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Abstract 
This paper is mainly devoted to application of the Gaussian beam summation tech-
nique in electromagnetic simulations problem. Gaussian beams are asymptotic solu-
tions of the Helmholtz equation within the paraxial approximation. Since they are 
insensitive to ray transition region, several techniques based on Gaussian beam are 
used to evaluate high frequency EM wave equation, which overcome partially or fully 
the difficulties of singular regions (caustics, zero field in shadow zones). This paper 
concentrates on the explicit formulation of the electromagnetic field scattered from 
radar target. In this approach, when the incident field illuminates the target, the 
scattering is accounted in a complex weighing function. The wave field at a receiver 
is evaluated as superposition of Gaussian beams concentrated close to rays emerging 
from the target, passing through the neighbor of the receiver. 
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1. Introduction 

Asymptotic methods using high-frequency approximations and the hypothesis of lo-
cally plane wave are based on the principle of rays. A direct application of these me-
thods in a complex scenario (3D with objects of large sizes) is often confronted with 
problems of caustic, transition between shadow and highlighted region and requires a 
prohibitive calculation time due to the huge number rays necessary to describe the 
scene. In this paper, we test and apply contribution of two different techniques essen-
tially based on Gaussian beam to estimate the RCS of canonical radar target which can 
be further applied to complex scheme. The principal raison of our interest in Gaussian 
beam for simulating the radiated field by use of Gaussian beams is that they eliminates 
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several limitations of the ray method, in particular the difficulties connected with eva-
luating the wave field in singular regions (caustics, shadow regions, etc.). As compared 
to the classical asymptotic technique, there exists relatively little work in the open lite-
rature regarding application of Gaussian beam in diffraction problem.  

The GBS technique was already formalized for diverse configurations [1] [2]. The 
approach proposed here is different. Nevertheless, our GBS formulation method is dif-
ferent. It consists of a representation of the wave field in the form of a single integral 
over elementary Gaussian beams concentrated in the vicinity of a single isolated ray 
which is referred to as the central or reference ray. The superposition of Gaussian 
beams as an asymptotic representation of a scalar wave field in the high frequency ap-
proximation was firstly suggested by V. M. Babich and T. F. Pankratova [3] in pure 
Mathematical studies. The consistent description of the Gaussian Beam method was 
given by Popov [4].  

In the GBL formulation, the field radiated by the target illuminated by a Gaussian 
beam is decomposed into a plane wave spectrum. These Gaussian beams strike the sur-
face from where they are reflected, and also diffracted by the reflector edge [5]. Finally 
the solution is obtained via an asymptotic evaluation of the radiation integral for the 
fields scattered, to within the physical optics approximation. This technique has at-
tracted much attention, especially in the electromagnetic community. 

In this paper, Section 2 presents general formulation of the two methods. In the GBS 
approach we derive general equations for the Gaussian beam at a point situated in the 
effective vicinity of the receiver and the resultant field. We develop numerical compu-
tation and investigate the sensitivity of the solution to the selection of certain of the 
Gaussian beam parameters which enable the required accuracy. For the GBL formula-
tion, we give asymptotic evaluation of the radiation integral for the fields scattered from 
the target, to within the physical optics approximation. Section 3 presents formulation 
of the scattered field by a monostatic RCS of canonical target, which involves a single 
platform operating as transmitter and receiver, illuminated by horizontally polarized 
incident plane wave, using GBS and a rotationally symmetric Gaussian be amusing 
GBL. In the former, the normalization coefficient of the integral is identified by match-
ing the analytical solution to the ray asymptotic solution as it happens to the Geome-
trical Optic (GO) solution. The two methods will be compared and simulation with 
canonical target will be compared to asymptotic methods (Physical Optic) and rigorous 
method (Method of Moment) to assess the advantages of these techniques. 

