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Abstract 
Nowadays application of biological nitrogen fixation (BNF) through rhizobia inocu-
lums is highly promoted as a solution to solve the problem of poor soil fertility in 
areas where legumes are cultivated. This is due to the fact that, rhizobia enhance ni-
trogen fixation, induce disease resistance, reduce heavy metal in the soil, facilitate 
bioavailabity of iron in soil and is environmental friendly. To get rhizobia strains 
which are suitable for inoculants production, isolation and molecular characteriza-
tion of elite rhizobia are highly needed. Molecular characterization acts as a spark 
plug for discovery of many microbes including Rhizobia. Multi Locus Sequence 
Analysis (MLSA), 16S rRNA gene sequence analysis, DNA-DNA hybridization and 
SDS-PAGE analysis of the whole-cell proteins are the molecular techniques mostly 
used in characterizing rhizobia. But before deciding to use or not to use rhizobia in-
oculants in certain areas, knowing the population size of indigenous rhizobia found 
in that area is very important, because this is a major factor which determines in-
oculums responses as well gives clues on which areas need or do not need inocula-
tion. The Most Probable Number (MPN) method is mostly used in enumerating 
rhizobia population of the soil. Given that, in most of the developing countries, in-
cluding Tanzania, Biological Nitrogen Fixation (BNF) technology is not fully flour-
ished; more efforts in isolation, molecular characterization of elite rhizobia and esti-
mation of indigenous rhizobia population in various areas are required. 
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1. Introduction 

Phaseolus bean (Phaseolus vulgaris L.) is the third most important legume crop grown 
worldwide superseded by soy bean and peanuts [1]-[4]. Legumes exhibit high variabil-
ity in their ability to fix atmospheric nitrogen whereby soybean and cowpea outperform 
Phaseolus bean. Although Phaseolus bean is a poor fixer of atmospheric nitrogen [5] 
[6] and its yield in Tanzania is below its production potential (<3 t∙ha−1), the crop is still 
widely grown in most regions of the country [7]-[9]. It is the major and the most im-
portant staple food legumes in Eastern, Central and Southern Africa [1] [9]-[11]. It is 
among the most important sources of dietary protein to human [11]. Its production in 
tropics and subtropics regions is deterred by poor soil fertility [9] [12]-[15]. This is due 
to the fact that this crop is mostly grown by the resource-poor small scale farmers [9] 
[16] who are not able to purchase expensive inorganic fertilizers. 

The demand for increased food production due to increase of the world population 
and increased number of malnutrition cases has given a room for nitrogenous chemical 
fertilizers to be used in most cropping systems [17]. Likewise, in Tanzania, there is no 
practical feasibility of avoiding the use of inorganic fertilizers while meeting sustainable 
food needs, taking into consideration of annual population increase rate of 2.7% (Na-
tional Bureau of Statistics, 2012). Despite the excessive use of nitrogenous chemical fer-
tilizers, there is no remarkable improvement in crop yield [18] [19]. Nevertheless, ex-
cessive use of inorganic fertilizers is known to have undesirable effects on agriculture, 
food, biodiversity and environment at large [20] [21]. This situation created the need 
for finding other best alternatives for resolving the problem of poor soil fertility. 
Among alternatives thought, it is the use of Biological Nitrogen Fixation (BNF). BNF in 
large percent is done by a gram negative soil bacteria called rhizobia which are capable 
of fixing free atmospheric nitrogen (N2) into ammonia (NH3), a form which can be 
utilized by plants [22] [23]. 

