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Abstract 
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solu-
tion of this equation possesses singularities in the form of boundary or interior layers due to 
non-smooth boundary conditions. To overcome such singularities arising from these critical re-
gions, the adaptive finite element method is employed. This scheme is based on the streamline 
diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this ap-
proach is illustrated by different examples with several numerical experiments. 
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1. Introduction 
This paper deals with the scalar convection-diffusion equation. This equation describes the transport of scalar 
quantity, e.g., temperature or concentration. We are interested in the convection dominated case. In this case, the 
solution of a convection-diffusion equation frequently has boundary or interior layers. It is well known that the 
standard Galerkin finite element discretization on uniform grids produces inaccurate oscillatory solutions to 
convection diffusion problems. Therefore several stabilized finite element methods have been developed, e.g., 
the streamline-upwind Petrov-Galerkin (SUPG) method [1] & [2] or streamline-diffusion finite element method 
(SDFEM) [3] is designed to overcome these problems by introducing a small amount of artificial diffusion in the 
direction of streamlines. The numerical solution obtained from the SDFEM has the desirable property that the 
accuracy in regions where the exact solution is smooth will not be degraded as a result of discontinuities and 
layers in the exact solution [4] & [5]. However, the numerical solution obtained from the SDFEM can be oscillatory 
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in regions where there are layers. One common technique to increase the accuracy of the finite element solution 
in these critical regions is through local grid refinement, the so-called h-method. The question is how to identify 
those regions and how to obtain a good balance between the refined and unrefined regions such that the overall 
accuracy is optimal.  

Another related problem is to obtain reliable estimates of the accuracy of the computed numerical solution. A 
priori estimate are often insufficient and can’t be used to estimate the exact error. Therefore, it is natural to ac-
quire a posteriori error estimators to pinpoint where the error is large and, at the same time, properly bound the 
exact error on the whole domain. The error estimator should be local and should yield reliable upper and lower 
bounds for the true error in a user-specified norm. Global upper bounds are sufficient to obtain a numerical solu-
tion with accuracy below a prescribed tolerance. Local lower bounds are necessary to ensure that the grid is cor-
rectly refined so that one obtains a numerical solution with a prescribed tolerance using a nearly minimal num-
ber of grid-points.  

For two-dimensional problems, several estimators have been shown to be asymptotically exact when used on 
uniform meshes provided the solution of the problem is smooth enough [6]-[8]. Estimators based on computing 
residuals, so-called residual-type estimators, and estimators based on solving a local Dirichlet problem, so-called 
Dirichlet-type estimators, were introduced in [9]. Estimators based on solving a local Neumann problem, so- 
called Neumann-type estimators, were first given in [10]. These estimators have been studied by many research-
ers in [11]-[16]. The Zienkiewicz-Zhu (ZZ) type of estimators based on recovery of gradient and Hessian are 
also well developed, see [17] & [18], and articles cited therein. 

In this paper we introduce and analyze from theoretical and experimental points of view an adaptive scheme 
to efficiently solve the convection-diffusion equation. This scheme is based on the streamline-diffusion finite 
element method (SDFEM) introduced in [3] combined with an error estimator similar to the one developed in 
[14]. We prove global upper and local lower error estimates in the energy norm, with constants which only de-
pend on the shape-regularity of the mesh and the polynomial degree of the finite element approximating space. 
We perform several numerical experiments to show the effectiveness of our approach to capture boundary and 
inner layers sharply and without significant oscillations. 

The paper is organized as follows. In Section 2 we recall the convection-diffusion problem under considera-
tion and the Streamline Diffusion Finite Element Method. In Section 3 we define a posteriori error estimator 
with the energy norm of the finite element approximation error. Finally, in Section 4, we introduce the adaptive 
scheme and report the results of the numerical tests.  

