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Abstract 
The main purpose in many randomized trials is to make an inference about the av-
erage causal effect of a treatment. Therefore, on a binary outcome, the null hypothe-
sis for the hypothesis test should be that the causal risks are equal in the two groups. 
This null hypothesis is referred to as the weak causal null hypothesis. Nevertheless, at 
present, hypothesis tests applied in actual randomized trials are not for this null hy-
pothesis; Fisher’s exact test is a test for the sharp causal null hypothesis that the caus-
al effect of treatment is the same for all subjects. In general, the rejection of the sharp 
causal null hypothesis does not mean that the weak causal null hypothesis is rejected. 
Recently, Chiba developed new exact tests for the weak causal null hypothesis: a con-
ditional exact test, which requires that a marginal total is fixed, and an unconditional 
exact test, which does not require that a marginal total is fixed and depends rather on 
the ratio of random assignment. To apply these exact tests in actual randomized tri-
als, it is inevitable that the sample size calculation must be performed during the 
study design. In this paper, we present a sample size calculation procedure for these 
exact tests. Given the sample size, the procedure can derive the exact test power, be-
cause it examines all the patterns that can be obtained as observed data under the al-
ternative hypothesis without large sample theories and any assumptions. 
 

Keywords 
Causal Inference, Conditional and Unconditional Exact Test, Potential Outcome, 
Two-by-Two Contingency Table 

 

1. Introduction 

In superiority randomized trials in which subjects are assigned to one of two treatment 
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groups and the outcome is binary, data can be summarized in a two-by-two contingen-
cy table. Investigators are often interested in testing the equality of the causal risks of 
the two groups, using a hypothesis test. A popular method for the hypothesis test is 
Fisher’s exact test [1] [2]. However, the null hypothesis of this test is that the causal ef-
fect of treatment is the same for all subjects. This null hypothesis is referred to as the 
sharp causal null hypothesis [3]-[5]; rejection of this null hypothesis does not mean that 
the causal risks of the two groups are different, i.e., the causal risk difference is not zero. 
Therefore, it is inevitable to examine the null hypothesis that the causal risks are equal 
in the two groups, which is referred to as the weak causal null hypothesis [3]-[5], to 
make an inference about the average causal effect of treatment. Nevertheless, few hy-
pothesis tests for the weak causal null hypothesis have been discussed. 

Recently, two exact tests for the weak causal null hypothesis were developed [6]; one 
is a conditional exact test, which requires that a marginal total is fixed, and the other is 
an unconditional exact test, which does not require that a marginal total is fixed and 
depends rather on the ratio of random assignment. Under simple (or equally complete) 
randomization, the unconditional exact test, rather than the conditional exact test, may 
be applied, because the number of subjects assigned to each group is not fixed under 
simple randomization. Conversely, under randomization with any restriction, the con-
ditional exact test, rather than the unconditional exact test, may be applied. These exact 
tests have the advantages that they are not based on large sample theories and do not 
require any assumptions, and they can be extended to non-inferiority trials and to the 
construction of a confidence interval (CI) in a straightforward manner. Therefore, these 
exact tests can be applied as a unified approach. 

To conduct statistical hypothesis testing in an actual randomized trial, the sample 
size need in the trial must be calculated during the study design. Moher et al. [7] wrote 
the following about the necessity of sample size calculation as follows: “For scientific 
and ethical reasons, the sample size for a trial needs to be planned carefully, with a bal-
ance between medical and statistical considerations. Ideally, a study should be large 
enough to have a high probability (power) of detecting as statistically significant a clin-
ically important difference of a given size if such a difference exists.” A randomized tri-
al with a smaller sample size than the sample size needed may cause type I or II error 
and produce a scientifically unreliable result. Conversely, an excessive sample size may 
cause ethical problems, because researchers have to evaluate more subjects. Although 
some sample size calculation methods have been developed [8] [9] and compared 
[10]-[12], none have been applied to the weak causal null hypothesis. Therefore, in this 
paper, we present a procedure for calculating the sample size for the conditional and 
unconditional exact tests introduced by Chiba [6]. 

The paper is organized as follows. In Section 2, we describe the notation used 
throughout this paper. In Section 3, we review the unconditional and conditional exact 
tests. In Section 4, we present a procedure of the sample size calculation for these exact 
tests. The procedure is examined through a numerical example in Section 5. Finally, we 
discuss the results in Section 6 and state the conclusion in Section 7. 
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2. Notation 

Throughout this paper, we denote X as the assigned treatment; X = 1 if a subject was 
assigned to the treatment group, and X = 0 if assigned to the control group. Y denotes 
the binary outcome; Y = 1 if the event occurred, and Y = 0 if it did not. The results are 
summarized in Table 1, where a, b, c, d, and n are the numbers of subjects. 