Nowadays, more emphasizes are on the use of BNF technology in agricultural sys-
tems in order to overcome the problems associated with depletion of soil fertility as well 
as reducing excessive use of inorganic fertilizers [24]-[26]. BNF by rhizobia is consid-
ered as an inexpensive and environmental friendly alternative to improve crop yield in 
comparison to its counterpart chemical nitrogen fertilizers [27]-[34]. It improves crop 
production by enhancing nitrogen fixation, preventing plant disease and chelating iron 
[35]-[37]. Inoculation of legumes with rhizobia inoculants is the mostly used BNF 
technology in agriculture as evidenced in previous studies [38]-[41], but in most Afri-
can countries including Tanzania, this technology is not well established [42]. BNF 
technology may be very successful if isolation and characterization of indigenous 
rhizobia found in the soil are done properly as may foster the discovery of strong 
strains for inoculants production [41]. Also it has been emphasized that prior to appli-
cation of rhizobium inoculants in the field, it is necessary to determine population size 
of indigenous rhizobia found in that soil as indigenous rhizobia population influences 
inoculums responses [43]. The lower the population size of the indigenous rhizobia, the 
higher the responses of inoculums if other factors remain constant [43]-[45]. Singleton 
and Tavares [44] have reported that, it is not possible to enhance N2-fixation when in-
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digenous soil rhizobia populations were above threshold number of 102 cells of bacteria 
per gram of soil. Therefore, there is a need of doing isolation, molecular characteriza-
tion of elite rhizobia strains and determining population of indigenous rhizobia nodu-
lating Phaseolus beans in various places. This will help to identify the suitable rhizobia 
strains for inoculants production aiming in enhancing crop yield and identifying right 
places where inoculation is needed. 

2. Rhizobia-Legume Symbiosis  

Rhizobia-legume symbiosis is the most studied plant-bacteria mutualism [46]. Rhizobia 
are soil bacteria that are well known for their symbiotic relationship with legumes even 
though they are also found in soil devoid of legumes [23] [47]-[49]. Rhizobia are 
grouped into two major groups which are fast grower and slow growers [50]. Fast 
grower takes 3 - 5 days to grow on the media and when grown in media containing 
bromothymol blue (BTB) indicator, they undergo alkaline reaction. While slow grow-
ing rhizobia takes about 7-10 days to grow on the media and show acidic reaction on 
BTB [51]. Most of rhizobia which nodulate Phaseouls beans are from genus Rhizobium, 
and species belongs to genus Rhizobium are fast growers [50]. Rhizobia range from 
symbiotic which nodulate legumes to non symbiotic which are unable to nodulate le-
gumes at all. Symbiotic rhizobia are divided in two groups which are mutualists and 
parasites. Mutualist rhizobia supply their hosts with nitrogen at a reasonable carbon 
cost while parasite rhizobia infect legume plants but they fix little or no nitrogen inside 
their nodules [48]. This review is based on mutualist rhizobia. 

Mutualist rhizobia convert atmospheric nitrogen to ammonia and provide organic 
nitrogenous compounds to the plants [22] [37]. Through symbiotic relationship be-
tween rhizobia and legume, rhizobia provide combined form of nitrogen to plant while 
plant provides shelter and energy to rhizobia [23] [47]-[49]. Some findings explained 
that, the drivers of rhizobia-legume interaction are dryness and infertility of the soils 
[51]. That means the rhizobia nodulate legume in order to get shelter from hostile en-
vironment and legume accepts rhizobia in order to get access to combined nitrogen 
hence be able to survive and colonize the area which are dry with low nitrogen (infertile 
areas). But the real origin of rhizobia-legume symbiosis is not known up to moment 
[23]. What is a known is that, symbiosis between rhizobia and legumes is genetically 
controlled. Rhizobia have a nodulation gene (nodABC) which encode enzyme respon-
sible for core structure of the signal molecule (Nod factor, NF) needed to induce nodule 
formation in host plant [23]. Initial interaction consists of stimulation of biochemical 
activity in the rhizobial strains by flavonoid and isoflavonoid molecules in the plant 
root exudates [53]. These compounds stimulate the activity of nod (nodulation) genes, 
the gene whose products are required to enable nodulation of the cognate legume host 
[22]. 

