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Abstract 
In this paper, we study the non-definite Sturm-Liouville problem comprising of a 
regular Sturm-Liouville equation and Dirichlet boundary conditions on a closed in-
terval. We consider the case in which the weight function changes sign twice in the 
given interval of definition. We give detailed numerical results on the spectrum of 
the problem, from which we verify various results on general non definite Sturm- 
Liouville problems. We also present some theoretical results which support the nu-
merical results. Some numerical results seem to be in contrast with the results that 
are so far obtained in the case where the weight function changes sign once. This 
leads to more open questions for future studies in this particular area. 
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1. Introduction 

The regular Sturm-Liouville problem involves finding the values of a parameter λ  
(generally complex) for which the equation  

( ) ( )( ) ( ) ( ) ( ) ( )'p x u x q x u x w x u xλ′− + =                 (1) 

has a solution u (non-identically zero) in ( ),a b  satisfying the boundary conditions 
(2)-(3) below. 

( ) ( ) ( )cos sin 0,u a pu aα α′− =                      (2) 
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( ) ( ) ( )cos sin 0,u b pu bβ β′+ =                      (3) 

, , 0 , π.a x b a b α β≤ ≤ −∞ < < < +∞ ≤ <  The parameter λ  is called an eigenvalue 
and the corresponding function u is called an eigenfunction. The set consisting of all 
the eigenvalues of the problem consisting of (1) and the boundary conditions (2)-(3) is 
called the spectrum. The coefficient functions are such that [ ], , : , ,p q w a b →   py′   

is absolutely continuous in ( ), ,a b  and ( )11 , , , .q w L a b
p

∈  In what follows (,) denotes  

the inner product of the Hilbert space [ ]2 ,L a b . A point at which the weight function 
( )w x  changes sign is called a turning point. The number of zeros that an eigen- 

function has within the open interval ( ),a b , is called the oscillation number of the 
corresponding eigenvalue. In this paper, the setting is that ( ) ( ),n nu x u x λ=  has 
exactly n zeros in ( ), .a b  That is, nλ  has oscillation number n. 

Definition 1. Suppose that the eigenfunctions of a Sturm-Liouville problem are 
ordered according to increasing eigenvalues of the problem, the eigenfunctions are said 
to have the interlacing property, if between two zeros of the eigenfunction nu  lies 
exactly one zero of the eigenfunction 1nu + .  

Definition 2. A homogeneous linear differential equation  
( ) ( ) ( ) ( )1

1 0n n
nLy y p x y p x y−= + + + =  

of order n is called disconjugate on an interval I if no non-trivial solution has n zeros 
on I, multiple zeros being counted according to their multiplicity.  

We pronounce that the strong interest of this field during all these years is that this 
theory is important in Applied Mathematics, where SL problems occur very commonly. 
The differential equations considered here arise directly as mathematical models of 
motion according to Newton’s law, but more often as a result of using the method of 
separation of variables to solve the classical partial differential equations of physics, 
such as Laplace’s equation, the heat equation, and the wave equation, (see e.g [1]). Let 
(1) be written as  

( ) ( )d d, where .
d d

Tu wu T p x q x
x x

λ  = = − + 
 

              (4) 

Then, the problem consisting of (4) and the boundary conditions (2)-(3) is called 
right-definite if the form  

( ) 2, d
b

a

wu u w u x= ∫                           (5) 

is definite. In this case there is a sequence { }nλ  of real eigenvalues such that  

0 1 nλ λ λ−∞ < < < < <   

and nλ →∞  as ,n →∞  with a finite number of negative eigenvalues (see e.g, [2] [3]). 
If the form  

( ) ( ) ( ) ( ) ( )( )2 2 2 2, cot cot d
b

a

Tu u u a u b p x u q x u xα β ′= + + +∫         (6) 
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is definite for each 0u ≠ , the problem is called left-definite. In this case the problem 
consists of two sequences of eigenvalues { }nλ

±  such that nλ
± → ±∞  as .n →∞  If we 

let 0λ  to be a real eigenvalue with smallest absolute value, then in the left- and right- 
definite case, the corresponding eigenfunction has no zero in ( ), .a b  When neither 
( ),Tu u  nor ( ),wu u  is definite, then the problem is called non-definite (indefinite). 
In this paper our focus is on a non-definite Sturm-Liouville problem in which the 
weight function ( )w x  has two turning points in the interval of definition. 

