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Abstract 
Building detection in very high resolution (VHR) remote sensing images is crucial for many urban 
planning and management applications. Since buildings are elevated objects, the incorporation of 
elevation data provides a mean to reliable detection. However, almost all existing methods of ele-
vation-based building detection must first generate a normalized Digital Surface Model (nDSM). 
This model is generated by processes of extracting and subtracting terrain elevations from the 
DSM data. The generation of accurate nDSM is still a challenging task to some extent. This paper 
introduces a segment-based terrain filtering (SegTF) technique to filter out the terrain elevations 
directly using DSM elevations. This technique has four steps: elevation co-registration, image seg-
mentation, slope calculation, and building detection. These steps of the developed technique were 
applied to a dataset that consisted of a VHR image and a corresponding DSM for detecting build-
ings. The result of the building detection was evaluated and found to be 100% correct with an 
overall detection quality of 93%. These values indicate a highly reliable and promising technique 
for mapping buildings in VHR images. 
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1. Introduction 
Building information plays an important role in geo-information systems, and urban planning and management 
applications. The most cost-effective and widely available geo-data for mapping buildings is the remotely 
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sensed very high resolution (VHR) images. These images contain an extraordinary level of detailed information 
that allows an accurate and detailed mapping of man-made urban objects, including buildings. However, the 
high level of ground details brings many challenges for pixel-based image classification and mapping techniques. 
These challenges are caused by the spectral intra-diversity and inter-similarity of urban objects [1]. Conse-
quently, building detection in VHR images has become an active area of research for the past few years [2] [3]. 

Since buildings are elevated objects, the key feature for delineating these objects is the aboveground elevation 
information. Therefore, integrating the two dimensional VHR images with the corresponding height information 
should provide a more complete surface representation that allows reliable elevation-based building detection. 
To be ideal for detecting and mapping buildings, this representation requires accurate co-registration of the opt-
ical and elevation data as well as precise normalization of the elevation data [4] [5]. Normalizing the elevation 
data is a critical step for all elevation-based building detection procedures, and a challenging one by itself. This 
study, thus, is interested in developing a methodology that would avoid the normalization step (filtering 
bare-ground effects) that is typically required for the process of detecting buildings based on elevation data.  

Elevation data can be generated by different remote sensing techniques based on photogrammetric and Li-
DAR (light-detection-and-ranging) technologies. However, these techniques provide height information only for 
the top of surfaces such as buildings and trees; in other words, digital surface models (DSMs). Digital terrain 
models (DTMs), on the other hand, are a representation of the bare-ground (terrain) elevations. They are pro-
duced after applying classification or filtering on the DSM to identify terrain features from off-terrain objects. 
When DTMs are subtracted from their corresponding DSMs, normalized digital surface models (nDSMs) are 
created. They describe only above-terrain elevations [6] [7].  

Various filtering techniques have been developed to filter (classify) terrain from off-terrain objects in DSMs. 
Based on the data source, these techniques can be categorized as either techniques for LiDAR-based DSMs or 
techniques for photogrammetric-based DSMs [8]. On the one hand, LiDAR-based DSMs are generated from 
point-cloud data type, and generally characterized by accurate elevations, sharp edge preservation, and very low 
existence of noise or outliers. Additionally, due to the availability of the first and last return pulses, the ground 
and non-ground elevations are recorded for the same location. On the other hand, photogrammetric-based DSMs 
are derived from stereo matching of overlapping images. Hence, the resulting DSMs usually suffer from rela-
tively unreliable elevations, occlusion gaps, unclear building edges, and outliers due to mismatches in the low 
textured areas [8]. 

Sithole and Vosselman [9] reviewed eight algorithms for DTMs extraction from LiDAR point-could data. 
They concluded that all reviewed algorithms follow one of four approaches for defining ground points; slope- 
based, block-minimum, surface-based, and clustering/segmentation. In slope-based algorithms, the slope be-
tween two neighboring points is measured and compared against a threshold. The block-minimum techniques 
select a horizontal plane with a buffer zone to work as a discrimination function. Surface-based techniques use a 
parametric surface with a corresponding buffer zone that defines a region in 3D space where ground points are 
expected to reside. Finally, clustering/segmentation algorithms aggregate a set of points based on their elevation 
data and assign these points to an off-terrain object if their cluster is above its neighbors.  

