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Abstract 
This paper compares the statistical properties of time-varying causality tests when 
errors of variables have multivariate stochastic volatility (SV). The time-varying cau-
sality tests in this paper are based on a logistic smooth transition autoregressive 
model. The compared time-varying causality tests include asymptotic tests, hete-
roskedasticity-robust tests, and tests using wild bootstrap. Our simulation results 
show that asymptotic tests and heteroskedasticity-robust counterparts have size dis-
tortions under multivariate SV, whereas tests using wild bootstrap have better size 
properties regardless of type of error. In particular, the time-varying causality test 
with first-order Taylor approximation using wild bootstrap has better statistical 
properties. 
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1. Introduction 

Granger causality is one of most representative methods to analyze causality between 
economic variables. It is based on linear vector autoregressive (VAR) models and in-
vestigates whether past information is effective for prediction. Although Granger cau-
sality is used for various studies, it can be applied to examine only stable linear rela-
tionships in the long run. The relationship between economic variables is not necessar-
ily stable in the long run and frequently has time-varying properties. This implies that a 
causality relationship can also be time-varying, and hence we should take into account 
the time-varying properties when analyzing a causality relationship. 

One method to introduce time-varying properties to Granger causality is through the 
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use of a logistic smooth transition (LST) function. By using an LST function with time 
as the transition variable, we can test for both smooth and abrupt causalities. When a 
causality has such nonlinearity, the usual Granger causality tests based on a linear VAR 
model have low power and tend to give the misleading result of having no causalities in 
the system. [1] [2] and [3] proposed nonlinear causality tests. Their analyses also 
showed significant nonlinear causality. 

While time-varying causality is significant for the precise analysis of variables, hete-
roskedastic variances influence the tests for causality and nonlinearity such as time- 
varying properties. For example, [4] provided Monte Carlo evidence that causality tests 
have size distortions under heteroskedastic variances. In addition, [5] and [6] showed 
that heteroskedastic variances lead to spurious nonlinearity. Several economic variables 
investigated using Granger causality have heteroskedastic variances such as stochastic 
volatility (SV) (e.g., [7] and [8]). Therefore, if we do not deal appropriately with hete-
roskedastic variances in the tests for causality, we would not be able to obtain reliable 
results when examining for time-varying causality. However, previous studies have not 
clarified the influences of heteroskedastic variances on time-varying causality tests. 

This paper investigates the statistical properties of time-varying causality tests when 
the disturbance terms have SV. The investigated tests include asymptotic tests based on 
first-order and third-order Taylor approximation and their counterparts with the hete-
roskedasticity-consistent covariance matrix estimators (HCCME) as introduced by [9]. 
As pointed out by [10], the order of Taylor approximation affects the performance of 
linearity tests. We reveal the impact of the order of Taylor approximation on time- 
varying causality tests in the presence of SV. We also examine the time-varying causal-
ity tests using wild bootstrap. Wild bootstrap was proposed by [11] and replicates a 
sampling that does not depend on the form of heteroskedastic variances. [12] and [13] 
examine the properties of tests using wild bootstrap. We show which tests perform well 
even under SV by analyzing the size and power of the tests. 

Our simulation results provide evidence that asymptotic time-varying causality tests 
and their counterparts with HCCME over-reject the null hypothesis of no causality in 
the presence of SV. This implies that their tests tend to yield misleading and unreliable 
results. In particular, their tests based on third-order Taylor approximation have larger 
distortions than those based on first-order Taylor approximation. In contrast, we find 
that time-varying causality tests using wild bootstrap have reasonable empirical sizes 
and sufficient power. The results of this paper would enable appropriate and reliable 
time-varying causality tests. 

The rest of this paper is organized as follows. Section 2 presents time-varying causal-
ity tests. Section 3 provides the size and power properties of tests. Finally, Section 4 
concludes the paper. 