The Non-Definite (or Indefinite) Case  

Here we give a summary on the non-definite case, detailed literature can be found in 
the papers [3]-[9], etc, and the references there in. In the non-definite case the 
spectrum is discrete, always consists of a doubly infinite sequence of real eigenvalues, 
and has at most a finite and even number of non-real eigenvalues (necessarily occurring 
in complex conjugate pairs).  

Remark 1. If the problem consisting of the equation  

( ) ( )( ) ( ) ( ) ( )' , 0p x u x q x u x u xλ λ′− + = ≠                 (7) 

and the boundary conditions (2)-(3) has N distinct negative eigenvalues, then the 
number of distinct pairs of non-real eigenvalues of the problem (1)-(3) cannot exceed 
N.  

For more details on remark 1, we refer the interested reader to the papers [2] 
(Theorem 4.2.1), [3] (Theorem 2), [10] (Corollary 1.7), and the references there. In the 
non-definite case, as Richardson [4] puts it, the march of the zeros is not monotone 
with λ ∈  (in contrast with the left- and right-definite cases). In fact there may be a 
range of values of λ  such that as λ  increases, the number of zeros first decreases, 
then increases, then decreases and finally increases, the minimum number being a 
positive integer. As a result the eigenfunction corresponding to the eigenvalue 0λ  can 
have any number of zeros in ( ),a b  in contrast with the definite case, that is to say, a 
non-definite Sturm-Liouville problem will tend not to have a real ground state (positive 
eigenfunction). In relation to this behaviour of the real spectrum of the non-definite 
Sturm-Liouville problem, Mingarelli [6] defines two types of indexes which are due to 
Richardson [4] and Haupt [11].  

Theorem 1. ([6] Haupt-Richardson Oscillation Theorem) 
In the non-definite case of (1)-(3), there exists an integer 0Rn ≥  such that for each 

Rn n≥  there are at least two real solutions of (1)-(3) having exactly n zeros in ( ),a b  
while for Rn n<  there are no real solutions having n zeros in ( ), .a b  Furthermore 
there exists a possibly different integer H Rn n≥  such that for each Hn n≥  there are 
precisely two solutions having exactly n zeros in ( ), .a b   

Mingarelli [6] calls Rn  and Hn  the Richardson Index and Haupt Index, respec- 
tively. If we consider positive eigenvalues separately, we can define for all 0,λ >  an 
integer 0Rn+ ≥ , such that for each Rn n+≥ , there is at least one real solution of the 
problem (1)-(3) having n zeros in ( ),a b , while for ,Rn n+<  there are no real solutions 
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having n zeros. Also, there is an integer 0Hn+ ≥  such that for each Hn n+≥ , there is 
exactly one real solution having precisely n zeros in ( ),a b , while for ,Hn n+<  there 
are no solutions having n zeros in ( ),a b . Analogue for 0λ <  defines Rn−  and Hn− . 

Furthermore, for real λ  there exist two numbers λ+  and λ−  called the Richardson 
numbers defined as  

( ) ( ){ }2
inf : , , d 0 , 0

b

a
u x w x xλ ρ λ ρ λ λ+ = ∈ ∀ > > ∀ >∫  

( ) ( ){ }2
sup : , , d 0 , 0.

b

a
u x w x xλ ρ λ λ λ− = ∈ ∀ < < ∀ <∫   

We note that 
Hn

λ λ +
+ < . We can interpret λ+  as the smallest number such that the 

real eigenvalues greater than λ+  behave as in a “typical” Sturm-Liouville problem, 
that is, an eigenvalue is uniquely associated with its oscillation number, and λ−  is 
interpreted similarly [7]. We note that in the right-definite case, ,λ λ+ −= = −∞  while 
in the left-definite case, 0.λ λ+ −= =  As Jabon and Atkinson [7] rightly put it, in the 
non-definite case, the determination of these numbers is a very significant problem.  