3. Significance of Legume-Rhizobia Symbiosis 

Rhizobia are found to have many benefits in agriculture industry. Some of the docu-



Y. Namkeleja et al. 
 

1908 

mented benefits includes; promotion of plant growth through nitrogen fixation, solubi-
lization of insoluble phosphate, controlling crop diseases, chelation of iron and biore-
mediation of heavy metals [26] [35]-[37] [54] [55]. 

3.1. Nitrogen Fixation 

All living organisms need nitrogen for their survival [22]. It is the nutrient most re-
quired for plant growth and is a key for good yield of agriculturally important crops 
[56]. It is a primary nutrient for plant growth and survival due to the fact that nitrogen 
is a source of cells proteins, enzymes and chlorophyll [57]. Nitrogen is efficiently util-
ized by many organisms (all eukaryotes) when it is in form of ammonium NH4 or ni-
trate NO3 [22] [54]. But high amount of nitrogen that is found in the earth is atmos-
pheric dinitrogen gas (N2) which cannot be directly used by the plants. Some Bacteria 
(including rhizobia) and Archaea are the only organisms that can reduce atmospheric 
nitrogen to ammonia through a process known as biological nitrogen fixation [22] [41].  

Legumes including Common bean acquire nitrogen by living symbiotically with rhi-
zobia which are capable of fixing atmospheric nitrogen (N2) in root nodules and sup-
plying it to the plant [56]. Genera Rhizobium, Mesorhizobium, Allorhizobium, Sinor-
hizobium, Arzorhizobium and Bradyrhizobium which all together form Rhizobia, play 
a vital role in converting free nitrogen in the soil into ammonia [54]. Also some species 
of bacteria that belongs to genus Bacillus like B. cereus, B. fusiformis, B. marisflavi and 
B. alkalidiazotrophicus are involved in nitrogen fixation [58] but rhizobia remains as 
the most effective nitrogen fixing bacteria [23] [59]-[61]. It was reported that, in tropics 
and subtropics, legume-rhizobia symbiosis of is a key player in nitrogen cycle and is a 
major contributor of nitrogen to terrestrial biosphere [41]. Additionally, Lindström and 
Mousavi [23] reported that BNF by rhizobia is the most efficient system with a mean 
annual fixation rate of 55,140 kgN per hectare, compared with 0.330 kg N per hectare 
for other biological systems. It∙has been estimated that symbiotic interaction between 
microbes and legumes worldwide reduce about 100 million metric tons of atmospheric 
nitrogen per year hence saving about US$ 8 billion per year in fertilizer [62]. Moreover, 
BNF is considered as relatively inexpensive in comparison to its counterpart chemical 
nitrogen fertilizers as Jonah, Chemining’wa [30] expounded that, the cost of inoculants 
required for one hectare is about US$ 4 while the cost of chemical nitrogen fertilizers 
required for the same area (one hectare) is about US$ 45. Therefore, there is a need of 
providing knowledge on the significance of BNF and enhancing availability and use of 
inoculants through isolation and characterization of rhizobia in various legumes. If 
BNF is efficiently utilized, it will enhance legumes production as well as reducing cost 
of production. 

3.2. Disease Control 

Apart from nitrogen fixation, rhizobia are able to induce plant resistance against dis-
ease [55] [63]. They are reported to have the ability of controlling crop diseases through 
elimination of the plant’s enemies including microbial pathogens, insects and weeds 
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[37] [64]. They induce defensive enzymes and chemicals that suppress pathogens and 
enabling a process called Induced Systematic Resistance (ISR) to plants [65]. Findings 
from Ehteshamul-Haque and Ghaffar [66] proved that Rhizobium meliloti can inhibit 
growth of pathogens like Macrophomina phaseolina, Rhizoctonia solani and Fusarium 
solani while Bradyrhizobium japonicum can inhibit pathogens like M. phaseolina and 
R. solani in leguminous (soybean, mung bean) and non-leguminous (sunflower and 
okra) plants. Pawar, Pawar [37], reported that Rhizobium secrete antifungal com-
pounds which selectively inhibit the growth of pathogenic fungi only and not rhizos-
pheric bacteria. Due to these findings there is a need of continued searching for rhizo-
bia strain for Phaseolus bean that will be efficient in nitrogen fixation as well as in pro-
viding resistance to diseases. This will be possible through isolation and characteriza-
tions of indigenous rhizobia with dual purpose characteristics. By doing that, it will 
improve production of both legumes and non-legumes crops because rhizobia will re-
duce pathogens infections to all crops.  