2. Formulation of the Method 

The Gaussian beam method, as a new approach for the computation of wave fields in 
high frequency approximation, was suggested by M.M. Popov [4] and V. Cerveny [6]. 
Consider an electromagnetic wave propagating in a homogeneous and isotropic me-
dium which is being excited by a point source. In the GBS method, the final field in an 
observation point results from a fan of rays distributed in his vicinity. For each ray we 
derive a Gaussian beam propagating along the ray and then sum the contribution of 
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each Gaussian beam to the receiver over all rays from the fan [7]. For any selected ray, 
we shall introduce a ray-centered coordinate system, q1, q2 and s connected with it. A 
solitary Gaussian beam as a localized asymptotic solution to the Helmholtz Equation 
calculated at the receiver point, with local coordinates s, q1, q2 inside asymptotically 
small neighborhood of the central ray is given by [4]. 

( ) [ ]
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τ = ∫  is the travel time from the source along the selected ray, v is the  

propagation velocity, qT represents the transpose of the vector q, the quantities Q and P 
are 2 × 2 matrix called “dynamic quantities” satisfying the system ODE (2) in variations, 
called the “dynamic ray tracing equations” (DRT) [8]. In homogeneous medium with 
wave speed v supposed equal to the celerity denoted chere, the DRT can be written as  
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To solve this above DRT system (2), the initial conditions must be specified at an ar-
bitrary point s = s0 on the central ray. We must solve this system of differential equa-
tions for Q and P with appropriate initial conditions. They must guarantee the follow-
ing three conditions along the whole rays [9]:  
• [ ]det 0Q ≠ . 

• 1P Q−×  is symmetric matrix, even though P and Q are not symmetrical. 

• ( )1Im P Q−×  is a positive-definite matrix. 

Here, we use Hill’s [10] initial data for the Green’s function. The initial values for Q 
and P are respectively. 
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c
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                      (3) 

In (3), ω0 is the initial half beam width at the frequency ωr, I is the identity matrix. 
An exhaustive discussion of the dependence of the Gaussian beam solution with beam 
with ω0 is given in [11] and [12]. The total amplitude at the receiver is given by the 
integral over all Gaussian beams characterized by their takeoff angle, denoted φ, from 
the source:  

( ) ( )1 2, , d .sfgu M u s q qϕ ϕ
δ

δ= Φ ⋅ ⋅∫                     (4) 

In (4) the domain δ is centered on the central ray, it delimits the beams propagating 
in the neighbor of the central ray, chosen in such way that the Gaussian beam 

( )1 2, ,u s q qϕ  outside this domain do not contribute effectively to the wave field. δ is a 
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cone with a vertex angle φ. 

[ ]d sin d d ,    0, 2πδ ϕ ϕ ϑ ϑ= ⋅ ⋅ ∈                       (5) 

In (4) ( )1 2, ,u s q qϕ  is the Gaussian beam connected with the ray and Φφ is a quan-
tity, generally complex-valued, which remains constant along the considered ray but 
may differ from ray to ray. It is called complex weight function. 

The above solution is influenced by parameters which specify the properties of Gaus-
sian beams used, mainly their width. We must learn how to select the parameters of 
computation to obtain the results with the required accuracy. We analyze the behavior 
of GBS solution for different beam width and investigate how this proposed solution 
offer better result near singularities where classical ray methods fail. We use simplest 
ray theory approximation for comparison, considering the direct ray. The results of the 
first numerical experiments were presented in [11] and [13]. We compare the GBS and 
the ray theory approximation considering a point source and a receiver on the central 
ray. 

For homogeneous medium, denoting r the distance to an observation point M, the 
ray asymptotic solution of the Helmholtz Equation is given by 

( ) e
4π

j r
c

u M
r

ω
⋅ ⋅

=                              (6) 

On the other hand, the GBS integral, in Equation (4), may be evaluated asymptoti-
cally using the saddle-point method. Thus, this result must coincides with the above ray 
asymptotic solution in regular region. Matching both asymptotic solution of (4) and (6) 
we can determine the complex weight function Φφ. Integral (4) is evaluated by numeri-
cal quadrature with regular increment Δφ 

( ) ( )
1

2 π sin
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N

k k
k
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Figure 1 left compares, field amplitude calculated by GBS method and ray asymp-
totic solution of the Helmholtz equation for ω0 = 5λ, 8λ, 12λ and 15λ, N = 400. r is the 
distance from the source to the receiver. Red, green, blue and magenta line correspond 
to the GBS solution for different beam width, respectively 5λ, 8λ, 12λ and 15λ. The 
beam initial width must be chosen optimally to guarantee sufficient accuracy. The role 
of ω0 has been investigated by several authors, see [14] [15]. The relative error between 
GBS solution and ray asymptotic solution shown in Figure 1 right is normalized by the 
asymptotic solution. We observe that for ω0 = 15λ the relative error remains below 4% 
even at 10 km from the source and the GBS solution match the ray asymptotic solution. 
In addition, one should note that the GBS method exhibit no singularities when passing 
by the source point (r = 0), unlike the ray asymptotic solution. The proof of this result 
relies on the theory of systems of linear first order differential equations [16].  