Theorem 2. ([3] Theorem 3) 
Let λ  and ( ),u x λ  be a non-real eigenvalue and associated non-real eigenfunction 

of problems (1)-(3). If ( )w x  has precisely n turning points in ( ),a b  then ( ),u x λ  
may vanish at most ( )1n − -times in ( ), .a b   

Corollary 1. (Corollary 1 [3]) 
Let λ  and ( ),u x λ  be a non-real eigenvalue and associated non-real eigenfunction 

of problems (1)-(3). If ( )w x  has exactly one turning point in ( ),a b  then ( ), 0u x λ ≠  
in ( ), .a b   

In relation to corollary 1, we state the following theorem which is due to Richardson 
[4], see also the papers [3] [6].  

Theorem 3. (Richardson’s Oscillation theorem) 
Let w be continuous and not vanish identically in any right neighborhood of .x a=  

If ( )w x  changes its sign precisely once in ( ),a b  then the roots of the real and 
imaginary parts φ  and ϕ  of any non-real eigenfunction u iφ ϕ= +  corresponding 
to a non-real eigenvalue, separate one another (or interlace).  

Below are some of the many open questions that Mingarelli in [3] [6] raises on 
non-definite or indefinite Sturm-Liouville problems.  

1) Estimate the oscillation numbers Rn+  and Hn+  in terms of the given data 
, , ,p q w  etc.  
2)Estimate the eigenvalues 

Rn
λ +  and 

Hn
λ +  in terms of the given data.  

3) Give sufficient conditions for the existence of at least one non-real eigenvalue.  
4) Estimate the real and imaginary parts of non-real eigenvalues.  
5) Is Richardson’s oscillation theorem for non-real eigenfunctions true in general?  
6) To what extent is Richardson’s theorem for non-real eigenfunctions true?  
The following is a brief list of part of the work done towards answering some of the 

questions raised above.  
1) In the one-turning point case for w, Atkinson and Jabon, [7] obtain upper bound 
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for λ+  and lower bound for λ− .  
2) In the two-turning point case for w, Kikonko and Mingarelli [8] obtain upper 

bound on λ+ .  
3) On sufficient conditions for the existence of at least one non-real eigenvalue, 

Allegretto and Mingarelli [5] cover the case ( ) 0 ,q x q≡  and ( ) ( )w x sgn x= ; Also 
Behrndt, Katatbeh, and Trunk [12] in a singular case with the same weight; [2] [3], [10], 
etc.  

4) On estimating the real and imaginary parts of non-real eigenvalues, Mingarelli [13] 
uses Green’s function arguments; a good number of recent papers, e.g Qi and Chen [9]; 
Qi, Xie and Chen [14]; Behrndt, Chen, Philip, and Qi [15]; Xie and Qi [16]; Behrndt, 
Philip and Trunk [17]; etc, use L2-estimates coupled with quadratic form arguments 
and theory of Krein spaces.  

5) On Richardson’s Oscillation theorem, numerical results in the conference paper 
[18] indicated that the interlacing property fails in the two-turning point case and no 
non-real eigenfunction vanished inside the given interval of definition at least for the 
values of 0q  that were considered then.  

The main motivation for this paper is the results obtained from the important paper 
[7] in which the Authors considered a special indefinite (non-definite) problem in 
which the weight function ( )w x  has one turning point in the interval ( )1,1− . Pre- 
sented in that paper were results of numerical calculations of the spectrum of the 
problem  

( ) ( ) ( ) ( ) ( ) ( ) ( )0, 1 1 0, , .y q x y r x y y y q x q r x sgn xλ′′− + = − = = = ∈ =  

In the next section we extend their study to the case in which the weight function 
changes sign twice (has two turning points) on the interval ( )1, 2− . In particular, we 
wish to verify whether or not, theorem 3 holds in the two-turning point case. Further- 
more, theorem 2 implies that in the two-turning point case, if a non-real eigenfunction 
vanishes in ( )1, 2−  it can only do so once, which is worthy verifying too. We carried 
out numerical calculations on the spectrum of our problem using the Maple package 
RootFinding[Analytic]. This package attempts to find all complex zeros of an analytic 
function, ( )f z  within the rectangular region ( ) ,a z b≤ ℜ ≤  ( )c z d≤ ℑ ≤  in the 
complex plane. From the numerical results in this paper we pronounce the following 
results.  