3.3. Solubilization of Insoluble Phosphate  

Phosphorus (P) is one of the most essential macronutrients for the growth and devel-
opment of plants [66]-[69]. The natural source of phosphorous (P) in the soil is organic 
and mineral phosphates. But both of them organic and mineral phosphates in large 
quantity are found inform of insoluble phosphate which cannot be utilized by the plant, 
a situation making soluble phosphate (a form that can be utilized by the plants) to be 
always scarce in the soil [67] [70] [71]. Due to the scarcity nature and importance of 
soluble phosphate for plant growth and crop production, leads to the excess use of 
chemical P fertilizers which have economic and environmental burdens [67]. To reduce 
excessive use of industrial chemical P fertilizers, rhizobia-legume symbiosis considered 
as among the most powerful solution. Rhizobium-legume symbiosis enhances utiliza-
tion of naturally available insoluble phosphate to make phosphorous available for 
plants. Research evidence has established that Rhizobium is among the most powerful 
phosphate solubilizer [67] [68]. Rhizobium leguminosarum biovar viceae and Rhizo-
bium meliloti are the few examples of rhizobium species which are capable of solubi-
lizing insoluble phosphate [72] [73]. In that context determining and isolation of rhizo-
bia species which are suitable for inoculants production are activities of special vitality 
for enhancing crop production and environmental protection, isolation and characte-
rization of rhizobia strains.  

3.4. Chelation of Iron and Bioremediation of Heavy Metals  

Iron is the essential element for plant growth [74] as it responsible for formation of 
chlorophyll. Most iron in the soil is in the form of ferric ion (F3+) in which plant can’t 
utilize it hence leads to scarcity of bioavailable iron in soil and plant surface [74] [75]. 
Under iron-limiting conditions, rhizobia tend to produce low-molecular-weight com-
pounds called siderophores to acquire enough ferric ion [74] [76]. Siderophore (iron 
bearer) have ability to convert ferric iron F3+ into soluble F3+ and they transfer soluble 
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F3+ and delivering it to the plant roots surfaces where becomes reduced to Fe2+ and ab-
sorbed by plants [77] [78]. Apart from iron, Rhizobacteria also have ability to chelate 
other heavy metals such as cadmium, lead, nickel, arsenic, aluminium, magnesium zinc, 
copper, cobalt, and controlling its mobility and availability to the growing plant 
through release of chelating agents, acidification, phosphate solubilization and redox 
changes [79]. For instance study done by Saleh and Saleh [80] indicated that dual in-
oculation with Arbuscular mycorrhizal (AM) fungus and Rhizobium on the host plant 
cowpea (Vigna sinensis) lead to increased tolerance against high concentration of Zinc 
and Cadmium. Therefore rhizobia-legume symbiosis is important in reducing heavy 
metals in the soil and it has been proposed as a proper tool for bioremediation of heavy 
metals in the soil. 

