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Abstract 
We review the Nambu and Jona-Lasinio model (NJL), proposed long time ago, in the 
sixties, as a fermion interaction theory with chiral symmetry. The theory is not re-
normalizable and presents a symmetry breaking due to quantum effects which de-
pends on the strength of the coupling constant. We may associate a phase transition 
with this symmetry breaking, leading from fermion states to a fermion condensate 
which can be described effectively by a scalar field. Our purpose in this paper is to 
exploit the interesting properties of NJL in a different context other than particle 
physics by studying its cosmological dynamics. We are interested in finding whether 
possibly the NJL model could be used to describe the still unknown dark energy 
and/or dark matter, from up to 95% of the energy content of the universe at present 
time. 
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1. Introduction 

In the last years the study of our universe has received a great deal of attention since, on 
the one hand fundamental theoretical cosmological questions remain unanswered and, 
on the other hand we have now the opportunity to measure the cosmological parame-
ters with an extraordinary precision. In the last decades, research in cosmology has re-
vealed the presence of unexplained forms of matter and energy called Dark Energy “DE” 
and Dark Matter “DM” making up to 95% of the energy content of the universe at 
present time. The study of supernovas SNIa shows that the universe is not only ex-
panding, but besides it is accelerating [1]-[6]. Such behaviour can be explained by the 
existence of a new form of energy, Dark Energy with an anti-gravitational property, 
which would be explained by a fluid with negative pressure. Independent evidence for 
Dark Matter (DM) and Dark Energy (DE), is provided through the analysis of the 
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Cosmic Microwave Background radiation (CMB) [7]-[10], which has been measured by 
satellite WMAP [11], and more recently by Planck mission [12], and the dynamics of 
galaxies, clusters and super clusters, and the study of the formation of Large Scale 
Structure [13]-[16] in the universe and weak lensing (the gravitational deviation of 
light), which point out the existence of matter that do interacts with ordinary standard 
model matter only weakly, as due to gravity. Other important measurements are the 
Baryon Acoustic Oscillations “BAO” [17]-[19]. 

It has been established that our universe is flat and dominated at present time by Dark 
Energy “DE” and Dark Matter “DM” with 0.692 0.02DEΩ ± , 0.308 0.009mΩ = ±  
and Hubble constant ( )67.27 0.66oH = ±  1 1km s Mpc− −⋅ ⋅  [12]. However, the nature 
and dynamics of Dark Energy and Dark Matter are topics of major interest in the field 
[20]. The equation of state “EOS” of DE is at present time 0.93 0.13ow − ±  but we 
still do not have a precise measurement of ( )w z  as a function of redshift z [12] [16]. 
Since the properties of Dark Energy are still under investigation, different DE parame-
trizations have been proposed to help discern on the dynamics of DE [20]-[23]. Some 
of these DE parametrizations have the advantage of having a reduced number of para-
meters, but they may lack a physical motivation and may also be too restrictive. Per-
haps the best physically motivated candidates for Dark Energy are scalar fields which 
can be minimally coupled, only via gravity, to other fluids [20]-[23] or can interact 
weakly in interacting Dark Energy “IDE” [24]-[27]. Scalar fields have been widely stu-
died in the literature [20]-[23] and special interest was devoted to tracker fields [22] [23] 
since in this case the behavior of the scalar field φ  is very weakly dependent on the in-
itial conditions at a very early epoch and well before matter-radiation equality. In this 
class of models the fundamental question of why DE is relevant now, also called the 
coincidence problem, can be ameliorated by the insensitivity of the late time dynamics 
on the initial conditions of φ . 

Nowadays there are a huge number of ideas aimed to explain these unknown cos-
mological fluids DE and DM, from the theoretical point of view, none of them being 
still conclusive. This situation supports and motivates our research. Given that our 
most successful theory of matter, the Standard Model of particle physics (SM), which is 
settled within the theoretical frame of Quantum Field Theory (QFT), it would be rea-
sonable to ask a theory attempting to describe dark fluids to be based on QFT as well. 
In this paper we study a fermion interaction theory with a chiral symmetry, the Nam-
bu-Jona-Lasinio (NJL) model. Though this is an old and well known model in the con-
text of hadron physics, it has interesting properties and it is worth to consider it with a 
different perspective, by studying its possible relevance for Cosmological Physics. Other 
examples of QFT models of DE and DM have been proposed using gauge groups, simi-
lar to QCD in particle physics, and have been studied to understand the nature of Dark 
Energy [28] [29] and also Dark Matter [30] [31]. 

We organized the present work as follows: In Section 2 we present the NJL model. In 
Section 3 we review the pertinent cosmological theory. Sections 4 and 5 present a study 
of the cosmological dynamics of a NJL fluid with a weak and strong coupling, respec-



Leonardo Quintanar G., A. de la Macorra 
 

1779 

tively. In Section 6 we consider the addition of a cosmological constant to our NJL fluid, 
and analyze the different possible behaviours. In Section 7 we comment an interesting 
possible way to modify the original NJL model, obtaining an additional term in the ef-
fective potential which could be related with a Cosmological Constant. Finally, in Sec-
tion 8 we summarize our results and present the conclusions. 

2. The Nambu-Jona-Lasinio Model 

Inspired by a, by then recently explained phenomenon in Superconductivity research, 
professors Y. Nambu and Jona-Lasinio, suggested that the mass of fermion particles 
(described by a Dirac equation) could be generated from a primary four-fermion self 
interaction, leading to a chiral symmetry breaking. The proposed Lagrangian, invariant 
under chiral transformations, has the form 

( ) ( )
2

22
5 ,

2
gi µ

µψγ ψ ψψ ψγ ψ = ∂ + −                      (1) 

where ψ  is a four-component spinor, and g is a coupling constant. From Equation (1) 
the four fermion interaction term is given by 

( ) ( )
2

22
52int

g ψψ ψγ ψ = −                              (2) 

with no original mass term for the fermions. Since the coupling has dimension-2 in 
mass units, the theory is non-renormalizable. However, we are interested in consider-
ing the NJL model as an effective theory, useful below certain energy scale. The theory 
(1) describes a four-fermion interaction which can be expanded following conventional 
perturbation theory, and represented by Feynman diagrams (Figure 1). 