1) The interlacing property which holds in the one-turning point case does not hold 
in the two turning-point case in general.  

2) The real and imaginary parts of any non-real eigenfunction corresponding to a 
non-real eigenvalue either have the same number of zeros in the interval ( )1, 2 ,−  or 
the numbers of zeros differ by two.  

3) For some values of 0q  considered in this paper, some non-real eigenfunctions 
seem to vanish inside the interval ( )1, 2 .−   

The result 2) is partly surprising and leads us into raising yet more open questions in 
the field. 
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2. Main Results  

Here we consider the Dirichlet problem  

( ) ( ) ( )( ) ( ) 0u x w x q x u xλ′′ + + =                      (8) 

( ) ( )1 0 2 .u u− = =                            (9) 

Here, ( ) 0q x q≡ ∈  for all [ ]1, 2x∈ − , the weight ( )w x  is a piecewise constant 
step-function described by the relations  

( )
[ ]
( ]
( ]

, if 1,0 ,
, if 0,1 ,
, if 1, 2 ,

A x
w x B x

C x

 ∈ −
= ∈
 ∈

 

where we assume, without loss of generality, that 0, 0, 0A B C< > < . We note that (8) 
is in Sturm-Liouville form (1) with ( ) 1p x ≡  and ( )q x  replaced by ( )q x− . In this 
case, the forms (5) and (6) respectively simplify to  

( ) ( )( )
2

2 2

1

, dTu u q x u u x
−

′= −∫                     (10) 

and  

( )
2

2

1

, d .wu u w u x
−

= ∫                          (11) 

It was shown in [18] and [8] that the two forms are sign indefinite for values of x for 
which ( ) 0q x > , hence we have the non-definite case with two turning points since the 
weight function changes its sign twice inside the interval of definition. The solution 
( )u x  of the problem (8)-(9) in this case is given by  

( )
( ) [ ]
( ) ( ]
( ) ( ]

, if 1,0 ,
, if 0,1 ,
, if 1, 2 ,

X x x
u x Y x x

Z x x

 ∈ −
= ∈
 ∈

 

where  

( )
( )( )0

0

sin 1
,

A q x
X x

A q

λ

λ

− + +
=

− +
 

( )
( ) ( ) ( ) ( )0 0 0 0 0 0

0 0 0 0

sin cos cos sin
,

B q A q B q x A q A q B q x
Y x

A q B q A q B q

λ λ λ λ λ λ

λ λ λ λ

+ − + + − + − + +
= +

− + + − + +
 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

00

0 0 0 0 0

0

sin cos cos 1 cos sin cos 1

cos cos sin 1 sin sin sin 1
,

A q B q x A q B q x
Z x

B qA q

A q B q x B q A q B q x

A q

λ λ κ λ λ κ

λλ

λ λ κ λ λ λ κ

κ κ λ

− + + − − + + −
= +

+− +

− + + − − − + + −
+ −

− +

 

0 ,C qκ λ= − +  and 0, 0, 0A B C< > < . The solution is found by piecing together 
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the various solutions on the intervals [−1,0], (0,1] and (1,2] so as to obtain a con- 
tinuously differentiable function on [−1,2]. By solving the dispersion relation  

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

0 0 0

0 0 0

0 0 0 0

0 0 0

0 sin cos cos

cos sin cos

cos cos sin

sin sin sin .