For each subject, it is also possible to consider the potential outcomes [13] [14] that 
correspond to the subject’s outcome had he/she been in the other trial group. Yi(x) de-
notes the potential outcome for ith subject i ( 1, ,i n=  ) under X = x. Using the poten-
tial outcomes, we consider the following four types of subject to define the four prin-
cipal strata: 
i) Type 11: individuals who would experience the event regardless of the assigned 

treatment group; i.e., (Yi(1), Yi(0)) = (1, 1). 
ii) Type 10: individuals who would experience the event if assigned to the treatment 

group but would not experience the event if assigned to the control group; i.e., 
(Yi(1), Yi(0)) = (1, 0). 

iii) Type 01: individuals who would not experience the event if assigned to the treat-
ment group but would experience the event if assigned to the control group; i.e., 
(Yi(1), Yi(0)) = (0, 1). 

iv) Type 00: Individuals who would not experience the event regardless of the assigned 
treatment group; i.e., (Yi(1), Yi(0)) = (0, 0). 

Note that all subjects belong to one of these four types. 
Let nst denote the number of subjects with (Yi(1), Yi(0)) = (s, t), where s, t = 0, 1. The 

causal risk if all subjects were assigned to the treatment group (X = 1) can be expressed 
as 

( ) 11 10

1

1 1 .
n

i
i

n n
Y

n n=

+
=∑                          (1) 

This is because only subjects with type 11 or type 10 would experience the event. Like-
wise, the causal risk if all subjects were assigned to the control group (X = 0) can be ex-
pressed as 

( ) 11 01

1

1 0
n

i
i

n n
Y

n n=

+
=∑ ,                        (2) 

because only subjects with type 11 or type 01 would experience the event. Therefore, 
the sample average treatment effect (the difference between (1) and (2)) can be expressed  

 
Table 1. Two-by-two contingency table obtained from a randomized trial, where a, b, c, d, and n 
indicate the number of subjects.  

Group 
Event 

Occurred (Y = 1) Not occurred (Y = 0) Total 

Treatment (X = 1) a b a + b 

Control (X = 0) c d c + d 

Total a + c b + d n 
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as 

( ) ( ){ } 10 01

1

1 1 0
n

i i
i

n n
Y Y

n n=

−
− =∑ ,                     (3) 

and thus the null hypothesis can be expressed as 

H0: 10 01n n= ,                            (4) 

which corresponds to the weak causal null hypothesis of 

H0: ( ) ( )
1 1

1 11 0
n n

i i
i i

Y Y
n n= =

=∑ ∑ .                      (5) 

This null hypothesis will be the main interest in many clinical trials. 
Here, we consider the null hypothesis of 

H0: 10 01 0n n= = ,                          (6) 

which is a special case for the weak causal null hypothesis (4). The null hypothesis (6) 
implies that the combination of (Yi(1), Yi(0)) is limited to (Yi(1), Yi(0)) = (1, 1) or (0, 
0), and thus subjects with (Yi(1), Yi(0)) = (1, 0) or (0, 1) do not exist. Therefore, this 
null hypothesis corresponds to the following sharp causal null hypothesis: 

H0: ( ) ( )1 0i iY Y=  for all subjects,                   (7) 

which is also a special case for the weak causal null hypothesis (5). It is obvious that the 
weak causal null hypothesis holds whenever the sharp causal null hypothesis holds. 
However, in general, the rejection of the sharp causal null hypothesis does not mean 
that the weak causal null hypothesis is rejected (i.e., ( ) ( ){ }1 0 0i ii Y Y n− ≠∑ ) [6]. 

3. Exact Tests for the Weak Causal Null Hypothesis 
3.1. Unconditional and Conditional Exact Tests 

When the random assignment is conducted by the ratio of 1:r, we assume that subjects 
are assigned as in Table 2 under the weak causal null hypothesis; i.e., of the nst subjects, 
nst,1 subjects are assigned to the treatment group (X = 1) with the probability of 
( )1 1 r+ , and nst,0 subjects are assigned to the control group (X = 0) with the probability 

of ( )1r r+ . Then, as each subject is independently assigned, the probability that nst,1 of 
nst subjects are assigned to the treatment group can be expressed as follows: 

,1 ,01 1

0 0 ,1

1
1 1

st stn n
st

s t st

n r
n r r= =

    
    + +    

∏∏ ,                   (8) 

where 
( )

!
! !j k

j jC
k k j k
 

= =  − 
, and the following set of conditions is required: 

Set of conditions 1: 

10 01 n n= , 
1 1
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Table 2. Two-by-two contingency table with the numbers for the four types of subjects defining 
the four principal strata.  