The infinite number of fermion loops can be resumed giving a non-perturbative po-
tential. This can be easily done by introducing an auxiliary scalar field φ  and an equi- 
valent Lagrangian for Equation (2) in the form 

2 21 .
2int mg mϕψψ φ= −                          (3) 

The field φ  plays the role of a Lagrange multiplier which can be eliminated using  

the Euler-Lagrange equations, 
( ) 0µ

µ

δ δ
δφδ φ

∂ − =
∂
  . For the Lagrangian above we find 

,g
m

φ ψψ=                                    (4) 

where φ  has mass dimensions, and by substituting Equation (4) in Equation (3) one 
can recover the original Lagrangian Equation (2). Note that we introduced the parame- 
 

 
Figure 1. Feynman diagram for a four-fermion interaction. 
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ter m with a physical dimension of mass, so that mg  is a dimensionless coefficient, 
and we have dimensional consistency for all the physical quantities.1 The term 5ψγ ψ  
in Equation (1) represents a pseudo-scalar quantity, and we have allowed ourselves to 
ignore the field contribution associated with it in the new Lagrangian in Equation (3), 
as we would like to start to study the simplest possible model.2 

From the equivalent Lagrangian one may read the fermion mass and the tree level 
scalar potential 0V . We have respectively: 

( )22 2 2
0

1, .
2

m mg V mψ φ φ= =                            (5) 

The effect of quantum processes (represented by loop diagrams) may be taken into 
account through the well known Coleman-Weinberg potential 

( )2 2 2 2
1

1 log d ,
8π

V p p m pψ= − +∫                          (6) 

the minus sign in 1V  is because it corresponds to the fermionic contribution to the 
Coleman-Weinberg potential. As we will see, for the strong coupling case, this will ena-
ble the effective potential to adopt a negative value when the field stabilizes at the 
minimum. The integral grows up indefinitely as the upper limit goes to infinity, i.e. it 
has an ultraviolet divergence. Because of the non-renormalizability of the theory, we 
cannot avoid this divergence, so we regularize by introducing a cut-off Λ . This para-
meter defines the energy scale below of which the theory is valid. We define the x varia-
ble as 

2 2 2 2

2 2 ,
m m gx ψ φ

≡ =
Λ Λ

                             (7) 

and the potential becomes 
2

0 2 ,
2

xV
g

Λ
=                                    (8) 

( )
4

2
1 2 log log 1 .

116π
xV x x x

x
Λ   = − + + +  +  

                     (9) 

Notice that the one-loop potential 1V  is negative since it corresponds to the contri-
bution of the original fermion field ψ , and we choose to parameterize it in terms of 
the effective scalar field φ  c.f. Equation (4). 

For the sake of concision we also define 

( ) ( )
4

2
2 , log log 1 .

116π
xA f x x x x

x
Λ  ≡ = + + + + 

               (10) 

In this way, taking quantum corrections into account we obtain an effective potential 
given by 

( )
2

0 1 2 ,
2

xV V V Af x
g

Λ
= + = −                           (11) 

 

 

1Remember that the dimension of a scalar field equals that of mass. 
2It will become clear that by doing so does not affect qualitatively the implied physical processes. 
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with the complete potential 

( )
2 2 2 4

2
0 1 2 2 21 log log 1 .

12 8π 16π
x g xV V V x x

xg
 Λ Λ Λ   = + = − − + +    +   

              (12) 

As a function of φ  it can be written explicitly as 

( )

2

2 4 24
2 2

2 2

1 log log 1 .
2 16π

1

mg
mg mg mgV m

mg

φ
φ φ φφ φ

φ

        Λ Λ        = − + + +         Λ Λ Λ          +   Λ    

 (13) 

Equation (13) gives the complete NJL scalar potential, and we are interested in stud-
ying its cosmological implications. Let us determine the asymptotic behaviour of the 
scalar potential V in Equation (13). To analyze the potential we seek for extremum 
points. For the function ( )f x  in Equation (10) we have the derivative 

( )d
2 1 log ,

d 1
f x xx

x x
  = +   +  

                         (14) 

and for the derivative of V we have 
2

22 2 2

2 2 2 2
4π 1 log ,

4π
1

mg
V m mg

g mg

φ
φ φ

φ φ

      ∂ Λ  Λ    = − −    ∂ ΛΛ     +   Λ   

              (15) 

2 2 2

2 2 2
4π 1 log .

14π
V m xx

xg
φ

φ
 ∂ Λ  = − −  ∂ +Λ   

                         (16) 

The condition 0V
φ

∂
=

∂
 implies the following equations: 

2

2 2
4πi) 0, or ii) 1 log .

1
xx

xg
φ  = − =  +Λ  

                  (17) 

The first one says that the origin 0φ =  is an extremum, and if we take the second  

derivative 
2

2
V
φ
∂
∂

 

2 2 2 2 2

2 2 2 2
0

4π 1 ,
4π

V m g
gφφ

=

 ∂ Λ
= − ∂ Λ 

                     (18) 

we see that if 
2

2 2
4π 1

g
>

Λ
 then the extremum at 0φ =  corresponds to a minimum, 

while for 
2

2 2
4π 1

g
<

Λ
 we have a maximum at the origin. The equation above suggest to  

define a critical value of the coupling cg  as 
2

2
2

4π
cg ≡

Λ
                              (19) 

so that we see that for a weak coupling cg g<  we have a minimum at the origin, while 
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at strong coupling cg g>  we have a maximum. The type of extrema at the origin of 
the potential corresponds to the value of the coupling. 

Now let us determine the second (possible) extreme of the potential. Since the r.h.s of  

the second equation in Equation (17) is negative (i.e. log 0
1

xx
x

  ≤ + 
) this equation  

has a solution only for a strong coupling cg g> . A value for x (or that of the scalar 
field φ ), at the minimum cannot be solved analytically, since the second equation in 
Equation (17) is a transcendental equation. One way to determine a solution is to seek  

for the intersection between the curve of the function log
1

xx
x

 
 + 

 r.h.s. in the  

second Equation (17), and the constant in the l.h.s. In this case do exist an intersection 
(only one, as the r.h.s. is a monotonic function), giving a solution for the x variable, 
leading in its turn to a non-trivial solution in minφ φ=  which is a minimum.3 The ex-
tremum in this case corresponds to a minimum. Notice that in all cases we have at large 
x the limit V →∞  for x →∞  regardless of the value of the coupling g. 

Therefore, we have: if cg g< , the potential minimizes in the origin 0φ = ; whereas 
for cg g> , the potential minimizes in a non trivial value minφ φ= . The value of the 
coupling cg g=  define a critical value separating between both behaviours of the po-
tential (in Figure 2 we show all the three cases , ,c c cg g g g g g< = > ). When for 

cg g>  we see that the full potential 0 1V V V= +  becomes negative, due to the contri-
bution of 1V , and a fermion condensate 0ψψ ≠  is formed and is parameterized by 
the scalar field ( )g mφ ψψ= , c.f. Equation (4). 

To estimate the value of the potential at the minimum for cg g> , the equation ii) in 
Equation (17) should be solved. However, since it is a transcendental equation in the 
variable x, an algebraic expression cannot be written, and we need to use numerical  
 

 
Figure 2. Effective potential (13) as a function of φ . The critical value of 
the coupling cg , separates two kinds of behaviours. 