2. Linear Convection-Diffusion Equation 
We consider the following steady linear convection-diffusion equation 

2 inu b u f− ∇ + ⋅∇ = Ω ,                                 (2.1a) 

on Du g= Γ , and                                    (2.1b) 

0 on N
u
n
∂

= Γ
∂

                                      (2.1c) 

where 2Ω ⊂   is a bounded polygonal domain with Lipschitz boundary D N∂Ω = Γ Γ  and D NΓ Γ = ∅ . 
We are interested in the convection dominated case and assume that 

(A.1) 0 1≤  , 
(A.2) 0b∇ ⋅ = , 
(A.3) 

, 1b
∞ Ω

= , 
(A.4) 0b n⋅ ≥ . 
The 2L  norm and the 1H  semi-norm (also called Energy Norm) are defined as  

( ) ( )0
2

1 2
2dH Lu u u

Ω Ω
Ω

 
= = Ω 

 
∫  and                            (2.2) 

( ) ( ) ( )1
2

1 2
2 dH Lu u u

Ω Ω
Ω

 
= ∇ = ∇ Ω 

 
∫                              (2.3) 
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( )1u H∀ ∈ Ω , respectively. We shall denote the above norm and semi-norm by the following convention  

( ),. kk Hu
Ω Ω
=  and ( ), ,. kk k Hu u

Ω Ω Ω
∇ = =  if no subscript index is given then we assume an ordinary 2L   

norm, 
0,.
Ω

, and if no subscript index is given then we shall assume it is the whole of Ω .  

To define weak form of Equation (2.1), we need two classes of functions: the trial functions 1
EH  and the test 

solutions 
0

1
EH : 

( ){ }1 1 :
DEH u H u g Γ= ∈ Ω =                                (2.4) 

( ){ }0

1 1 : 0EH u H u ∂Ω= ∈ Ω =                                (2.5) 

The standard variational formulation of Equation (2.1) is given by: Find 1
Eu H∈  such that  

( ) ( )
0

1, , EB u v F v v H= ∀ ∈                                  (2.6) 

where  

( ) ( ) ( ), , ,B u v u v b u v= ∇ ∇ + ⋅∇  and                          (2.7) 

( ) ( ),F v f v=                                      (2.8) 

Let { }h Kℑ =  be a decomposition of Ω  into triangles.  
We need to make the following geometrical assumptions on the family of triangulations hℑ  
1) Admissibility: whenever 1K  and 2K  belongs to hℑ , 1 2K K  is either empty, or reduced to a common 

vertex, or to a common edge 
1) kh  = the diameter of K = the longest side of hK ∈ℑ   
3) kρ  = the supremum of the diameter of the balls inscribed in hK ∈ℑ  
4) Shape regularity: the ratio of kh  to kρ  is uniformly bounded i.e.,  

,k
k h

k

h Kβ
ρ

≤ ∀ ∈ℑ                                     (2.9) 

which means for any 0h >  and for any hK ∈ℑ  there exists a constant 0 0β >  such that 0kβ β≥  where 
kβ  denotes the smallest angle in any hK ∈ℑ .  
We define the finite element spaces 

( ) ( ){ }1 1: ,h K hV v H v P K K= ∈ Ω ∈ ∀ ∈ℑ                         (2.10) 

for triangular elements, where ( )1P K  is the space of polynomials of degree not greater than 1 on K.  
In the case of convection-dominated problem, the standard Galerkin approximation of Equation (2.6) may 

produce unphysical behavior, oscillation, if the mesh is too coarse in critical regions. To circumvent these diffi-
culties, stability of the discretization has to be increased by introducing artificial diffusion along streamlines. 
The Streamline-Diffusion Finite Element Method (SDFEM) [1]-[3] stabilizes a convection-dominated problem 
by adding weighted residuals to the standard Galerkin finite element method for hyperbolic equations which 
combines good stability with high order accuracy, convergence results are available (see [19]).  