Group 
Event 

Occurred (Y = 1) Not occurred (Y = 0) Total 

Treatment (X = 1) n11,1 + n10,1 n00,1 + n01,1 n11,1 + n10,1 + n01,1 + n00,1 

Control (X = 0) n11,0 + n01,0 n00,0 + n10,0 n11,0 + n10,0 + n01,0 + n00,0 

Total n11 + n10,1 + n01,0 n00 + n01,1 + n10,0 n 

 
The first condition is the null hypothesis (4), and the second is the total number of 
subjects. The last two conditions are derived on the basis of Table 1 and Table 2; e.g., 

11n a c≤ +  is derived from 11 10,1 01,0n n n a c+ + = + , and 11 10n n a c d+ ≤ + +  is derived 
from 11 10 01,0 00,1n n n n a c d+ + + = + + . 

The risk difference estimated from the observed data, RDO, is 

ORD a c
a b c d

= −
+ +

                        (10) 

from Table 1, and the risk difference under the null hypothesis, RDN, is 

11,1 10,1 11,0 01,0
N

,1 ,0

RD
st sts t s t

n n n n
n n

+ +
= −
∑ ∑ ∑ ∑

                   (11) 

from Table 2. In this paper, we consider only the case of RDO ≤ 0, but the following 
methods can easily be applied to the case of RDO ≥ 0. For RDO ≤ 0, the unconditional 
exact test yields the one-sided p-value, p, using the following formula: 

( ) ( ){ }11 10 01 00sup : , , , satisfying set of conditions 1 9Up p n n n n=        (12) 

with 

( )
,1 ,010 01 0011

11,1 10,1 01,1 00,1

1 1

0 0 0 0 0 0 ,1

1
1 1

st stn nn n nn
stU

n n n n s t st

n rp I z
n r r= = = = = =

    =     + +    
∑ ∑ ∑ ∑ ∏∏ ,      (13) 

where I(z) = 1 if z ≤ 0 and I(z) = 0 if z > 0 with z = RDN − RDO (the difference between 
(11) and (10)). This is the unconditional exact test introduced by Chiba [6]. 

For the conditional exact test, the numbers of subjects assigned to the two groups are 
fixed. Thus, instead of the probability (8), the following probability is used: 

1 1

0 0 ,1

st

s t st

n n
n a b= =

   
   +  

∏∏ ,                       (14) 

where the following conditions are required: 
Set of conditions 2: Set of conditions 1 (9) plus 

1 1

,1
0 0

st
s t

n a b
= =

= +∑∑ .           (15) 
Consequently, the conditional exact test yields the one-sided p-value, p, using the 

following formula: 

( ) ( ){ }11 10 01 00sup : , , ,  satisfying set of conditions 2 15Cp p n n n n=       (16) 

with 
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We note that, under the following monotonicity assumption [15] [16]: 
Assumption 1 (monotonicity): ( ) ( )1 0i iY Y≤  for all subjects,               (18) 

the weak causal null hypothesis (4) is equivalent to the sharp causal null hypothesis (6). 
This is because there is no subject with type 10, i.e., n10 = 0, under this assumption. We 
further note that the conditional exact test degenerates to Fisher’s exact test under the 
monotonicity assumption (18) [6]. 

In this paper, we define a two-sided p-value as twice the one-sided p-value. 

3.2. Extension to Non-Inferiority Trials 

Hypothesis tests of non-inferiority focus on the null hypothesis of H0:  
( ) ( ){ }1 0i ii Y Y n δ− =∑  rather than H0: ( ) ( ){ }1 0 0i ii Y Y n− =∑ , where δ (> 0) is a 

small quantity specified in advance. Therefore, from the formula (3), the null hypothe-
sis for non-inferiority can be expressed as n10 − n01 = δn. To take the case in which δn is 
not an integer value into account, we set the null hypothesis to a maximum integer val-
ue satisfying n10 − n01 ≤ δn. Consequently, for non-inferiority trials, the one-sided 
p-value can be calculated by substituting n10 = n01 in the set of conditions 1 (9) by n10 − 
n01 = m, where m is a maximum integer value satisfying m ≤ δn. 