4. Determining Indigenous Rhizobia Population  

Inoculation of legumes with introduced rhizobia strain is a common agricultural prac-
tice intended to promote nitrogen fixation and increasing crop yield [43]. But for Rhi-
zobium inoculants to be efficient in fixing nitrogen as well as increasing crop yield, 
population size of indigenous rhizobia strains play an importance role [31]. The size of 
the indigenous rhizobia population is the most powerful environmental factors that de-
termine the competitive success of inoculated rhizobia versus indigenous rhizobia 
strain found in the area [81]. It has been found that the likelihood of a response to in-
oculation with Rhizobium strains decreased as the numbers of indigenous rhizobia in-
creased [43] [45]. Singleton and Tavares [44] found the same inverse correlation be-
tween rhizobia inoculants with native rizhobia population. According to Singleton and 
Tavares [44], introduced rhizobia strains (inoculants) are always outcompeted with the 
native rhizobia strains, thus, it is not possible to enhance N2-fixation when indigenous 
soil rhizobia populations were above threshold number (102 cells of bacteria per gram 
of soil) and had some effective strains. Amijee and Giller [10] reported that response of 
Phaseolus vulgaris to Rhizobium inoculants is not common in areas with large number 
of indigenous rhizobia. Furthermore, Meade, Higgins [31] explained that the number 
of indigenous rhizobia present in the soil before inoculation affect the concentration of 
inoculants required in that area. Study done by Weaver and Frederick [82] indicated 
that for rhizobia inoculums to be able to form 50% or more of the nodules must be ap-
plied in a rate of 1000 times higher than the size of the indigenous population in the 
soil. Also increase in economic yield due to inoculation is a function of indigenous 
rhizobia present in the soil [45]. That means economic yield due to inoculums applica-
tion increase as a number of indigenous rhizobia per gram of soil decrease and vice 
versa (Figure 1). It is important to note that the indigenous rhizobia population is not 
the only factor that determines inoculums responses as there are other factors such as 
soil N availability, physiochemical constraints (like soil pH and salinity) and climatic 
conditions such as temperature, moisture content and oxygen stresses [12] [43] [44] 
[83]. However, the population of indigenous rhizobia is among of the most important 
factor. For that reason, many findings recommended that for successful use of rhizobia  
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Figure 1. Comparison of the fit of observed to estimated inoculation responses by use of a 
hyperbolic equation to describe the relationship between numbers of indigenous rhizobia and 
legume inoculation responses. Only 26 of the 29 total species-site combination are presented. 
Source: [45]. 
 
inoculants, there should be prior knowledge on the size of the indigenous rhizobia 
population [31] [44] [84]. Therefore, in order to know which areas need inoculation 
and at which quantity, knowing population of indigenous rhizobia found in that area is 
of importance. 

Method for Determining Population of Indigenous Rhizobia in the Soil 

To make easy determination of indigenous rhizobia population found in the soil the 
Most Probable Number (MPN) method are usually used. MPN is the widely used ap-
proach in enumerating number of rhizobia found in the soils [85]-[87]. The MPN 
method of population estimate is based on the equation: 

1Population Estimate Tabular estimate
Inoculant volume

= ×  

Additionally, computer software called Most Probable Number Enumeration System 
(MPNES) is employed to perform the same task (Woomer et al., 1990).  

5. Isolation of Elite Rhizobia Strains 

Rhizobia strains isolation is done by taking nodules from the host legume, sterilizing 
them by using ethanol and sodium hypochlorite, followed by crushing it in sterile petri 
dish by using blunt tipped sterilized forceps and lastly streaking drop of the nodule 
suspension on the media. Yeast-Mannitol agar (YMA) and peptone glucose agar are 
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used as growth media while bromothymol blue (BTB) or Congo Red (CR) are used as 
indicators [50] [51]. In most cases, YMA containing CR or BTB indicators are used as 
evidenced in many studies [40] [62] [88]. The use of indicator media reported to cam-
ouflage real morphologies and distort growth rate of the rhizobia [51]. Because of this 
drawback, some isolation is done on YMA plates without indicator media. Rhizobia 
isolation which does not involve use of indicator media, aims at investigating uniform-
ity of colonies growth across the plates, uniformity indicate pure culture while non- 
uniformity indicate contamination. 