The SDFEM yields the following discrete problem obtained: Find h hu V∈  such that  

( ) ( ), , , 0 onSD h h SD h h h h DB u v F v v V v= ∀ ∈ = Γ                        (2.11) 

where  

( ) ( ) ( ) ( ), , , ,
h

SD h h h h h h K h h K
K

B u v u v b u v b u b vδ
∈ℑ

= ∇ ∇ + ⋅∇ + ⋅∇ ⋅∇∑  and           (2.12) 

( ) ( ), ,
h

SD h K h K
K

F f v f b vδ
∈ℑ

= + ⋅∇∑                            (2.13) 

In Equation (2.11), a constant Kδ  must be chosen for every element K. Let the mesh Peclet number be de-  

fined by, , kK
k

b h
Pe ∞=


 where 

,. K∞
 denotes the norm in ( )( )2

L K∞ . From the analysis of the SDFEM, the  
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following choice of Kδ  are optimal; see [20]:  

11 for 0,
2

0 for 0

k
k

K k

k

h Pe
Pe

Pe
δ

  
− >  =   

 ≤

                            (2.14) 

where kh  is a measure of the element length in the direction of the convection flow b. For other parameter 
choice, see [21]-[24]. 

3. A Posteriori Error Estimator 
In this topic, we introduce the analysis of a Neumann-type error estimator proposed in [14] which is an exten-
sion of the work [25]. In their work, they modify the well-known Bank and Weiser estimator [10] and using the 
idea of Ainsworth & Oden in [26], they solve a local (element) Poisson problem over a suitably chosen (higher 
order) approximation space with data from interior residuals and flux jumps along element edges.  

We now introduce some definitions and notations that will be needed for the error estimates.  
We denote by ( )K  the set of edges of element hK ∈ℑ , by ( )

h

h
K

K
∈ℑ

=


   the set of all element edges  

and the subsets relating to internal, Dirichlet and Neumann edges respectively as  
{ }, :h hE EΩ = ∈ ⊂ Ω  , { }, :h D h DE E= ∈ ⊂ Γ   and 
{ }, :h N h NE E= ∈ ⊂ Γ   so that , , ,h h h D h NΩ=      . 

We denote K  the set of vertices of hK ∈ℑ  and by 
h

h K
K∈ℑ

=


   the set of all element vertices (that  

do not lie on the Dirichlet boundary DΓ ). Let E  be the set of vertices of hE∈ , and for hK ∈ℑ , hE∈  
and hX ∈  we define the local “patches” of elements as  

( ) ( )
K

K K
K

′ ≠∅

′=




 

ω , 
( )

E
E K

K
′∈

′=




ω , 
K K

K K
′≠∅

′=






 

ω , 
E K

E K
′≠∅

′=






 

ω  

For the lowest order 1P  approximations over a triangular element subdivision, 2 0Ku∇ = , so that the inte-
rior residual of element K is given by  

( )K h KR f b u= − ⋅∇                                      (3.1) 

and the internal residual is approximated by  

( )0 0
K K KR R=                                          (3.2) 

where 0
K  is the ( )2L K -projection onto ( )0P K . 

For any edge E  of an element hK ∈ℑ , we define the flux jump as  

,

,

,

if

2 if

0 if

h
h

E E

h
E h N

E

h D

u
E

n

u
R E

n
E

Ω

 ∂
∈ ∂ 

  ∂= − ∈  ∂ 
 ∈









                                (3.3) 

where h

E

u
n
∂
∂

 is a constant function on the inter-element edge E  and [ ]Ev  measures the jump of v   

across E , that is, for ( ) ( )E K S∈   , , hK S ∈ℑ and defining ,E Kn  and ,E Sn  to be the outward normals 
with respect to the edge E  from element K and S respectively, we have 

[ ] , ,K E K K E SEv v n v n= +                                  (3.4) 

The approximation space is denoted by  
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K K KB= ⊕QQ                                       (3.5) 

consisting of edge and interior bubble functions respectively:  

( ) ( ){ }, ,: 0 1,K E E h h Nspan K E K Ω= Ψ → ≤ Ψ ≤ ∈Q                        (3.6) 

where each member of the space is a quadratic (or biquadratic) edge bubble function EΨ  that is nonzero on 
edge E of element K, but non zero valued on all other edges of K.  