 

 

3According to definition Equation (7), x is a quadratic function in φ : 2~x φ , so for a given value of x we 
have two solutions in φ  related by a change of sign. Due to this symmetry, we will allow ourselves to refer 
to only one solution. 
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procedures. Let us introduce a parameter s to write g in the form
 2π .cg s g s= ⋅ = ⋅

Λ
                                (20) 

In this way we make sure to have a strong coupling by taking 1s > . Now, for a given 
value of the coupling with cg g> , there exists a definite value of x, say 0x , satisfying 
the condition ii) in Equation (17), which is the solution for the minimum. Therefore, 
the potential valuated at this point yields the minimized potential, i.e. ( )min 0V V x= . 
Then, by substituting ii) Equation (17), and using Equation (20) in the expression for 
the potential Equation (12), we can write minV  in the suitable form 

( ) ( )
4

0
min 02 2 log 1 , , 1 ,

16π c
xV x g s g s
s

Λ  = − + = ⋅ >  
              (21) 

which provides a good idea of how minV  is related to the energy scale. 
From Equation (4) the field ~φ ψψ , is a Lorentz invariant quantity, so φ  is scalar 

field. When the field φ  is stabilized, a non trivial expectation value reflects the pres-
ence of a fermion condensate. 

Now, if the field has an expectation value 0φ = , it means that the state of paired 
fermions ψψ  is not present, so we have a system consisting in the original massless 
fermion particles with a 4-Fermi interaction, and a condensate is not energetically fa-
voured. This happens for a “weak” coupling cg g< . On the other hand, if the expecta-
tion value 0φ ≠ , then we have a fermion condensate represented effectively by the 
scalar field. This happens for a “strong” coupling cg g> , and a fermion condensate is 
dynamically formed since it reduces the energy of the system. 

Thus, we see that two different fluid phases (massless fermions or fermion conden-
sate) are obtained depending on the strength of the coupling. Next, we investigate the 
cosmological dynamics of each of these fluids. 

3. Standard Cosmology 

The widely accepted current standard cosmological model (the Big Bang theory) is 
based in Einstein’s theory of General Relativity. If conditions of spatial homogeneity 
and isotropy are assumed, the space-time metric adopt the well-known simple form 

( )
2

22 2 2 2 2 2 2
2

dd d d sin d
1

rs t a t r r
kr

θ θ φ
 

= − + + − 
                (22) 

where the variables , ,r θ φ  are comoving coordinates parameterizing the spatial sec-
tion of space-time, and k takes the values +1, 0, −1 for spaces of constant positive 
(spherical), zero (flat), or negative (hyperbolic) curvature. When this metric is used in 
the Einstein’s equations, the so called FRWL equations (Friedmann-Robertson-Walker- 
Lemaitre) can be obtained. As these assumptions agree with observations4 to a very 
high precision, we will use this same theoretical framework. Because the necessary equ-
ations are well known and their deduction can be found in standard text books, in the 

 

 

4CMBR is a smooth bath of radiation, whereas Large Scale Structure reveal uniform distribution of matter at 
cosmological scales, with 100 Mpc . 
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following we limit ourselves to write them and to give only a brief explanation. 
The equation 

2

2 2
8π ,

3
a k G
a a

ρ+ =


                            (23) 

relates the expansion rate (in time) of the scale factor a, and the curvature k of the un-
iverse, to the total energy density ρ . Along this paper we will always take a flat geome-
try 0k = , as suggested on the one hand from the theory of early cosmological inflation, 
and on the other hand (and most important) from observation of the CMBR. 

Introducing the usual definition relating the Hubble parameter H with the rate of 
change in time of the scale factor a 

,a a H= ⋅                                 (24) 

Equation (23) (with 0k = , flat universe) becomes 

2 8π .
3
GH ρ=                                (25) 

The continuity equation for a fluid with energy density ρ  and pressure P is 

( )3 0.H Pρ ρ+ + =                             (26) 

For a perfect fluid “α” satisfying a barotropic equation of state P wα α αρ= , with wα  
a constant, Equation (26) can be solved analytically. We sometimes will refer to such a 
fluid with the name of “barotropic fluid”. From the cosmological point of view, the 
substances contained in the universe can be described as radiation, which has 1 3rw = , 
and matter (dust) having 0mw =  (besides the Dark Energy component). For those we 
have respectively 

4 3

, .r ri m mi
i i

a a
a a

ρ ρ ρ ρ
− −

   
= =   

   
                       (27) 

A scalar field φ , with a self-interaction potential ( )V φ , has energy density φρ  and 
pressure Pφ  given by 

( ) ( ) 21, ,
2k k kE V P E V Eφ φρ φ φ φ= + = − =                  (28) 

where we have also defined the kinetic energy kE  in the third equation. Considering 
an universe containing radiation, matter and a scalar field, the total energy density is 
written 

.r m ϕρ ρ ρ ρ= + +                             (29) 

For a given component fluid “α”, it is useful to know its relative density, defined as 
the ratio of its energy density to the total energy density: 

2

8π
,

3
G
H

α α
α

ρ ρ
ρ

Ω = =                           (30) 

where we have used Equation (25) in the second equality. In a flat universe one has the 
condition 

1.r m φΩ +Ω +Ω =                           (31) 
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It is interesting to note that while Equation (31) remains valid even when we have a 
negative αρ , the quantity αΩ  is no longer constrained to the values 0 1α≤ Ω ≤ . In 
the work presented here, the fluids can have a negative energy density, giving 0αΩ < , 
or a total energy density ρ  that vanish at finite values of the scale factor ( )a t , in 
which case we would have αΩ → ±∞ . 

Taking the time derivative in Equation (25) and using Equation (26), it can be found 

21 4 .
2 3m rH ρ ρ φ = − + + 
 

                        (32) 

Note that the r.h.s. in Equation (32) is always negative. The equation of motion for a 
spatially homogeneous scalar field, (a modified Klein-Gordon equation) is given by 

3 0.H Vφφ φ+ + ∂ =                               (33) 

It is also useful an equation for the acceleration of the scale factor: 

( )4π 3 .
3

a G P
a

ρ= − +


                            (34) 

Differential Equations (24), (32), (33), together with (27) constitute a complete set 
which can be solved numerically (since we cannot always write an analytical solution). 
Nevertheless, it is convenient to attempt to outline the general behaviour of the dy-
namical system. Thus, before going to solve for our NJL potential, let us point out the 
following generic facts: 

The evolution of the scalar field is such that it will minimize the scalar potential 
( )V φ , so for an arbitrary initial value iφ , the field will roll to lower values of the poten-

tial, in such a way that eventually it will adopt a constant value ( minφ φ=  being the 
minimum). Given than the scale factor is a positive defined quantity, the energy densi-
ties for matter and radiation Equation (27) are always positive quantities and never 
equal to zero for finite values of the scale factor ( )a t . So, the total energy density Equ-
ation (29) remains always positive as long as the condition 

0r m φρ ρ ρ ρ= + + >                          (35) 

is satisfied. Thus, Equation (25) says that 0H = , that is 0a = , never happens (Equa-
tion (24)) as long as 0ρ ≠ . This implicates that 0a >  always. This means that the 
scale factor ( )a t  never reaches an extremum value along its time evolution (taking an 
initial condition 0iH > , since we know that the universe is expanding at present 
time). 