B q A q B q

A q A q B q

A q B q A q B q

B q A q B q

κ λ λ λ κ

κ λ λ λ κ

λ λ λ λ κ

λ λ λ κ

= + − + +

+ − + − + +

+ − + + − + +

− + − + +

      (12) 

and fixing the values of A, B and C to be 1A = − , 2B = , and 1C = − , we calculated 
eigenvalues lying within the rectangle  

{ }: 1000 and 1000 ,E λ λ λ= ∈ ℜ < ℑ <  

using the Maple package Root Finding [Analytic]. Since ( )w x  changes sign in the 
interval ( )1, 2 ,−  we need to pick values of 0q  carefully so that the spectrum can have 
non-real eigenvalues. Note that if we set 1w ≡  in Equation (8) and solve the equation 
subject to boundary conditions in (9) with the assumption that 0,λ ≠  we see that the 
eigenvalues of this new problem (which we shall call the corresponding right-definite 
problem (RDP)) are given by  

2 2

0
π , 1, 2,3, .
9n

n q nλ = − =   

From this we see that if ( )2 2
0 π 9q n<  for all n the new problem can not have any 

negative eigenvalues and when ( )2 2
0 π 9q n>  for all n we expect to have at least one 

negative eigenvalue of the problem and by remark 1 the problem (8)-(9) may have at 
least one pair of non-real eigenvalues for such 0q . Hence we are assured of non-real 
eigenvalues for problem (8)-(9) for 2

0 π 9.q >  
Therefore we calculated eigenvalues in the cases  

2 2 2 2 2 2 2 2
0 π , 2π ,3π ,5π , 6π , 10π , 20π ,30π ,q =  and 240π  in the rectangle E using the 

Maple package Root Finding [Analytic]. We note that this is an extension of the work 
covered in [18], where we only considered values of 0q  less than or equal to 26π  in a 
smaller rectangle. In Figure 2, we show graphs of eigenfunctions corresponding to 
positive eigenvalues of the problem (8)-(9) when 2

0 20π ,q =  and from this figure, we 
estimate the upper bound of the Richardson number λ+ , and the integers Rn+  and 

Hn+ . We also show a typical behaviour of the real and imaginary parts of the non-real 
eigenfunctions corresponding to non-real eigenvalues of the problem (8)-(9) in Figure 
1. 

The summary of the results are shown in Table 1 and Table 2. Table 1 brings out 
the difference between the number of zeros of real and imaginary parts of the non-real 
eigenfunctions corresponding to non-real eigenvalues of the problem (8)-(9). The 
results in this table are complemented by the results shown in Figure 1 which shows 
that the number of zeros of the real and imaginary parts of the non-real eigenfunctions 
are either equal or differ by two. Figure 1 also shows that the interlacing property of  
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Table 1. Non-real eigenvalues obtained inside the rectangle E for some values of 0q . 