We note that we can also yield the 100α (%) CI, which is a CI corresponding to a sig-
nificance level of α (two-sided), by finding the range in which the null value of n10 − n01 
is not rejected at a significance level of α/2 based on the two separate one-sided hypo-
thesis tests. Chiba [17] demonstrated that such an exact CI was narrower than that us-
ing the other approaches [18] [19] to derive as an exact CI for a data set. 

4. Sample Size Calculation 

In the situation in which a randomized clinical trial with the assignment ratio 1:r is 
planned, we set the sample size in the treatment group to ( )1 1N N r= +  and that in 
the control group to ( )0 1N rN r= + , where the total number is N = N1 + N0. Fur-
thermore, we set the response probabilities under the alternative hypothesis as follows: 
P1 if all subjects are assigned to the treatment group, and P0 if all subjects are assigned 
to the control group. 

First, we derive the power function for a given sample size N for the unconditional 
exact test. When the one-sided p-value is set to α/2, the power function can be derived 
by the following procedure: 
1) Derive combinations of (n11, n10, n01, n00) under the alternative hypothesis, which sa-

tisfy n10 − n01 = MA, where MA is a maximum integer value satisfying  
( )1 0–AM N P P≤ × , 1 11 10 1–1 1NP n n NP< + < + , and 0 11 01 0–1 1NP n n NP< + < + . 

2) For each combination of (n11, n10, n01, n00) in Step 1, derive all combinations of (a, b, 
c, d), which can be obtained as observed data under the combination of (n11, n10, n01, 
n00), from a = n11,1 + n10,1, b = n01,1 + n00,1, c = n11,0 + n01,0, d = n10,0 + n00,0 (see Table 1 
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and Table 2), and calculate the probability (8). 
3) For each combination of (n11, n10, n01, n00), (a, b, c, d) and the probability (8) in Step 

2, using the other combination ( )* * * *
11 10 01 00, , ,n n n n  corresponding to (a, b, c, d), de-

rive the one-sided p-value from the unconditional exact test for the null hypothesis 
of H0: * *

10 01 Nn n M− = , where MN is a maximum integer value satisfying MN ≤ δN (δ 
= 0 for the superiority trial and δ > 0 for the non-inferiority trial). 

4) Derive the conditional power given (n11, n10, n01, n00), p*, by summing the probability 
(8) in Step 2 for cases in which the one-sided p-value in Step 3 is smaller than α/2. 

5) Derive the power from inf{p*: (n11, n10, n01, n00)}. 
In Step 5, we take the infimum. This is because we cannot know which combination of 
(n11, n10, n01, n00) is the most plausible from the assumed true values of P1 and P0. Nev-
ertheless, if investigators have plausible information about (n11, n10, n01, n00), such as the 
monotonicity assumption (18), the power can be calculated using the information. The 
hypothesis test can also be performed using the information. The required sample size 
can be determined by the smallest integer value of N, such that the power derived in 
Step 5 is larger than or equal to the power given in advance. 

For the conditional exact test, the power function is obtained by adding the condi-
tion of ,1 1sts t n N=∑ ∑  and applying the probability (14) instead of the probability (8) 
in Step 2 and by using the conditional exact test in Step 3. 

The procedure to calculate the power presented here examines all of the patterns that 
can be obtained as observed data under the alternative hypothesis by applying an exact 
test without large sample theories and any assumptions. Therefore, the calculated pow-
er is exact. However, the procedure requires large computer memory in addition to sig-
nificant computing time, especially for the unconditional exact test. Unfortunately, it is 
very difficult to perform the procedure without any assumptions in actual clinical trials. 
In the next section, we will illustrate the procedure under the monotonicity assumption 
(18) using an example. 

5. Numerical Example 

For the illustration, we have used the data from a superiority randomized clinical trial 
to evaluate the effects of subcutaneous drainage during digestive surgery [20]. In this 
trial, patients who underwent an elective primary resection of colorectal cancer were 
randomized into either a group that would receive subcutaneous passive drainage (PD) 
or a group with no drainage (ND). The randomization was performed by the minimi-
zation method [21], and the assignment ratio was 1:1. The endpoint was the incidence 
of superficial surgical site infections (SSI), and the result is summarized in Table 3. The 
risk difference is −0.066. Under the monotonicity assumption (18), the conditional ex-
act test yields the one-sided p-value of 0.031 and 95% CI of (−32/246, 0/246) = (−0.130, 
0.000). The unconditional exact test yields the one-sided p-value of 0.018 and 95% CI of 
(−33/246, −1/246) = (−0.134, −0.004). 