Nevertheless, it is interesting o note that there is no known physical principle forbid-
ding the existence of a fluid with a negative potential ( ) 0V φ < , at least for some val-
ues of the field φ . In this case, it could well happen that Equation (35) become an 
equality, meaning 0ρ =  for finite values of ( )a t , which in turn implies 0H = , and 

0a = ; i.e., the scale factor reaches an extremum value (indeed a maximum, since as 
seen before, it was initial growing). Now, Equation (32) imposes an always decreasing 
Hubble parameter H (because the right hand side is always negative), so that after being 

0H =  it must be 0H < , and therefore 0a < , i.e. the scale factor decrease. In other 
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words, the universe must be contracting after reaching its maximum size. Observe that 
this result is a consequence only of the negativity of the potential, and it is independent 
of its specific form. This collapsing universe is valid even for a flat universe 0k = . To 
conclude, if a fermion condensate is energetically favored then the minimum of poten-
tial ( )V φ  is negative and the universe will recolapse. 

4. Dynamics of Massless Fermions Phase (Weak Coupling g < gc) 

As we have seen in Section 2, for a weak coupling cg g<  the minimum of the poten-
tial ( )min 0V φ =  is located at the origin with min 0φ = , and V does not take negative 
values. Therefore, the total energy density and H never vanish for finite values of the 
scale factor a, and we have 0a >  due to Equation (24). So the scale factor ( )a t  is al-
ways growing, going to an infinite size in an infinite time. Now, from Equation (34), it 
can be seen that, in order to have 0a < , i.e. the universe to slow down its expansion 
rate, then 

( )22 1
3 2r m Vρ ρ φ φ+ + >                           (36) 

is a condition to be satisfied. This, of course, in not always the case: we could take an 
initial field amplitude iφ  as big to make the initial value of the potential ( )i iV V φ=  
big enough so that inequality (36) does not hold, and we would have instead  

22 1
3 2r mV ρ ρ φ> + +  . In this case we could have an acceleration of the scale factor, i.e.  

an accelerating universe, though it would be an “early” acceleration, as it would be 
present an initial times, i.e. before letting the fluid densities to dilute and field to evolve. 
As time passes, the field rolls down minimizing the potential, and eventually acquires 
some value iφ φ<  such that condition (36) becomes fulfilled.  

Given that the densities of matter and radiation never reach a null value in a finite 
time, and that the field amplitude tends to be stabilized around the minimum (i.e. 

0φ → ), for a big enough amount of time, we expect a vanishing potential and velocity, 
~ 0V , ~ 0φ  to be a good approximation to a final situation, in which (36) is still sa-

tisfied. 
We show an example of numerical solution in the figures. In Figure 3 we see that the 

field has a damped oscillation around 0φ = , and in consistency with this, its kinetic 
energy (velocity) diminish in time and we show in Figure 4 the evolution of the relative 
densities , ,rad mat φΩ Ω Ω  for radiation, matter and φ . Simultaneously, the potential 
valuated at ~ 0φ  goes to lower values (according to ( )min 0V φ = ). We can see that 
although the universe is expanding, it always ends up in a non-accelerating regime 
(Figure 5). A Taylor expansion for the potential about 0φ =  gives 

2 2
2 2

2
1 1 ,
2 4π

gV m φ
 Λ
− 

 
                           (37) 

where the whole coefficient multiplying on 2φ , is a positive quantity, as 2 2 24πg < Λ . 
The coefficient of state φω  defined below Equation (26), for the field φ , written ex-
plicitly is 
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Figure 3. Left: Scalar field amplitude φ . Right: State equation coefficient φω . Both variables are 

shown as functions of time. 
 

 
Figure 4. Left: Relative densities αΩ  for radiation, matter and φ . Right: Total relative density 

for barotropic fluids (matter and radiation) and for the field φ . The horizontal axis in both 
graphics represents time. Note that we show a different scale of time in each plot for the same 
solution. 
 

 
Figure 5. Left: Scale factor ( )a t . Right: Acceleration of the scale factor ( )a t . Both variables are 

shown as functions of time. Note that ( )a t  adopt mostly negative values (tends to zero from 

below). 
 

.k

k

P E V
E V

φ
φ

φ

ω
ρ

−
= =

+
                             (38) 

Since at late times, when the field oscillates around its minimum with a quadratic 
potential, the average value is 0φω =  and φρ  evolves as matter with 3aφρ

−∝  
[24]. 

Within the context of Early Cosmic Inflation theory, the so called Slow Roll parame-
ters are defined as follows: 

2 2
2, ,

2
p

p

M V VM
V V

η
′ ′′   = =   

   
                    (39) 
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which have to satisfy the conditions 1< , 1η <  in order to the potential may cause 
a positive acceleration. Even though they are valid for a single field, without additional 
fluids (matter and/or radiation), we show them in Figure 6 the Slow Roll parameters, 
for the seek of completeness. 

5. Fermions Condensate Dynamics (Strong Coupling, g > gc) 

The strong coupling case leads to a fermion condensate and therefore to a negative po-
tential V at its minimum. The potential has at the origin ( )0 0V φ = =  and decreases 
to negative values for min0 φ φ< < . For minφ φ>  it grows monotonically, eventually 
passing from negative to positive values. Let us consider at first the simpler approach of 
a universe containing only a scalar field ( 0r mρ ρ= = , i.e. no additional fluids), evolv-
ing under a generic potential possessing a negative value ( )min min 0V V φ= <  when mi-
nimized. If the initial velocity 0iφ = , then the kinetic energy of the field has a null 
value as well, so we have for the initial energy density 

i iVφρ = . The initial amplitude 
for the field iφ  cannot be such that makes ( ) 0iV φ < , because it would lead to an im-
aginary value for H, according to Equation (25). Thus, we must take always iφ  such 
that 0iV > . As before we begin with 1 0iH = > , therefore Equation (24) says that 
( )a t  initially is increasing in time. The equation (32) is written ( ) 2= 1 2H φ−  , so that 

H always diminish in time. As the potential is minimized, it goes from positive to nega-
tive values, and from Equation (25) eventually it will be 0H = , and after this 0H < , 
corresponding respectively to 0a =  and 0a < . In words this means that after an ini-
tial period of expansion (increasing scale factor), a maximum value is reached, followed 
by a period of contraction. Since H  remains always negative, then ( )a t  will con-
tinue decreasing, so that it necessarily will collapse. In other words, it will be 0a =  in 
a finite time in the future (because the evolution is forward in time: the field minimizes, 
not otherwise). 