  No. of zeros of 

0q  Eigenvalues ( ), iReu x λ  ( ), iImu x λ  
22π  8.307 5.599i− ±  4 2 

 4.220 5.744i− ±  3 3 

 12.940 6.665i±  4 2 
23π  5.161 7.754i±  4 4 

 2.452 10.51i− ±  5 3 
25π  7.022 10.94i±  6 4 

 20.750 12.13i±  5 5 

 19.75 7.217i− ±  6 4 

 16.37 10.34i− ±  5 5 
26π  6.434 14.43i− ±  6 6 

 13.40 13.53i− ±  7 5 

 52.026 7.100i±  6 4 

 21.552 15.25i±  7 5 
210π  72.745 8.215i±  7 7 

 31.75 14.92i− ±  9 7 

 24.44 15.55i− ±  8 8 

 28.886 17.61i±  8 8 

 10.838 21.17i±  9 7 
220π  149.84 13.56i±  11 9 

 10.66 33.31i− ±  12 12 

 88.706 13.44i±  12 10 

 39.590 33.07i±  13 11 

 24.26 31.05i− ±  13 11 
230π  12.75 43.52i− ±  15 15 

 29.86 40.63i− ±  16 14 

 48.876 42.62i±  16 14 

 88.450 18.68i±  15 15 

 121.2 15.46i− ±  14 14 

 128.7 15.57i− ±  15 13 

 163.04 21.11i±  14 14 

 255.88 15.37i±  13 11 

 
the real and imaginary parts of non-real eigenfunctions fails in the two-turning point 
case. Table 2 shows that the smallest number of zeros of the eigenfunctions corre- 
sponding to positive eigenvalues for each value of the parameter 0q  considered, is two 
and so problem (8)-(9) has no real ground state (positive eigenfunction). The table also 
compares the number of distinct negative eigenvalues of the corresponding right- 
definite problem with the number of pairs of distinct non-real eigenvalues of the  
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Table 2. Comparing number of pairs of non-real eigenvalues with number of negative 
eigenvalues of corresponding RDP. 

0q  

Number of Number of negative Smallest 

Complex Eigenvalues of corresponding Oscillation 

Pairs Right-definite problem Number 
22π  3 3 3 
23π  2 4 3 
25π  4 4 4 
26π  4 5 5 
210π  5 6 7 
220π  5 9 8 
230π  8 11 10 
240π  9 12 11 

 
problem (8)-(9). 

A closer look at Figure 2 shows that the smallest positive eigenvalue for this case is 

1 61.02λ ≈  with corresponding eigenfunction ( )1u x  oscillating twelve times in the 
interval. Furthermore, 2 119.62λ ≈  and corresponding eigenfunction oscillating 
eleven times in ( )1, 2 .−  The oscillation numbers decrease by one as the value of λ  
increases until the fifth eigenvalue. From the sixth eigenvalue onwards the oscillation 
numbers increase by one as the value of λ  increases and from the eleventh eigenvalue 
(i.e., 11 778.48λ ≈ ) onwards, each eigenfunction has a unique oscillation number. Since 

11λ  has corresponding eigenfunction ( )11u x  oscillating thirteen times in ( )1, 2−  we 
can say that for each 13n ≥  there is precisely one eigenfunction with n zeros in 
( )1, 2−  and so 13Hn+ = . Hence the correct notation is that ( ) ( )11 ,

Rn
u x u x λ +=  and 

thus the Richardson number λ+  satisfies 778.48
Rn

λ λ ++ < = . Another observation is 
that there is no positive eigenvalue with corresponding eigenfunction having less than 
eight zeros in ( )1, 2−  while for each 8n ≥ , there is at least one eigenfunction having 
n zeros in ( )1, 2− , hence we have that 8.Rn+ =  

Figure 3 gives the spectrum for larger values of 0q  in the rectangle E. We see that 
in each of the cases, the spectrum consists of a finite number of non-real eigenvalues 
and two infinite sequences of positive and negative eigenvalues. 

3. Discussion and Conclusions 
3.1. Discussion  

From Figure 3, we see that the spectrum is made up of an infinite number of real 
eigenvalues and a finite number of non-real eigenvalues for each value of 0q  con- 
sidered. That the number of non-real eigenvalues of problem (8)-(9) is finite, is not a 
surprise because this is expected, by remark 1. It can be seen from the graphs of the 
eigenfunctions that generally oscillation numbers decrease as the parameter value 
increases, but then oscillations will stabilize and the usual oscillation theorem event- 
ually holds. This leads to the estimation of λ+ , Rn+ , and Hn+ . We also observe  
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(a) 

 
(b) 
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(c) 

  
(d) 
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(e) 

 
(f) 

Figure 1. The case 2
0 30πq = . Interlacing property for real and imaginary 

parts of non-real eigenfunctions fails in the two turning points case. (a) 
29.86 40.63iλ = − + , (b) 128.68 15.57iλ = − + , (c) 163.04 21.11iλ = + , (d) 

255.88 15.37iλ = + , (e) 121.206 15.46iλ = − + , (f) 12.75 43.52iλ = − + . 
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(b) 
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(c) 

  
(d) 
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(e) 

 
(f) 
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(g) 

 
(h) 
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(i) 

 
(j) 
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(k) 