2 Time-Varying Causality Tests 

We consider the following bivariate vector autoregressive system to test for time-varying 
causality relationship.  
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( ) ( )01 11 1 0 1 1 1, , ,t t t ty y x F t c uα α β β γ− −= + + + +                (1) 

02 12 1 2 ,t t tx x uα α −= + +                         (2) 

where 1tu  and 2tu  are zero mean errors and ( ), ,F t cγ  is a logistic smooth transi-
tion function to model time-varying causality. The transition function ( ), ,F t cγ  can 
be given by  

( )
( ){ }

1, , 1 2,
1 exp

F t c
t c

γ
γ

= −
+ − −

                  (3) 

where γ  is a parameter determining the function’s smoothness, t is a transition varia-
ble, and c is the point where a regime changes from one to another. We assume that 

0γ > , 0t > , and 0c > . The system has a causality from tx  to ty  when 1 0β ≠  
and ( ), , 0F t cγ ≠ . 0 0β ≠  means a time-varying constant. When t c= , the causality 
from tx  to ty  does not appear because ( ), ,F t cγ  becomes zero. The value of the lo-
gistic smooth transition function is bounded between −1/2 and 1/2. When t c< , we  

have 
( ){ }

1 1 2
1 exp t cγ

<
+ − −

 and ( )1 2 , , 0F t cγ− < < . Meanwhile, when t c> , we 

have 
( ){ }

1 1 2
1 exp t cγ

>
+ − −

 and ( )0 , , 1 2F t cγ< < . ( ), ,F t cγ  moves toward −1/2  

when t c<  and small ( )t cγ − , and toward 1/2 when t c>  and large ( )t cγ − . The 
causality is time-varying when depending on the value of ( ), ,F t cγ . In addition, the 
time-varying causality using ( ), ,F t cγ  includes abrupt structural changes of causality 
because ( ), ,F t cγ  is the indicator function taking the value of −1/2 or 1/2 when 
γ = ∞ . 

The null and alternative hypotheses to test for time-varying causality in the system 
are  

0 1: 0, : 0.H Hγ γ= >                         (4) 

If 0γ = , Equation (1) has no causality from tx  to ty . However, the test is not sim-
ple and easy because the null hypothesis has an identification problem about 0β  and 

1β . They are identified only under the alternative hypothesis with 0γ > . The identifi-
cation problem was considered by [14] and [15]. To conduct the test in the presence of 
the identification problem, [16] proposed a Taylor series approximation. We use 
first-order and third-order Taylor series approximation around 0γ =  because the 
performance of the tests depends on the order of Taylor series approximation (e.g., 
[10]). 

The regression models for (1) using the first-order and third-order Taylor series ap-
proximation are given by  

0 1 1 0 1 1First-order : ,t t t ty a a y b t b tx e− −= + + + +                (5) 
2 2 2 3 3 3

0 1 1 10 11 1 20 21 1 30 31 1Third-order : ,t t t t t ty a a y c t c tx c t c t x c t c t x e− − − −= + + + + + + + +  (6) 

where te  is an error term including a remainder term of Taylor series approximation. 
0γ =  implies 0 1 0b b= =  in (5) or 10 11 20 21 30 31 0c c c c c c= = = = = =  in (6). Since we 

cannot test for 0γ =  directly, we instead test for 0 1 0b b= =  or for  
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10 11 20 21 30 31 0c c c c c c= = = = = = . Denoting a , b , and c  as ( )0 1,a a ′=a ,  
( )0 1,b b ′=b , and ( )10 11 20 21 30 31, , , , ,c c c c c c ′=c , (5) and (6) can be rewritten respectively 

as  

First-order : ,t t bt ty e′ ′= + +a y b x                     (7) 

Third-order : ,t t ct ty e′ ′= + +a y c x                     (8) 

where ( )11,t ty −
′=y , ( )1,bt tt tx −

′=x , and ( )2 2 2 3 3 3
1 1 1, , , , ,ct t t tt tx t t x t t x− − −

′=x . 
Testing for time-varying causality is expressed as  

0 1First-order : : 0, : 0,H H= ≠b b                    (9) 

0 1Third-order : : 0, : 0.H H= ≠c c                   (10) 

The Wald statistics to test for time-varying causality are derived as  
11

1 1 1 12
1

1 ˆ ˆFirst-order : F1 ,
ˆ

T

t t
t

R R
σ

−−

=

  ′ ′ ′=   
   
∑b Y Y b              (11) 

11

3 3 3 32
1

1 ˆ ˆThird-order : F3 ,
ˆ

T

t t
t

R R
σ

−−

=

  ′ ′ ′=   
   
∑c Y Y c              (12) 

where ( )1 ,t t bt
′′ ′=Y y x  and ( )3 ,t t ct

′′ ′=Y y x , b̂  and ĉ  are estimates of b  and c , 
and 2σ̂  is the estimate of the residual variance in each regression. 1R  and 3R  are 
matrixes that satisfy 1 1R =d b  and 3R =3d c , where ( )1 , ′′ ′=d a b  and ( )3 , ′′ ′=d a c . 
Under the null hypothesis of no time-varying causality, (11) and (12) follow F distribu-
tions with degrees of freedom ( )2, 2T −  and ( )6, 6T − , respectively. When we use 
HCCME for statistics (11) and (12), they are given by  