Now, while the expanding phase is taking place, the field is rolling down, eventually 
entering in a damped oscillatory regime nearly the minimum, where the potential has 
become negative, min 0V < . Because of the damping, the kinetic energy tends to a zero 
value, 0kE → . Thus, the energy density of the field kE Vφρ = +  goes from positive 
values (near iφ ) to negative values (near minφ ), so at some time in between, it is 

 

 
Figure 6. Slow roll parameters   (dashed-red curve), and η  (continuous-blue). Left: From 

0φ =  to 0.5φ = . Right: From 1φ =  to 6φ = . Only in the region 1.4φ   approx. (and fur-
ther on) one can expect the acceleration conditions 1< , 1η <  to be satisfied. 
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0φρ = . The total energy density, as well as the individual densities for each fluid (if 
there were additional fluids), would go to diminish in time (as can be seen for radiation 
and matter in Equation (27) with ~ naαρ

− , and ( )a t  increasing). By a similar rea-
soning, because ( )a t  is decreasing in the contracting phase, the energy densities be-
have the opposite way, i.e. they all increase in time. Therefore, we expect 0φρ =  to 
happen twice. In its turn, this implicate that the coefficient of state φω , Equation (38) 
become a divergent quantity also twice, around this two points, and near them, φω  is 
not anymore a useful parameter to characterize the fluid represented by the field φ . 
Below we show a numerical solution example (Figures 7-11). 

As we mention before, in Section 3, a similar circumstance arises in dealing with the 
relative densities αΩ : it is considered that in order to this parameter to make sense, a 
relative density should adopt values 0 1α≤ Ω ≤ . However, as can be seen in Equation 
(30), if at some time is 0H = , then nearly this value, each αΩ  turns into a divergent 
variable. The situation is even weirdest for the field, because near the minimum it is 

min~ 0Vφρ < , the energy density of the field is similar to the potential, which is nega-
tive. This would make αΩ → −∞  (a divergent and negative relative density!). 

Consider now a universe containing matter and radiation in addition to our NJL flu-
id. An interesting question is, may the presence of these fluids prevent the universe to 
collapse? Remember that the condition for an increasing scale factor can be reduced to 
the inequality (35). If the scale factor is supposed to grow forever, this condition must 
be hold always. Now, according to the explanations given above, initially the scale fac-
tor is growing indeed. Thus, from Equation (27) we see that the densities of both baro-
tropic fluids (matter and radiation) must be decreasing. At the same time, because the 
field is stabilizing in the minimum of the potential, the kinetic energy of the field 

( ) 21 2kE φ=   is diminishing to zero, whereas the potential is going to a constant value 

minV V→ , in such a way that necessarily, condition (35) ceases to hold. Therefore, even 
in presence of additional barotropic fluids (does not matter the relative amount with 
respect to that of the fluid associated with the field), the collapsing universe situation 
cannot be avoided. 

The previous qualitative generic analysis is verified by the numerical solution for our 
NJL potential in particular (Figures 7-11). By observing the graphics, we found an un-
predicted interesting non-trivial behaviour of the field amplitude: while the scale factor 
undergoes the expanding, and contracting phases successively, an damped oscillating 
phase around minφ  is taking place, as expected. But then, at some point in the con-
tracting phase, the field amplitude goes to bigger values, and as the scale factor ap-
proach to 0a = , the field is taken out from the minimum and it begins to increase 
monotonically!5 Is this an acceptable result? Intuitively, as a is decreasing, it is reasona-
ble to expect all densities to be growing. In particular, if the field density kE Vφρ = +  
is getting bigger, it should be due to an increase in the field velocity (so kE  gets big-
ger), or in the field amplitude (so V gets bigger); or both. This behaviour can indeed be  

 

 

5It could decrease instead, depending on the initial conditions. Whatever the case, the monotonic growing in 
absolute value is an unexpected behaviour, which do happen indeed. 
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Figure 7. Left: Total energy density r m φρ ρ ρ ρ= + + . It is a positive quantity, but vanishes at a 

single point, near 200t   approx. Right: Energy density of the field. It is a null quantity ( 0φρ = ) 

twice: one time in the expansion phase (near 60t =  approx.), and again in the contraction 
phase (about 340t =  approx.); and becomes a negative quantity in between. 
 

 
Figure 8. Left: Although the kinetic energy (red-upper curve) is zero initially, it overtakes the 
potential energy (blue-lower curve) and remains dominant all the way even to the collapsing time 
when ( ) 0a t = . Right: The field oscillates around minφ  and is becoming divergent as getting 

close to 400t  , which is the time when ( ) 0a t → . 

 

 
Figure 9. Left: Hubble parameter. It is a null quantity about 200t   approx. Right: Relative 
density of the field. As ( )H t  vanish, φΩ  becomes a divergent quantity near the null point. 
 
explained observing Equation (26). The energy evolution of a barotropic fluid bρ  is 
given by 

( ) ( )3 3 1 ,b b b bH P H wρ ρ ρ= − + = − +                       (40) 

and for a scalar field with energy density ( )kE Vφρ φ= +  and pressure  
( )kP E Vφ φ= −  and 2 2kE φ=   

( ) 23 3 6 .kH P H HEφ φρ ρ φ= − + = − = −

                      (41) 
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Figure 10. Slow roll parameters   (dashes-red curve), and η  (continuous-blue). Left: From 0 
to 0.1 in φ . Right: From 1 to 6 in φ . Only in the region 1.4φ   approx. (and further on) one 

can expect the acceleration conditions 1 , 1η   to be satisfied. 
 

 
Figure 11. Left: Scale factor. Right: Acceleration ( )a t . Both plots are to be interpreted as de-

scribing a universe which expands without acceleration (note that ( )a t  is never greater than 

zero), reaching a maximum value about 200t   approx., thereafter falling in a contracting 
phase all the way long to collapse. 
 

We can see from Equations (40) and (41) that for a positive barotropic fluid bρ  
with an EQS 1w < , the sign of bρ  and φρ  are negative as long as H is positive 
while they become negative for 0H < . Therefore ,b φρ ρ  are decreasing functions as 
a function of time for 0H >  and increasing for 0H < . Since we have seen that H  
is negative, this implies that H is always a decreasing function of time. If H can vanish 
at a finite time only if φρ  becomes negative, i.e. if the potential V becomes negative 
and kE V= −  at say ct t= . After this time ( )cH t t>  becomes negative and will re-
main negative for ct t>  and bρ  and φρ  will start growing with time for ct t≥ . 

Figure 8 show both kinetic and potential energies, and we can see that even though 
the initial kinetic energy is zero, it overtakes the potential energy and remains so until 
the collapsing moment finalt  when ( ) 0a t =  at late times. Nevertheless, the potential 
energy also grows as the time is approaching finalt , so the field amplitude is eventually 
expelled from oscillating about the minimum. 