KB  is the space spanned by interior cubic (or biquadratic) bubbles Kφ  i.e., 

{ }: 0 1 , 0 onK K K KB K Kφ φ φ= → ≤ ≤ = ∂                            (3.7) 

where each function is associated with an element K, and is zero on all edges of K, nonzero on the interior of K, 
and 1Kφ =  at the centeroid of K.  

The upshot is that the local problems are always well posed and that for each triangular element a 4 × 4 sys-
tem of equations must be solved to compute Ke .  

For an element hK ∈ℑ , the local error estimate is the energy norm of Ke  given by  

K K Keη = ∇                                       (3.8) 

where ( )K h K Ke u u= − ∈Q  satisfies  

( ) ( )
( )

0 1, , ,
2

, K EK EKK K
KE

R v R ve v v
∈

∇ ∇ = − ∀ ∈∑


  Q                       (3.9) 

In the following, we use the short-hand notation 
Sf  to denote 2L -norm of a function ( )2L S . The Kay 

and Silvester’s a posteriori error estimation can be read as following: 
Theorem 1. If the variational Equation (2.6) solved with a grid of linear triangular elements, and if the trian-

gle aspect ratio condition is satisfied with βΩ , then, the estimator Kη  computed via Equation (3.9) satisfies 
the (global) upper bound property  

( )
1 22

22 0

h h

K
h K K K KK K

he C R Rβ ηΩΩ
∈ℑ ∈ℑ

  ∇ ≤ + −     
∑ ∑ 

                  (3.10) 

where C is independent of   and h and Kh  is the length of the longest edge of element K.  
Proof. See the details in [14]. 
Theorem 2. If the variational Equation (2.6) with 1b

∞
=  is solved via either the Galerkin formulation or 

the SD formulation Equation (2.11), using a grid of linear triangular elements, and if the triangle aspect ratio 
condition is satisfied, then the estimator Kη  computed via Equation (3.9) is a local lower bound for 

( )h he u u= −  in the sense that  

( ) 0
K K

K K

K K
K h h K KK KK K

h hc e b e R Rη β
⊂ ⊂

 
≤ ∇ + ⋅∇ + − 

 
∑ ∑ ωω
ω ω

              (3.11) 

where c is independent of  , and Kω  represents the patch of four elements that have at least one boundary 
edge E from the set ( )K .  

Proof. See the details in [14]. 

4. Numerical Experiments 
In this section we report three series of numerical experiments with the Streamline Diffusion stabilization me-
thod described in Section (2) and an h-adaptive mesh-refinement strategy based on the error estimator analyzed 
in Section (3). In all the experiments we have used piecewise linear finite elements (i.e., kP  polynomial degree 

1k = ) and we have taken as geometric domain the unit square ( ) ( ): 0,1 0,1Ω = ×  or ( ) ( )1,1 1,1− × − , although 
with different boundary conditions. We have considered varying values of the coefficients  , 1b , and 2b  of 
the convection-diffusion equation. 

The adaptive procedure consists in solving Equation (2.11) on a sequence of meshes up to finally attain a 
solution with an estimated error within a prescribed tolerance. To attain this purpose, we initiate the process with 
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a quasi-uniform mesh and, at each step, a new mesh better adapted to the solution of Equation (2.6) must be 
created. This is done by computing the local error estimators Kη  for all K in the “old” mesh hℑ , and refining  
those elements K* with { }* max :K hK

Kη θ η≥ ∈ℑ , where ( )0,1θ ∈  is a prescribed parameter. In all our expe-  
riments we have chosen 0.5θ = . For other marking strategies, we refer to [27]. 

The implementation used in this paper is derived from iFEM [28]. This software package is the successor of 
AFEM@MATLAB [29], which contains an advanced refinement tool.  