11 1
2

1 1 1 1 1 1 1 1
1 1 1

ˆ ˆˆFirst-order : HC1 ,
T T T

t t t t t t t
t t t

R e R
−− −

= = =

     ′ ′ ′ ′ ′=      
      
∑ ∑ ∑b Y Y Y Y Y Y b     (13) 

11 1
2

3 3 3 3 3 3 3 3
1 1 1

ˆ ˆˆThird-order : HC3 ,
T T T

t t t t t t t
t t t

R e R
−− −

= = =

     ′ ′ ′ ′ ′=      
      
∑ ∑ ∑c Y Y Y Y Y Y c    (14) 

where t̂e  represents the residual in each regression. Statistics (13) and (14) using 
HCCME asymptotically have the same distributions as (11) and (12). 

Wild bootstrap is also used for regression models with heteroskedastic variances to 
obtain reliable results. The method can simply resample heteroskedastic variances like 
SV. This paper employs the recursive-design wild bootstrap. The testing procedure is as 
follows.  

Step 1. Compute test statistics (11) and (12) by applying (7) and (8) to the data.  
Step 2. Estimate the system using the restricted model with 0=b  in (7) and 0=c  

in (8) and obtain the estimate of a  and residuals denoted as ˆrte .  
Step 3. Obtain the estimates 02α̂  and 12α̂  and the residual 2ˆ tu , where 2ˆ tu  is the 

residual of (2).  
Step 4. Generate the bootstrapped sample as  
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ˆ ,t t yty e∗ ∗ ∗′= +a y                           (15) 

02 12 1ˆ ˆ ,t t xtx x eα α∗ ∗ ∗
−= + +                        (16) 

where â  is the estimate of a  in (7) or (8), ˆyt yt rte eε∗ = , 2ˆxt xt te uε∗ = , and ytε  and 

xtε  are i.i.d. N(0, 1). ty∗  and tx∗  are data generated recursively.  
Step 5. Compute test statistics (11) and (12), denoted as WB1 and WB3, by applying 

(7) and (8) to the generated bootstrap sample.  
Step 6. Repeat the bootstrap iterations M for steps 4 and 5. We obtain M statistics 

WB1 and WB3.  
Step 7. Compute the bootstrap p-values as follows:  

( ) ( )
1

1First-order : WB1 WB1 F1 ,
M

m
P I

M =

= >∑               (17) 

( ) ( )
1

1Third-order : WB3 WB3 F3 ,
M

m
P I

M =

= >∑               (18) 

( )I ⋅  is an indicator function such that ( )I ⋅  is 1 if ( )⋅  is true and 0 otherwise. The 
null hypothesis is rejected if the p-value is smaller than a significant level. 

3. Size and Power Properties 

This section conducts Monte Carlo simulations to compare the size and power proper-
ties of causality tests under multivariate SV. The nominal size of the tests is 0.05, and 
we consider sample sizes 200T =  and 400. Causality tests using wild bootstrap have 
1000 bootstrap replications. The number of replications of simulations for all the tests 
is 10,000. We generate data with 100T +  and use the data with sample size T. The ini-
tial 100 samples are discarded to avoid the effect of initial conditions. We denote the 
tests compared in this section as F1, F3, HC1, HC3, WB1, and WB3; we also denote the 
linear Granger causality test as F0, its test with HCCME as HC0, and its test using wild 
bootstrap as WB0. 

We first investigate the size properties based on data generating process (DGP) given 
as  

1 11 ,t t ty y uα −= + +                          (19) 

1 21 0.5 ,t t tx x u−= + +                         (20) 

where 1tu  and 2tu  are error terms. We set 1tu  and 2tu  with normal error to the 
following.  

1

2

0 1
, .

0 1
t

t

u
N

u
ρ

ρ
      

=       
      

                      (21) 

The correlation parameter ρ  between 1tu  and 2tu  is set to 0ρ =  and 0.5ρ = . 
DGP do not have any causality from tx  to ty  in the system from (19) to (21). 