6. NJL Fluid with a Cosmological Constant 

Due to its theoretical properties and observational requirements, a Cosmological Con-
stant is a very usual and useful ingredient included in cosmological models, and it is 
worth to consider such contribution in our model. Its defining property is an energy 
density ρΛ  which does not vary in time, and a coefficient of state 1ωΛ = − , which 
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gives a pressure P ρΛ Λ= − . In a universe containing only a Cosmological Constant, the 
equation (34) is written ( )8π 3a G a ρΛ= ×  which, as 0ρΛ > , implicates ( ) 0a t >  
always. Therefore, such an universe is always accelerating its expansion. In fact, in this 
case the Equation (24) may be solved analytically, after substituting Equation (25), giv-
ing the well known solution ( ) ( )exp 8π 3ia t a t GρΛ= . How do the presence of a 
Cosmological Constant affect our previous considerations of a universe including our 
NJL fluid, besides matter and radiation components? Will the universe accelerate or 
collapse, even in the presence of a scalar field with a negative potential 0V < ? Because 
the density ρΛ  is constant, we have that the differential equations are not modified, 
other than just adding a term in the expression for H, equation (25). In particular, the 
equation of motion Equation (33) remains unchanged, so the field dynamics is not af-
fected. As before, we have to deal with two cases. 

a) Free Fermions ( cg g< ). As studied before, the potential is 0V ≥ , and its min-
imum value is min 0V = . Also, with the pass of time, both matter and radiation densities 
dilute, going to vanish. From Equation (34), it can be deduced the condition for un-
iverse to decelerate: 

( ) ( )1 2 for 0 .
2r m kE V aρ ρ ρ φΛ < + + − <                   (42) 

Given that the left hand side in this inequality is diminishing in time, whereas the 
right hand side remains constant, we have that eventually this inequality cannot hold 
anymore, and becomes an equality, meaning 0a = . This points the beginning of the ac-
celeration period, i.e. 0a > , where the inequality (42) gets inverted. Had the initial 
conditions been such that inequality (42) were the opposite, then there would be always 
an acceleration holding always, because the LHS would never go back to grow. 

Thus, we see that for a free fermions NJL fluid with a Cosmological Constant, the 
universe necessarily accelerate, the precise moment depending on the amount of energy 
densities mρ , rρ , with respect to that of ρΛ . This can be specified in the initial con-
ditions, which in their turn can be chosen to solve for a realistic model fitting the ob-
servations. 

b) Fermion Condensate ( cg g> ). We found before that, for a strong coupling, the 
potential is negative when minimized, min 0V < . Do the universe necessarily accelerate 
also in this case? In order for this to happen, condition (42) eventually must turn into 
an equality, meaning 0a = . This is a minimal condition to be satisfied, because it 
points at least the beginning of an acceleration; it remains to be sure that acceleration 
will be sustained. Let us label all quantities with a subindex “ac” at time act , when 

0a =  (vgr. ( )ac acV t V= ). From Equation (36), we have6 

( )1 2 for 0 .
2rac mac kac acE V aρ ρ ρΛ ≥ + + − ≥                (43) 

Remember that the potential take positive values as well as negative ones, so both 
possibilities must be taken into account. Certainly one can find such set of values of V 

 

 

6 ρΛ  does not need a label because it is a constant. 
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for a given ρΛ  to satisfy the inequality. However, if we rather want to consider realis-
tic models, we should consider plausible values from observations (besides, we would 
not like to complicate our lives by considering unrealistic generic situations). 

From definitions (30) it can be found that ( )1r m z rΩ Ω = + , where z is the redshift, 
and 0 0r mr = Ω Ω  says the amount of radiation with respect to that of matter. The 
subindex “0” refers to current values, i.e. quantities measured “today”. Now, the esti-
mate for z (the time when acceleration begins) is around ~ 1z ; and it has been meas-
ured 4~ 10r −  (for the seek of simplicity, here we are interested only in orders of mag-
nitude). Then we have 4~ 10rac mac mac

−Ω ×Ω Ω , or rac macρ ρ . Now, remember 
that a decelerating period dominated by matter is supposed to have taken place before 

0a = . In order for this to happen, condition (42) should have to be true before condi-
tion (43). For ~ 1z  (it could be even as big as, let’s say ~ 10z , as this would not 
change the essence of the argument) and using condition (42) we would have 

( ) ( )2 2 in order to be 0 .m kV E aρ ρΛ> + − <                   (44) 

If a positive acceleration eventually come up, the above expression is expected to be-
come an equality. Now, suppose 0V > . Then, unless kE  decrease even fast, the RHS 
in the inequality should be decreasing as time passes, because the potential is minimiz-
ing. But kE  cannot behave like that indeed, as the field is under a damped rolling, not 
to mention that kE  is never a negative quantity, so the sum of terms 2 kV E−  will 
end up decreasing (would the values of these terms been such that the equality some-
how would be accomplished at some time, in this case the acceleration could not be at-
tached to ρΛ  anyway). On the other hand, for 0V < , the inequality would become 
even more strong in time, because again, the potential is minimizing: minV V→ , and 

min0 V V> > . Therefore, if initially the inequality (44) begins being satisfied, it will re-
main being so always; in other words, the universe will never accelerate. 

What about a collapse in the future? May the presence of a cosmological constant 
prevent a decreasing scale factor (time going forward)? For a growing scale factor we 
have 0a > , which is true indeed because we take 0iH >  is the initial value of H.7 As 
we explained before, if the scale factor is to reach a maximum maxa a= , it must be 

0a = . Let us name amt  the time when this is accomplished (if so), and label with a 
subindex “am” the variables valuated at this time. We have for the total energy density 

0amρ = , thus ram mam kamEρ ρ ρΛ + + +  0.amV+ =  The only way in which this could 
happen is for 0amV < . In that case am amV V= − , so the equation, as a condition to be 
satisfied by ρΛ , can be written in the more intelligible form 

( )to get 0 .am kam mam ramV E aρ ρ ρΛ = − − − =                 (45) 

If we want to keep our analysis as simple as possible, we may ignore the contribution 
from radiation, 0ramρ =  (observe that, had an acceleration would be possible, then we 
should assume ac amt t< , i.e. acceleration before receding, otherwise the model would 
not be useful. So, if 1racρ   the approximation ~ 0ramρ  is even better, as 

ram racρ ρ< ). 

 

 

7Observe this initial condition must be taken to be positive, because otherwise, the universe would be already 
contracting. 
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Now, nothing forbids to exist a potential sufficiently deep min 0V < , so that the 
equality (45) can be accomplished. The exact time at which this is achieved will depend 
on the relative amounts kamE , mamρ , with respect to ρΛ , i.e. on the initial conditions. 
However, we can estimate a limit value by making 0mamρ → , 0kamE → , and a stabi-
lized potential minV V→ . Then we have 

( )Maximum allowed value for the universe to collapse .minVρΛ =         (46) 

After 0a = , i.e. H = 0 (Equation (24)), the universe must enter into a contraction 
phase because H is always decreasing (Equation (32)), meaning 0amH H→ < , i.e. 

