x x x h λ

τ
−

− −
−

= +  

1
1 12 ,i i

i ixλ λ λ
τ

−
− −

−
= − −  

1, 2, , ,i N= �  

0 , 0.Nx a λ= =  

Noting that ( ) 212 2 , 0,P u uρ ρ ρ′′ + = + + ≥  and ( )0 0P′ = , by Algorithm 5.1 and 
Remark 5.2, given positive integers ,N M  (properly large) and positive real numbers 
  (properly small), * 1ρ > , we consider solving the following difference equation:  

1 ;i i
i i

x x x z
τ

+ −
= +  

1 2 ;i i
i ixλ λ λ

τ
+ −

= − −  

( ) ( )
( )( ) ( ) ( )

121
1 112 2 1 ,

i i
j j i i

j jj s
s

ξ ξ
ξ ξ

−
−

− −

−  = − + + − 
 

 

( ) ( ) 1*2 ;i
M iξ ρ λ

−
= − +  

( )
0 ;i

iz ξ=  

0 ; 0;Nx a λ= =  

0,1, 2, , 1, 1, 2, , .i N j M= − =� �  

If Nλ ≤  , then the discrete solution of an optimal control  
ˆ , 0,1, 2, , 1i iu z i N≈ = −� . Otherwise, let * *10ρ ρ=  and 2 , 2N N M M= =  and do the 

above difference equation again. 
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