For the sample size calculation, it was assumed that the true SSI incidence proportion 
would be 0.10 in the ND group and 0.02 in the PD group with a significance level of 
0.05 (two-sided) and a power of 0.80 [20]. Under this setting and the monotonicity 
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assumption (18), we examined the sample size calculation presented in Section 4 for 
both conditional and unconditional exact tests, and the arc sine approximation with 
continuity-correction [8] as a reference. These three power functions are displayed in 
Figure 1. The required sample size per group with a power ≥ 0.80 is 132 for the uncon-
ditional exact test, 144 for the conditional exact test, and 149 for the arc sine approxi-
mation with continuity-correction. 

Figure 1 showed that the power for the unconditional exact test was the highest. The 
power for the conditional exact test was close to that for the arc sine approximation 
with continuity-correction for moderate to high powers, especially near a power of 
0.80. Note that without the monotonicity assumption (18), the powers for the two exact 
tests would be lower than those in Figure 1. This is because we need to consider the 
other combinations of (n11, n10, n01, n00) with n10 ≠ 0, and these combinations may de-
rive the lower power. 

6. Discussion 

In this paper, we proposed a sample size calculation method for the exact tests intro-
duced by Chiba [6], which are tests for the weak causal null hypothesis. The method 
can derive the exact power, because it examines all of the patterns that can be obtained 
as observed data under the alternative hypothesis by applying an exact test without 
large sample theories and any assumptions. However, unfortunately, it is very difficult 

 
Table 3. Results from a superiority randomized clinical trial to evaluate the effects of subcutane-
ous drainage during digestive surgery.  

Group 
Superficial surgical site infections (SSI) 

Yes No Total 

Passive drainage (PD) 4 120 124 

No drainage (ND) 12 110 122 

 

 
Figure 1. Power functions under P1 = 0.02, P0 = 0.10, α/2 = 0.025, and δ = 0 for the assignment 
ratio of 1:1: the black solid line indicates the conditional exact test, the black broken line indicates 
the unconditional exact test, and the gray solid line indicates the arc sine approximation with 
continuity-correction.  
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to perform the presented methods in actual clinical trials without any assumptions such 
as the monotonicity assumption (18), due to limitations in computing power. Further 
work is needed to create an efficient algorithm and to develop an approximation me-
thod. 

At present, for small to moderate sample sizes, randomization with any restriction is 
recommended rather than simple randomization to balance some background factors 
between two groups. This is natural if the same hypothesis testing method is applied 
under either randomization method. However, if a different hypothesis testing method 
corresponding to the randomization method is applied, the recommendation may be 
changed. In Section 5, the illustration showed that the power for the unconditional exact 
test was higher than that for the conditional exact test. This result could be predicted, be-
cause the p-value was smaller for the unconditional exact test compared with the condi-
tional exact test. In general, the p-value will be smaller for the unconditional exact test 
than for the conditional exact test, because the conditional exact test is more discrete 
compared with the unconditional exact test by conditioning on ,1sts t n a b= +∑ ∑ . In 
other words, in general, the power will be higher for the unconditional exact test com-
pared with the conditional exact test. Consequently, if the unconditional exact test is 
applied under simple randomization and the conditional exact test is applied under 
randomization with any restriction, the test power will be higher under simple rando-
mization than under randomization with any restriction. Although lack of balance of 
some background factors between the two groups is a problem for small to moderate 
sample sizes under simple randomization, this problem may be removed by stratified 
(adjusted) analysis, in which the covariates to be included in the analysis will be 
pre-specified in the protocol [22]. Such an analysis can increase the efficiency and 
power of a study without introducing a risk of bias [23]-[25]. 

The unconditional exact test also has an advantage in that, for the sample size calcu-
lation, it takes into account cases in which the actual ratio of the numbers assigned to 
the two groups is not just 1:r, whereas the conditional exact test assumes that the ratio 
is just 1:r. 

7. Conclusion 

Whenever we conduct a statistical hypothesis test for the weak causal null hypothesis, 
which is the main interest in many clinical trials, we need to apply the corresponding 
sample size calculation method. Of the hypothesis tests, the unconditional test may 
have greater test power compared with the conditional test. The unconditional test and 
corresponding sample size calculation method should be discussed further. 
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