Table 1(a) presents the size properties of tests for normal error. We investigate two 
cases of 0.2α =  and 0.8α = . The results in Table 1(a) indicate that for all the tests, 
the correlation parameter ρ  does not have any influence on size. Linear Granger 
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causality test F0 and its time-varying causality version F1 perform well regardless of the 
value of α . Their rejection frequencies are near the nominal size 0.05. However, we 
find that F3 has small over-rejections. For example, the size of F3 for 0ρ = , 0.8α = , 
and 200T =  is 0.090. Compared with the results between 0.2α =  and 0.8α = , F3 
has a larger over-rejection for 0.8α =  than for 0.2α = . The high persistence of ty  
affects the empirical size of F3. The property that F3 has additional regression parame-
ters may lead to size distortions. We find that HC0, HC1, and HC3 perform worse than 
F0, F1, and F3. The rejection frequencies are larger than 0.05. In particular, the rejec-
tion frequency of HC3 is more than 0.1. These results imply that causality tests with 
HCCME are not useful under normal error. In contrast, the empirical sizes of WB0, 
WB1, and WB3 using wild bootstrap are close to the nominal size 0.05. While WB3 has 
small under-rejections, small size distortions are acceptable. Causality tests with wild 
bootstrap have reasonable empirical sizes. 

We next examine the empirical sizes of tests under multivariate SV. The property of 
SV is that volatility is influenced by an error and changes stochastically. Multivariate 
SV allows for the correlation between errors of volatilities. 1tu  and 2tu  in (21) with 
SV are generated by  

1 1

2 2

,t t
t

t t

u
u

ε
ε

   
= Ω   

   
                         (22) 

where ( )~ i.i.d. 0,1it Nε  and  

( )
( )

1

1

exp 2 0
.

0 exp 2
t

t
t

h
h

 
Ω =   

 
                   (23) 

Here, 1th  and 2th  are given by  

1 1 1 1 11 1 12 1 1 ,t t t t th h u uφ κ κ η− − −= + + +                    (24) 

2 2 2 1 21 2 22 2 2 ,t t t t th h u uφ κ κ η− − −= + + +                   (25) 

where  

1

2

0 1
, .

0 1
t

t

N
η ρ
η ρ

      
=       

      
                      (26) 

The regression parameter α  in (19) is set to 0.2. 1φ  and 2φ  describe the size of 
volatility persistence. High 1φ  and 2φ  indicate persistent volatility. ijκ  is a parame-
ter to determine the asymmetry of SV. While asymmetric volatility has 0ijκ ≠ , sym-
metric multivariate volatility has the restriction of all 0ijκ = . For example, the volatil-
ity with 11 0κ <  and 21 0κ >  increases when 1tu  is minus. The multivariate stochas-
tic model is based on [17] and [18]. 

Table 1(b) presents the size performance of tests under symmetric multivariate SV 
with ( ) ( )1 2, 0.2,0.2φ φ =  and ( )0.8,0.8 . All ijκ  are set to zero in (24) and (25). Mul-
tivariate SV clearly leads to over-rejection. For example, the empirical sizes of F1, F3, 
HC1, and HC3 for 0.2α = , 0ρ = , 1 2 0.8φ φ= = , and 200T =  are respectively 0.059, 
0.090, 0.078, and 0.153 in Table 1(a) but 0.088, 0.127, 0.129, and 0.225 in Table 1(b). 
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In addition, we observe that the correlation between errors affects the size performance 
of F0, F1, and F3. When compared with the empirical sizes of F0, F1, and F3 for 

 
Table 1. (a) Size properties under normal error; (b) Size properties under symmetric multivariate 
stochastic volatility; (c) Size properties under asymmetric multivariate stochastic volatility. 