Example 1 (Exponential boundary layer) The first test problem contains an exponential boundary layer. This  
problem corresponds to the case of ( )0,1b = , zero forcing 0f = , Dirichlet boundary condition, 

D
g u

Γ
=  and  

the exact solution is given by 

( )
( )1

2

1,
1

yeu x y x
e

−

−

 −
=   − 




                                  (4.1) 

We report the results obtained for 210−=  and 410−=  over the domain ( )21,1Ω = − .  
Figure 1 shows the successfully refined meshes created in the adaptive process for 210−= , as well as the 

corresponding computed solution. Figure 2 shows the error curves for the exact and estimated errors. Figure 3  
 

 
Figure 1. Adaptive grids (left) and solution (right) obtained for 

210−=  & d.o.f:3663.                                                                                               
 

 
Figure 2. Estimated and exact error curves using 210−= .                                                
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and Figure 4 show analogous results for the same problem with the parameter 410−= . The results show that 
the estimated error is well bounded as described in [22]. 

Example 2 (Interior layers) We consider Equation (2.1) with 210−=  and 410−= , ( )T2,3b = , ( )20,1Ω = . 
The forcing term f and boundary condition are determined from the exact solution:  

 ( )
2 2

1
0.5

, 1
x y

u x y e

−
 − + − 
 

 
 

= + 
 
 

                            (4.2) 

Figure 5 and Figure 6 clearly show that the adaptive method has successfully refined the correct elements 
using a greater concentration of elements in the interior layer. Figure 7 and Figure 8 show the estimated and 
exact error curves decrease monotonically for 210−=  and 410−=  respectively.  

Example 3 (Interior and boundary layers) We consider Equation (2.1) with 
T

π πsin , cos
6 6

b     = −     
    

,  

( )21,1Ω = − , 0f =  and boundary conditions  
 

 
Figure 3. Adaptive grids (left) and solution (right) obtained for 410−=  & 
d.o.f: 4183.                                                                                               

 

 
Figure 4. Estimated and exact error curves using 410−= .                                                
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Figure 5. Adaptive grids (left) and solution (right) obtained for 210−=  & 
d.o.f:5523.                                                                                               

 

 
Figure 6. Adaptive grids (left) and solution (right) obtained for 410−=  with 
d.o.f:6259.                                                                                               

 

 
Figure 7. Estimated and exact error curves using 210−= .                                                
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Figure 8. Estimated and exact error curves using 410−= .                                                

 

0 on 1& 1,
1tanh on 1,

1 tanh 1 on 1
2

x y
yu x

x y


 = − =
 −  = =  

 
    + = −   

   





                       (4.3) 

Discontinuities at ( )0,1  causes u to have an internal layer of width ( )O   along the line 3 1y x+ = − , 
with values 0u =  to the left and 1u =  to the right, as well as a boundary layer along the outflow boundary. 
We do not include error curves because no analytical solution is known in this case.  

Figure 9 and Figure 10 show some of the successively refined meshes created in the adaptive process for 
310−=  and 510= , as well as the corresponding computed solution. 

In the case of 210−=  in Example (2) and 310−=  in Example (3), the adaptive refinement process able to 
resolve the boundary and interior layers.  

For the case of 410−=  in Example (2) and 510=  in Example (3), it is hard to fully resolve the internal 
layers and the numerical solution display a small oscillatory pattern in the internal layer.  

5. Conclusions 
An adaptive finite element scheme for the convection-diffusion equation has been introduced and analyzed. This 
scheme is based on the Streamline Diffusion Finite element method combined with a Neumann-type error esti-
mator.  

Several numerical experiments are reported. For 310−≥ , all of them show the effectiveness of this scheme 
to capture boundary and inner layers very sharply and without significant oscillations. But in the case of 

410−=  in Example (2) and 510=  in Example (3), the numerical solution displays small oscillatory pattern 
in the internal layer which requires a high computing cost to produce an accurate internal layer. In general, it is  
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Figure 9. Adaptive grids (left) and solution (right) obtained for 310−=  with 
d.o.f:34,897.                                                                                               

 

 
Figure 10. Adaptive grids (left) and solution (right) obtained for 510−=  with 
d.o.f:41,149.                                                                        

 
quite evident that our error estimator provides an effective refinement indicator even in the presence of internal 
layers. 
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