0a < . So, eventually the universe will collapse in the future in a finite lapse of time. For 

minVρΛ > , the scale factor would never go to contract, as in this case the total energy 
density ρ  would never vanish. 

It is interesting to observe that a Cosmological Constant may be seen as a particular 
case of a scalar field evolving under a potential stabilized with a positive minimum. As 
we have seen, the NJL model has two different behaviours depending on the value of 
the coupling constant g. For weak coupling cg g<  the potential ( )V φ  has a mini-
mum at the origin with ( )0 0V φ = =  and ( ) 0V φ ≥  otherwise. On the other hand, at 
strong coupling cg g>  one has a negative minimum ( )

min
0V φ < . So let us approx-

imate the potential V around the minimum and take the ansatz 

( )( ) ( )( )221 ,
2o oV t V m tφ φ φ= + −                       (47) 

with oV  a constant value (it would be 0oV =  at weak coupling and 0oV <  at strong 
coupling) and oφ  a constant. We can now ask ourself if we can have an accelerating 
universe. The evolution of the scalar field is just 23 0H mφ φ φ′ ′ ′+ + =  , with oφ φ φ′ ≡ −  
and we could redefine  

( )22 2 21 1
2 2k o k o o kE V V E m V E mφρ ρ ρ ρ φ φ ρ φΛ Λ Λ Λ ′+ = + + = + + + − = + + +  w h i c h  

corresponds to a massive scalar field with energy density 2 21
2kE mφρ φ′ ′= +  in the  

presence of a cosmological constant oVρ ρΛ Λ′ = + . A massive scalar field may accele-
rate the universe only at large values of φ′  (larger than the Planck mass) when the 
Slow Roll parameters   and η  are smaller than one, while at a late time when the 
scalar field oscillates around the minimum the energy density φρ ′  redshifts as matter, 
i.e. 31 aφρ ′ ∝ . In order to have 0a >  we must have the quantity 3 0pξ ρ≡ + < . So 
for a scalar field (with potential given in Equation (47)) a barotropic fluid, which we 
now take for simplicity as matter (without lose of generality), and a cosmological con-
stant ρΛ , we have ( )4 2m kE Vξ ρ ρΛ= + − + . Since the potential oV  vanishes at 
weak coupling and is negative at strong coupling, there is a cancelation between the two 
cosmological constants ρΛ  and oV , and the NJL model plays therefore against an ac-
celerating phase around the minimum of the potential, since oV  is negative. 

7. Dark Energy from NJL and SUSY Gauge Theory 

As we have seen until now, the original NJL model has interesting cosmological conse-
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quences. However, the model by itself does not reproduce the observed feature of an 
accelerated expansion of the universe, and it is not desirable to introduce a cosmologi-
cal constant by hand, without a good explanation. We rather ask for any model to be 
motivated from a deeper fundamental theory. Nowadays, a paradigm for such funda-
mental theory is played by Super Symmetric Field Theories, and a lot of work has been 
done in attempting to explain Dark Matter as well as Dark Energy as some super sym-
metric particle (references are given in the introduction, sec. 1). Nevertheless, any con-
clusive theory has been established yet to present date. We would like now to generalize 
the NJL potential to include a physically motivated potential from supersymmetric 
gauge theories. These class of models have been previously studied in Dark Energy 
models derived from gauge theory [28] [29] (and references therein), [21] [28]-[35] and 
are based on ADS (Affleck-Dine-Seiberg) superpotential [35]-[38]. The derived poten-
tial is of the form 

4 ,n nU φ+ −= Λ                                (48) 

which is obtained from a non-perturbative super potential in a gauge theory, e.g. 
( ) ( )2 c f c fn N N N N= + −  for an ( )cSU N  with fN  flavours, and φ  represent a 

fermion condensate, i.e. φ ψψ≈ . The condensation energy Λ  is the scale of 
breaking of the gauge symmetry.8 We now add the potential in Equation (48) to our 
NJL model. Since the effective NJL potential in Equation (13) has a quadratic term  

2 21
2

m φ  let us take 2n =  in Equation (48) so that we have the symmetry under  

1φ φ→ . Then, at some lower scale Λ , the self interaction of the field φ  becomes 
more involved and the dynamics of the field is also governed by the effective NJL po-
tential. By adding Equations (13) and (48), we would have the total potential 

( )( )
4 6

2 2
2 2

1 .
2 16πNJLV V U m f xφ φ

φ
Λ Λ

= + = − +


                  (49) 

shown in Figure 12. Of course, this is an effective theory which is plausible to the ex- 
 

 
Figure 12. Graph of the total potential V = VNJL + U, as a function of 
the variable x. 

 

 

8In general, the scales Λ  and Λ  are not the same, and should not be confused. 
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tent that NJL and Equation (48) are valid or useful theories. This is on the same footing 
than using the NJL model to study the dynamics of hadrons, without having obtained 
the model directly from the QCD Lagrangian. Since we are simply adding a term to the 
already studied NJL potential, we use the results of the previous section 2. Using eq. ii), 
(17), the condition to be satisfied by the minimum x is now written (remember that we 
wrote before cg sg= , Equation (20))

 
( )

22 3
2

2 4
1 4π1 2 log ,

1
ms xx x x

xs
α

 Λ  − = − − ≡   +Λ   



             (50) 

where we have defined the function ( )xα , which is seen to be parameterized through 
, , mΛ Λ . This function has 1α−∞ < < +  and it is a monotonous growing function, 

regardless of the values of the parameters (they all are positive definite). Now, we know 
that the NJL potential NJLV  is minimized in a non-trivial minimum min 0φ ≠  when 

cg g> , or 1s > . In this case, the LHS in Equation (50) is a positive quantity, corres-
ponding to 0 1α< <  in the RHS, determining a solution 0x x= . This means that the 
total potential (49) still is minimized for some 0x , giving in its turn a non-trivial 0φ . 
Given that the minimum 0x  satisfies (50), the minimized potential can be written 

( )
24 2 3

0
min 02 2 2

0

6πlog 1 .
16π

x msV x
xs

 Λ Λ = − + +    Λ   



               (51) 

From this equation we see that, it is possible to obtain min 0V >  (which would be-
have like a cosmological constant), if the parameters satisfy 

( )
( )

2 23
0

0 04 2 2 22

1 1 log 1 .
6 4π

xm x x
s s
  Λ

> + −   Λ   



                 (52) 

Let us show an example. Suppose that 2 cg g= , i.e. 2 1s = > . Also, we need to 
say something about the parameters, so let us take 4 2 38π mΛ = Λ . In this way the Equa-
tion (50) is written 