(a) 

 F0 F1 F3 HC0 HC1 HC3 WB0 WB1 WB3 

0ρ =           

0.2α =           

200T =  0.046 0.053 0.066 0.068 0.071 0.138 0.048 0.042 0.030 

400T =  0.051 0.048 0.063 0.063 0.065 0.112 0.050 0.043 0.032 

0.8α =           

200T =  0.049 0.059 0.090 0.074 0.078 0.153 0.046 0.042 0.031 

400T =  0.048 0.062 0.076 0.061 0.071 0.123 0.053 0.040 0.033 

0.5ρ =           

0.2α =           

200T =  0.043 0.053 0.061 0.068 0.074 0.135 0.052 0.042 0.032 

400T =  0.046 0.046 0.055 0.060 0.067 0.108 0.050 0.045 0.032 

0.8α =           

200T =  0.051 0.059 0.095 0.068 0.071 0.151 0.047 0.040 0.030 

400T =  0.051 0.059 0.076 0.060 0.069 0.120 0.048 0.044 0.028 

(b) 

 F0 F1 F3 HC0 HC1 HC3 WB0 WB1 WB3 

0ρ =           

1 2 0.2φ φ= =           

200T =  0.048 0.054 0.072 0.075 0.074 0.145 0.050 0.041 0.027 

400T =  0.049 0.052 0.067 0.069 0.071 0.119 0.052 0.047 0.031 

1 2 0.8φ φ= =           

200T =  0.050 0.088 0.127 0.109 0.129 0.225 0.049 0.068 0.062 

400T =  0.050 0.086 0.125 0.108 0.134 0.235 0.052 0.073 0.066 

0.5ρ =           

1 2 0.2φ φ= =           

200T =  0.057 0.053 0.068 0.076 0.073 0.148 0.053 0.041 0.029 

400T =  0.063 0.055 0.066 0.066 0.064 0.114 0.056 0.049 0.033 

1 2 0.8φ φ= =           

200T =  0.131 0.140 0.203 0.083 0.124 0.235 0.039 0.058 0.053 

400T =  0.160 0.159 0.229 0.067 0.111 0.223 0.041 0.064 0.047 



D. Maki 
 

784 

(c) 

 F0 F1 F3 HC0 HC1 HC3 WB0 WB1 WB3 

0ρ =           

1 2 0.2φ φ= =           

200T =  0.049 0.053 0.066 0.062 0.068 0.134 0.048 0.039 0.028 

400T =  0.050 0.049 0.063 0.065 0.061 0.108 0.049 0.049 0.032 

1 2 0.8φ φ= =           

200T =  0.051 0.066 0.093 0.077 0.092 0.190 0.051 0.051 0.041 

400T =  0.054 0.071 0.088 0.043 0.091 0.166 0.053 0.057 0.051 

0.5ρ =           

1 2 0.2φ φ= =           

200T =  0.038 0.044 0.045 0.062 0.063 0.114 0.046 0.044 0.028 

400T =  0.036 0.043 0.046 0.067 0.064 0.100 0.050 0.049 0.037 

1 2 0.8φ φ= =           

200T =  0.072 0.078 0.099 0.067 0.095 0.189 0.045 0.057 0.041 

400T =  0.076 0.083 0.097 0.061 0.084 0.157 0.046 0.054 0.046 

 

1 2 0.8φ φ= =  and 0ρ = , they have larger over-rejections for 1 2 0.8φ φ= =  and 
0.5ρ = . This is different from the results in Table 1(a). Thus, the correlation between 

errors increases the over-rejections when the errors have multivariate SV. The results 
imply that multivariate SV causes size distortions in time-varying causality tests. Possi-
bly, they provide misleading results that indicate a time-varying causality relationship. 
However, note that WB0, WB1, and WB3 perform better even under SV. The empirical 
sizes of WB0, WB1, and WB3 for 1 2 0.8φ φ= = , 0.5ρ = , and 200T =  are 0.039, 
0.058, and 0.053, respectively. 

Asymmetric multivariate SV also results in size distortions for causality tests. We set 

11κ  and 21κ  to 11 21 0.5κ κ= = −  and 12κ  and 22κ  to 12 22 0.3κ κ= = . From Table 
1(c), while HC0, HC1, and HC3 have larger rejection frequencies than F0, F1, and F3, 
their size distortions are smaller than those for symmetric multivariate SV. WB0, WB1, 
and WB3 show reasonable size performances, as in Table 1(a) and Table 1(b). A com-
parison of Table 1(b) and Table 1(c) shows that asymmetry of SV does not have a 
large impact on time-varying causality tests. From the results of empirical sizes, 
time-varying causality tests using HCCME have a negative influence on empirical sizes. 
Furthermore, time-varying causality tests F3 and HC3 based on third-order Taylor ap-
proximation is inferior to tests F1 and HC1 based on first-order Taylor approximation. 
Although WB3 tends to have slight under-rejection, WB0, WB1, and WB3 are superior 
to other tests. In particular, WB0 and WB1 perform best irrespective of type of error. 