 
(l) 

Figure 2. Eigenfunctions corresponding to positive eigenvalues for the 
case 2

0 20πq = . (a) 61.01691, (b) 119.6179, (c) 159.1937, (d) 186.9206, (e) 
188.6653, (f) 227.9183, (g) 322.0658, (h) 422.4908, (i) 531.7293, (j) 
650.3222, (k) 778.4830, (l) 916.3175. 
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 

Figure 3. Spectrum for the two-turning point case for selected values of 0q . 
(a) 2

0 20πq = , (b) 2
0 30πq = , (c) 2

0 40πq = , (d) 2
0 500πq = , (e) 2

0 4000πq = , 
(f) 2

0 8000πq = . 
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disconjugacy in the first and last intervals and many oscillations in the middle interval 
( )0,1 ,  since 0 0q wλ+ >  for all ( )0,1x∈  because 0, , 0w qλ >  in the interval. 
However, for some values of λ  a few oscillations are expected in the first and last 
intervals. This is so because in some cases, 0q  can be so large that 0 0.q wλ− >  For 
example in Figure 2, eigenfunctions corresponding to the first three positive eigenvalues 
have at least one zero in the first and third intervals. 

Generally speaking, the number of non-real eigenvalues seems to increase with 
increasing 0q . The number of pairs of distinct non-real eigenvalues of the problem 
does not exceed the number of negative eigenvalues of the corresponding right-definite 
problem. For all values of 0q  considered (cases where there are non-real eigenvalues), 
the smallest oscillation number is 2 and so the problem does not have a positive 
eigenfunction in (−1,2). Furthermore, the real and imaginary parts of the non-real 
eigenfunctions do not interlace which is different from the results in the one turning 
point case considered by Richardson [4]. For larger values of 0q , some non-real eigen- 
functions vanish once in ( )1, 2 ,−  since the the real and imaginary parts of such 
functions are both zero at 0.5x =  (see for example, Figure 1(b), Figure 1(d), and 
Figure 1(f)). This was not one of the observation in the paper [18] in which we only 
considered generally smaller values of 0q .  

3.2. Conclusions  

In this paper, we undertook a numerical study of the non-real eigenfunctions and 
eigenvalues of a non-definite Sturm-Liouville problem with two turning points, paral- 
leling the study in [7] in the case of one turning point. Our ultimate goal was to 
examine the behavior of the eigenfunctions, both real and non-real, of this non-definite 
Sturm-Liouville problem. 

One of the interesting observations was that the zeros of the real and imaginary parts 
of a non-real eigenfunction interlace in some subintervals of ( )1, 2−  and not on the 
whole interval, contrary to the results on the one turning point case covered in theorem 
3. Whether this is an accident or a result of a more general yet unproven theorem, is 
unknown, but we conjecture that it is so and pose this as an open question for future 
research. 

It is further observed that the complex eigenfunctions (corresponding to non-real 
eigenvalues) do not vanish in ( )1, 2− , at least for smaller values of 0q  considered in 
this paper, while for some larger values of 0q , there are cases in which the non-real 
eigenfunctions vanish once in ( )1, 2− . We note that this result seems to verify theorem 
2 which indicates that if an eigenfunction of problem (8)-(9) has to vanish, it may do so 
at most once in the interval ( )1, 2− , since in this case 2n = . However, there is need to 
establish sufficient conditions for a non-real eigenfunction to vanish in an interval, say 
( ),a b . Thus, we have our second open question. 

Furthermore, the number of zeros of the real part of each of the non-real eigen- 
functions considered is greater (by two) than the number of zeros of the imaginary part 
in some cases, while in other cases, the number of zeros of the real part is equal to that 
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of the imaginary part of a non-real eigenfunction corresponding to a non-real eigen- 
value. Also this may be a consequence of a more general theorem which we don’t know, 
so then, we have a third interesting open question for future research. 

Summing up, we mean that the research initiated in [18] and presented in detail in 
this paper has implied a number of new interesting open questions of both theoretical 
and practical importance. 
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