2

1 1 log ,
2 1

xx
xx

 = − −  + 
                         (53) 

which has the solution 0 1.83x x=  . Then, RHS Equation (52) gives the number  

( )
2
0

0 0log 1 0.23
2
x

x x+ −  . This means that, in order for the potential to be positive at  

the minimum, the parameters must satisfy 3 4 51.22 10m −Λ Λ > × . We can use Equation 
(51) to obtain minV ; in order of magnitude we have 2 4

min ~ 10V − Λ . Let us now estimate 
some real physical values. The total energy density today is about ( )44 3~ 10 eVo oEρ −= , 
and the Dark Energy contribution is DEo DEo oρ ρ= Ω . If we identify our NJL fluid with 
DE, we would have ( )k DEoE V φ ρ+ = . Now, in the limit of stabilized fields about the 
minimum9 the energy density of our NJL fluid is ( ) minkE V Vφ+ → . Then, (approx-
imating 2 3 ~ 1DEoΩ  ) we may write 4

0 minDEo E Vρ = = . Thus we may write 

 

 

9We must keep in mind that in general, the field could be in a rolling regime, so the kinetic energy would not 
be negligible. Therefore we must be careful in the conditions that we are talking about. 
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4 310 eV−Λ =                               (54) 

with the precise value of coefficient   depending on the value minV , as shown above 
(for our example we have 2~ 10− ). Given that this theory allows min 0V >  as a result 
of the dynamics of the field, we have a possible explanation for the presence of a cos-
mological constant, and an accelerating universe. 

8. Summary of Results and Discussion 

The fermion model of Nambu and Jona-Lasinio (NJL) includes two different fermion 
states resulting from quantum effects, each one being associated with two different 
physical phases. For a weak coupling cg g<  we have massless fermion fluid, whereas 
for a strong coupling cg g>  a massive fermion condensate fluid is obtained. In this 
later case we can determine the mass of fermions and it is due to non-perturbative ef-
fects due to the strong coupling. A very convenient way to describe the system is to 
consider an equivalent scalar field φ  moving under an effective potential 0 1V V Vφ φ= + , 
which has a different form depending on the coupling strength. 

Notice that in the strong coupling case cg g> , the potential has a non-trivial nega-
tive minimum due to the negative contribution one-loop potential 1V  in Equation (6). 
The negative sign of this potential is due to the fermionic origin of ψ  field, and we 
have chosen to parameterize the fermion condensate in terms of an effective scalar field 

~φ ψψ , as in Equation (4). 
Here we studied the potential and solved the cosmological evolution for each fluid in 

presence of additional barotropic fluids (e.g. matter-dust or radiation). 
For a weak coupling, we found a coefficient of state φω  with oscillating values 

around zero, in such a way that the average value 0φω = . Also, because the potential 
goes as 2~V φ  near the minimum, we have that the NJL fluid in the form of free fer-
mions dilutes as a matter. A universe containing such a fluid (with or without matter 
and/or radiation) will expand forever without accelerating. On the other hand, a un-
iverse containing this NJL fluid besides a cosmological constant (with or without matter 
and/or radiation), will eventually accelerate necessarily, expanding forever. 

On the other hand, the strong coupling case (without a cosmological constant) al-
ways causes an eventually vanishing energy density. This is due to the fact that the po-
tential is negative when minimized, and even the additional presence of matter and/or 
radiation does not prevent this to happen. Since the vanishing energy (which is asso-
ciated with the scale factor reaching a maximum), is followed by a contracting period, 
this means that a fermion condensate always makes the universe collapsed. The energy 
density of the field φρ  vanishes a couple of times (one in the expanding phase, and the 
another one in the contracting phase). Because of this, some quantities ( φΩ , φω ) be-
come inadequate to describe the fluid. It is important to point out the following inter-
esting fact: 

Equation (23) has been known and well studied since long time ago. If the curvature 
parameter is 1k = + , the universe is said to have a spherical geometry; the scale factor 
is expected to get a null value eventually, so we have a collapsing universe. Because a 
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spherical universe is also finite or closed, a collapsing universe was always associated 
with a closed universe. On the other hand, if 0k = , the universe has a flat geometry. 
For ordinary matter the total energy density could be diminishing, but it could never 
vanish effectively in a finite time, so the scale factor in this case is expected to be always 
increasing. Because divergent geodesic lines in a plane never meet again, a flat universe 
is said to be open. So, an open universe was thought to be infinite in size (although not 
necessarily, but in any case, always growing). Now, remember that from the beginning, 
in our present study, we have taken the curvature parameter to be 0k = , so we have 
been treating with a flat universe all the time. Nevertheless, we found that, if the un-
iverse contains a scalar field with a negative potential, then a future collapse cannot be 
avoided, giving a collapsing flat universe! In particular, because a negative potential 
arises naturally for the NJL model, a collapsing flat universe is also a natural conse-
quence. 

We also studied a variant of the strong coupling model, consisting in the addition of 
a cosmological constant. We found that, if the energy density ρΛ  is not big enough to 
overtake at least the minimized potential minV , the eventual receding of the scale factor 
cannot be avoided, and the universe will collapse inevitably. But if ρΛ  exceeds minV , 
then the scale factor will accelerate eventually, and the collapse will be absent. 

Perhaps it is worth to emphasize that, in both cases of weak and strong coupling and 
without considering a cosmological constant, one may induce an acceleration of the 
scale factor by manipulating the initial condition for the field amplitude iφ , but we do 
not interest in it because 1) it has to be fine-tuned, and 2) it does not allow to include 
realistic models in which a previous deceleration period of matter dominance took 
place. 

It is important to keep in mind that, once we settle a coupling strength (weak or 
strong), there is nothing in the theory to allow to switch between them, so actually a 
phase transition cannot be considered. 

A very appealing feature of the NJL model is, in our opinion, the fact that 1) it is 
based on a “fundamental” symmetry (chiral symmetry), 2) the model leads to a poten-
tial which, due to quantum corrections, can adopt negative values in a natural way, and 
3) it includes only one parameter: the coupling constant g (two parameters if we count 
the cut-off Λ ). In return we obtain interesting consequences, as allowing more than 
one physical phase (each having different cosmological implications), and the possibil-
ity of a collapsing universe. This is to be compared with other models involving a sym-
metry breaking10 or introducing new kinds of fluids aimed to be relevant to cosmologi-
cal problems, but at the expense of introducing several fields or parameters.11 

Finally, we saw that by considering an additional term besides the NJL potential, in 

 

 

10For instance in Higgs-like models are required two parameters “m” and “λ” in order to get a potential 

2 2 41 1
2 4

V m ϕ λϕ= + , which have to have a “correct” relation between them in order to break the symmetry. 

11For instance, to “justify” the existence of scalar fields with useful potentials, frequently one has to invoke 
more sophisticated theories, like String, Kaluza-Klein, GUT’s, etc. which demand a bigger effort to derive re-
levant results, and often implicate new exotic physics. 
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the form of an inverse power (which is motivated from some supersymmetric theories), 
then it is possible to obtain a total potential with a positive minimum, thus allowing to 
explain a cosmological constant as a consequence of a field dynamics, which is a fer-
mion particle (instead of a scalar field) governed by simple basic symmetries. 
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