We next investigate the power properties based on DGP, given as  

( ) ( )1 0 1 1 11 0.2 , , ,t t t ty y x F t c uβ β θ− −= + + + +                (27) 

1 21 0.5 ,t t tx x u−= + +                         (28) 
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( )
( ){ }

1, , 1 2,
1 exp

F t c
t c

θ
θ

= −
+ − −

                 (29) 

where c is the point at which a regime changes from one to another. We set c to 
2c T= . We compare the cases of ( )0.01,0.1,1θ =  and  

( ) ( ) ( ) ( ){ }0 1, 0.4,0 , 0,0.2 , 0.4,0.2β β = . 
Table 2(a) reports the power performance of tests under normal errors 1tu  and 

2tu  with 0ρ =  in (21). All the tests have a larger power when ( ) ( )0 1, 0,0.2β β =  or 
( )0.4,0.2  than when ( ) ( )0 1, 0.4,0β β = . All the tests find it more difficult to detect 
changes only in a constant 0β  than only in AR parameter 1β  or in both a constant 
and AR parameter. In addition, the power of most of the tests increases when θ  is 
large, because a large θ  provides a sharp change in the smooth transition function. F0, 
HC0, and WB0 have smaller power compared to other tests regardless of the value of 
θ , 0β , and 1β . This shows that it is difficult for linear Granger causality tests to 
detect time-varying causality. F1, HC1, HC3, and WB1 apparently outperform other 
tests. However, HC1 and HC3 have over-rejections, as shown in Table 1(a). The better 
power performance of HC1 and HC3 is attributed to over-rejection of the null hypo-
thesis; moreover, they tend to lead to spurious time-varying causality. Although F3 has 
size distortions under the null hypothesis with normal error, F3 has similar or lower 
power compared to F1. WB3 has a small under-rejection of the null hypothesis and 
lower power. These results indicate that time-varying causality tests with third-order 
Taylor approximation are not advantageous. Accordingly, F1 and WB1 obtain reasona-
ble empirical sizes and better power performance when a variable has time-varying 
causality. 

Table 2(b) presents the power properties under multivariate SV. SV is generated by 
(22) with 1 2 0.8φ φ= =  and 0.5ρ = . HC0 and WB0 are naturally inferior to other 
tests. F0 performs well, unlike the results of Table 2(a). This performance is attributed 
to the size distortions under SV, as in Table 1(b). The same is true of the results of F1, 
F3, HC1, and HC3. They outperform other tests, but over-reject the null hypothesis. 
When DGP have stochastic volatility, they are likely to reject the null hypothesis of no 
time-varying causality and yield misleading results. It is important to have reasonable 
and acceptable empirical sizes in order to avoid misleading results. Although the power 
of WB1 and WB3 are lower than that of F1, F3, HC1, and HC3, they have reasonable 
and acceptable empirical sizes and lead to reliable results. We see that WB1 has higher 
power than WB3. The simulation results provide clear evidence that WB1 is more reli-
able from the perspective of controlling the size and obtaining sufficient power to find 
time-varying causality regardless of the presence of SV. 

4. Conclusion 

This paper investigated the statistical properties of time-varying causality tests when 
the errors of variables have multivariate SV. It is important to clarify the statistical 
properties of time-varying causality tests under SV, because economic variables often 
have SV and the relationship between them is time-varying. The tests we compared 
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include the standard linear Granger causality and the time-varying causality tests, their 
tests with HCCME, and their tests using wild bootstrap. Simulation results indicate that 
time-varying causality tests and their counterparts with HCCME have size distortions 

 
Table 2. (a) Power properties under normal error; (b) Power properties under multivariate sto-
chastic volatility. 

(a) 