Isolation of rhizobia is a valuable process to maximize agricultural production [89]- 
[91]. It helps to get strong strain for nitrogen fixation, because effectiveness in nitrogen 
fixation by soil rhizobia population do vary widely between species [44] and the num-
ber of rhizobia that are not yet known is big and exceed the known one [22] [92]. 
Therefore, isolation of elite rhizobia is a stepping stone towards discovering effective 
strain that will be more efficient in fixing nitrogen for various legumes. Isolation of 
rhizobia strain from nonspecific (promiscuous) legumes gives a wide chance of identi-
fying new effective strain for such legumes. Common bean (Phaseolus vulgaris L.) is 
amongst the promiscuous legume hosts [1] [93] and several rhizobia species have been 
reported to nodulate this legume, although not always effective in terms of fixing N2 
[56]. Since common bean is a most important legume crop in most African countries as 
earlier mentioned, there is a need of isolating elite rhizobia strains nodulating it in areas 
where its production is practiced but yield potential has never been realized. 

6. Molecular Characterization of Rhizobia 

The use of molecular techniques in the characterization of microorganisms steered 
discovery of several new bacterial phylogenetics that were previously unknown [41] 
[94] [95]. Molecular characterization came in practice because classification based on 
morphological and physiological characters did not reflect true evolutionary relation-
ship [22]. Among the molecular techniques used in characterization of the bacteria in-
cludes; Multi Locus Sequence Analysis (MLSA), Sequence analysis of 16S rDNA, 16S 
rRNA gene sequence analysis, DNA-DNA hybridization and SDS-PAGE analysis of the 
whole-cell proteins [62] [96]. 

The sequence analysis of 16S rRNA and DNA-DNA hybridization has been used 
frequently in bacteria taxonomy [1]. 16S rRNA gene sequencing enables classification 
to genus level, while DNA-DNA hybridization helps classification to species level [97]. 
The 16S rRNA gene is mostly used in characterization and classification of bacteria be-
cause it contains conserved small sub-unit which does not undergo mutation easily 
with time [22] [97]. It is found in almost all bacteria, and is large (1500 bp) enough for 
informatics purposes [17] [98]. But it has been confirmed that, the use of 16S rRNA 
gene sequencing alone as phylogenetic marker for characterising bacteria is difficult 
and may give wrong results [1]. This is due to the reason that 16S rRNA gene have low 
divergence between closely related species [99] [100] hence cannot distinguish between 
recently distinguished species [101]. Also it is susceptible to genetic recombination and 
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horizontal gene transfer and it found in multiple copies in genome of some bacteria [3] 
[102]. To solve this problem, the DNA-DNA hybridization came as a solution to the 
weaknesses of 16S rRNA gene sequence analysis.  

DNA-DNA hybridization is able to differentiate between closely related species [96] 
[103], but it has been reported that, its results tend to vary between laboratories where 
DNA-DNA hybridization was done, a situation which may leads to conflicting result 
for the same sets of strains [1] [104]. Nowadays, the Multi Locus Sequence Analysis 
(MLSA) is considered as the best in species identification and delineation than 16S 
rRNA gene sequence analysis and DNA–DNA hybridization [105]. Despite the draw-
backs they have, 16S rRNA gene sequence analysis and DNA-DNA hybridization are 
still the most frequently used molecular techniques in taxonomy of bacteria as evi-
denced in many studies. The use of such molecular techniques to characterize elite rhi-
zobia strains will help to identify exactly what species of rhizobia are effective for no-
dulating and fixing nitrogen and performing other functions in Phaseolus bean, thus 
making easy in inoculants production. Unfortunately in Tanzania there are very few 
studies concerning molecular characterization of rhizobia isolated from the natural en-
vironments, hence more researches in this area are needed. 

7. Conclusion 

Isolation, molecular characterization of elite rhizobia strains nodulating Phaseolus bean 
and enumeration of indigenous rhizobia population in soil where beans are cultivated 
or expected to be cultivated are important for increasing productivity. It may help to 
broaden knowledge on rhizobiology as well as to prosper the discovery of unknown ef-
fective and efficient strain of rhizobia and ultimately to enhance inoculums production. 
More efforts and interest must be directed in this area so as to rescue the productivity 
of legumes considering that legumes are the major source of dietary protein and car-
bohydrates for human being. 
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