The above GBS formulation will now be compared to the alternative approach called 
GBL. This technique consists in calculating the radiation integral of the fields scattered 
by the target illuminated by a Gaussian beam, within the physical optics approximation.  
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Figure 1. RCS of a flat plate, illuminated by a vertically polarized incident wave, computed using 
GBL method, GBS, and PO, as a function of transmitter elevation angle in monostatic configura-
tion for beam width ω0 = 2λ. 

 
For the incident Gaussian beam, the incident magnetic field can be written as [5] 
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The PO integral, integration of the incident Gaussian beam on the reflector surface, 
give the electric fields scattered from the surface. The integral can be written as  
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where ir  is the position vector in the incident Gaussian beam, iρ  is the distance  
from the waist of the incident Gaussian beam to point O on ∑ (see Figure 2 left) and.  

2
0

2
k

b
ω

= , where 0ω  is the half beam width. 

3. Numerical Computation 

We introduce the principle of calculation of the scattered field by a flat plate, illumi-
nated by a plane wave, using GBS and rotationally symmetric Gaussian beams propa-
gating in the zi direction using GBL, at 10 GHz. As described in Section 2, GBS is ap-
plied at the receiver and the weight function is identified by comparing the solution of 
(4), using steepest decent method, to those of Geometrical Optic. 

Using equation (7), we have computed the scattered field applying GBS. Using equa-
tion (8) in (9) and solving the integral, we have computed the scattered field applying 
GBL formulation as in [17]. In Figure 2, we shows monostatic scattering from a rec-
tangular flat plate of sides 1 m × 1 m which lies in the (x, y) plane (Figure 2 left). We 
set the azimuth angles φi to zero and we show comparison between GBS, GBL, for a 
beam width ω0 = 2λ, PO and Mom simulated using FEKO. The transmitter elevation 
angle varies from θi = −90˚ to θi = 90˚. The GBS result (blue line) and GBL technique 
(bashed red line) match rigorously the PO solution (black line) and Mom (light blue 
line) for the main beams. One can see that GBS and GBL technique are superposed to 
the PO solution. PO and Mom accurately models the main beam, and the modeled  
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Figure 2. RCS of a flat plate, illuminated by a vertically polarized incident wave, computed using 
GBL method, GBS, and PO, as a function of transmitter elevation angle in monostatic configura-
tion for beam width ω0 = 2λ. 

 
peak width and location match GBS and GBL technique. GBS and GBL accurately 
model the main beam, without mitigation, the diagrams are also consistent, and the 
modeled peak width and location match the PO solution. Comparing GBS and GBL 
one can observe a progressive degradation on GBL solution into the deep shade ac-
cording to the mitigation. It is questionable in general whether the accuracy gained by 
using GBS would justify the additional complexity of the solution method.  

4. Conclusion 

The main purpose of the asymptotic approximation technique in electromagnetism is 
to give effective numerical solution of the wave equation combining accuracy and bet-
ter computing time. We treat two different approaches to compute the electromagnetic 
field radiated from radar target. The beam methods promise several advantages over 
ray methods, particularly on caustic problem. In the GBS formulation, the total field at 
the receiver is represented by the integral over all Gaussian beams propagating in the 
neighbor of the receiver. Established solution is compared to another approach also 
based on Gaussian beam which consists of calculating the field radiated by the object 
illuminated by a Gaussian beam by decomposing it into a plane wave spectrum. The fi-
nal field is the contribution of beams interacting with the target. This comparison 
shows that GBS and GBL give high accurate representation of the scattered field. Simu-
lation with canonical target is shown and will be extended to complex target. 
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