 F0 F1 F3 HC0 HC1 HC3 WB0 WB1 WB3 

( ) ( )0 1, 0.4,0β β =           

0.01θ =           

200T =  0.045 0.071 0.079 0.068 0.081 0.140 0.048 0.054 0.037 

400T =  0.049 0.162 0.117 0.065 0.168 0.182 0.048 0.150 0.077 

0.1θ =           

200T =  0.046 0.239 0.175 0.070 0.248 0.290 0.048 0.212 0.110 

400T =  0.050 0.413 0.310 0.062 0.435 0.418 0.049 0.416 0.262 

1θ =           

200T =  0.047 0.246 0.183 0.068 0.259 0.303 0.047 0.218 0.122 

400T =  0.049 0.423 0.316 0.065 0.438 0.425 0.054 0.420 0.262 

( ) ( )0 1, 0,0.2β β =           

0.01θ =           

200T =  0.052 0.108 0.096 0.073 0.100 0.181 0.046 0.076 0.041 

400T =  0.063 0.368 0.295 0.075 0.380 0.429 0.056 0.341 0.218 

0.1θ =           

200T =  0.097 0.509 0.471 0.113 0.556 0.698 0.056 0.471 0.359 

400T =  0.110 0.818 0.829 0.106 0.831 0.913 0.065 0.802 0.755 

1θ =           

200T =  0.104 0.519 0.525 0.109 0.563 0.732 0.065 0.486 0.394 

400T =  0.104 0.811 0.827 0.099 0.831 0.916 0.066 0.793 0.760 

( ) ( )0 1, 0.4,0.2β β =           

0.01θ =           

200T =  0.058 0.184 0.138 0.078 0.187 0.251 0.050 0.148 0.073 

400T =  0.067 0.737 0.612 0.080 0.752 0.741 0.056 0.733 0.531 

0.1θ =           

200T =  0.106 0.866 0.805 0.116 0.887 0.924 0.067 0.856 0.732 

400T =  0.111 0.991 0.988 0.104 0.990 0.996 0.068 0.988 0.971 

1θ =           

200T =  0.112 0.874 0.847 0.120 0.896 0.945 0.065 0.860 0.755 

400T =  0.117 0.991 0.989 0.109 0.991 0.996 0.069 0.989 0.972 
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(b) 

 F0 F1 F3 HC0 HC1 HC3 WB0 WB1 WB3 

( ) ( )0 1, 0.4,0β β =           

0.01θ =           

200T =  0.129 0.148 0.200 0.083 0.133 0.243 0.041 0.062 0.052 

400T =  0.159 0.204 0.255 0.062 0.168 0.262 0.039 0.085 0.062 

0.1θ =           

200T =  0.132 0.229 0.255 0.085 0.236 0.356 0.043 0.118 0.088 

400T =  0.162 0.300 0.334 0.069 0.281 0.391 0.040 0.153 0.115 

1θ =           

200T =  0.134 0.241 0.272 0.089 0.250 0.361 0.043 0.126 0.093 

400T =  0.149 0.294 0.346 0.072 0.283 0.409 0.044 0.156 0.116 

( ) ( )0 1, 0,0.2β β =           

0.01θ =           

200T =  0.145 0.174 0.227 0.097 0.148 0.275 0.042 0.069 0.058 

400T =  0.196 0.330 0.366 0.100 0.279 0.422 0.059 0.173 0.126 

0.1θ =           

200T =  0.236 0.410 0.464 0.176 0.413 0.615 0.083 0.256 0.215 

400T =  0.282 0.561 0.660 0.169 0.531 0.713 0.101 0.401 0.378 

1θ =           

200T =  0.252 0.423 0.489 0.190 0.435 0.645 0.098 0.275 0.238 

400T =  0.300 0.581 0.665 0.176 0.551 0.718 0.099 0.394 0.397 

( ) ( )0 1, 0.4,0.2β β =           

0.01θ =           

200T =  0.141 0.214 0.250 0.094 0.190 0.330 0.042 0.108 0.077 

400T =  0.202 0.474 0.479 0.107 0.451 0.555 0.059 0.324 0.218 

0.1θ =           

200T =  0.253 0.605 0.629 0.194 0.620 0.767 0.095 0.472 0.381 

400T =  0.286 0.791 0.824 0.175 0.761 0.855 0.105 0.660 0.582 

1θ =           

200T =  0.265 0.626 0.657 0.208 0.631 0.791 0.095 0.487 0.410 

400T =  0.301 0.785 0.827 0.182 0.754 0.860 0.111 0.652 0.585 

 
under highly persistent SV. Standard linear Granger causality tests perform relatively 
well under SV but has low power under time-varying causality. In contrast, time-varying 
causality tests using wild bootstrap have better size properties regardless of type of er-
ror. In particular, the time-varying causality test with first-order Taylor approximation 
and wild bootstrap has better statistical properties. These results indicate that the 
time-varying causality test with first-order Taylor approximation and wild bootstrap is 
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reliable and useful to test for time-varying causality. 
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