Photogrammetric- or stereo-based DSMs can be derived from either airborne or space-borne stereo images. 
Directly applying LiDAR-based DSM filtering algorithms on stereo-based DSM data may fail to filter off-ter- 
rain objects, especially at building edges due to the smooth intensity transition from ground to the building roof. 
The process is further complicated by the lack of the multiple returns that are exploited by LiDAR-based DSM 
filtering algorithms. However, the existence of image data is advantageous as color and spectral information can 
be utilized for filtering the ground. An example for such approach is presented by [10], where a dense DSMs is 
generated from multiple airborne images supplemented with the results of a pixel-based classification. However, 
pixel-based classification usually produces inaccurate (noisy) thematic classes. Additionally, urban objects such 
as building roofs and parking lots have high spectral and spatial similarities that make the spectral-based tech-
niques of classification fail to distinguish one class from the other.  

For the case of DSMs generated from space-borne stereo images, Krauß and Reinartz [11] presented an ap-
pealing integration of classification information and a steep-edge detection algorithm for DTM extraction and 
DSM enhancement. However, the steep-edge detection algorithm assumes that the lower elevation at any steep 
edge represents the bare-earth. Clearly, this assumption may not be valid in many dense urban areas, for exam-
ple in the case of adjacent building roofs of different heights as well as when there is no road to separate be-
tween the buildings. Their approach was also challenged in the case of using classification information from the 
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single-band panchromatic image of Cartosat-1 that provided a very limited discrimination power [12]. 
Based on the conducted review on DTM extraction algorithms, it has been noticed that most of these algo-

rithms do not consider the existence of image data that correspond to the elevation models. Even when image 
data are incorporated, building roofs and parking lots are usually excluded due to their confusing spectral simi-
larity. Moreover, it is clearly observed that most of the DTM filtering algorithms are usually designed to process 
elevation data in either pixel or point cloud formats, hence suffering from the large size of the data. Therefore, 
different to all the reviewed techniques, if the processing unit is converted from individual pixels into image 
segments (i.e., a group of pixels), the generated segments would be less sensitive to the spectral and elevation 
variances within the objects. Additionally, these segments would also create sophisticated types of morphologi-
cal and contextual information that can help in detecting and filtering terrain-level objects [13] [14]. 

Consequently, this study argues that clustering DSM elevations based on meaningful image segments would 
achieve more reliable building detection. As such, this study takes the advantage of the availability of a VHR 
image and its relevant DSM dataset to segment the elevations. It also suggests that classifying the segmented 
objects should be based on the slopes calculated between each segment and the surrounding ones.  

In the present paper, therefore, a segment-based terrain filtering (SegTF) technique is proposed to identify off- 
terrain segments using un-normalized DSM elevations. The technique utilizes parameter-optimized image seg-
ments generated based on the image spectral information to guarantee the best possible boundary representation 
for image objects. The identification of the off-terrain segments in this technique is based on slope information 
among the optimized image segments. Considering that this is a very localized and relative operation among 
neighboring segments. Hence, as the work novelty, there is no need to normalize the DSM. An early and concise 
version of this work was presented in [15]. 

The rest of the paper is outlined as follows: the proposed SegTF technique is detailed in Section 2. The eleva-
tion-based building detection based on the developed SegTF is described in Section 3. The test data, results, and 
discussions are provided in Section 4. Finally, the drawn conclusions are given in Section 5. 

2. Segment-Based Terrain Filtering (SegTF) Technique 
Before describing the concept of the SegTF technique, is it assumed that 1) DSM elevation data are accurately 
co-registered to the relevant image, 2) the relevant image is optimally segmented, and 3) each image segment is 
abstracted by a representative point (RP) which is the segment’s inner-centroid point. Finally, 4) the average 
elevation of each segment is assigned to its RP. Figure 1 illustrates an example of a segment surrounded by its 
neighbors. The dots in this figure indicate the location of each segment’s RP. 

The concept of SegTF technique is straightforward. It calculates the slope value for each image segments with 
respect to all of its neighboring ones. For a segment to be considered a neighbor of another, a boundary must be 
shared between them. The slope values are computed as described in Equation (1). In this equation, while the 
nominator represents the elevation difference between the segment under consideration and its neighboring one,  
 

 
Figure 1. A segment, its representative point, and its neighboring segments.                 
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the denominator represents the planimetric distance between the two segments’ RPs as indicated in Figure 1. 
The technique calculates the slope information for each segment with respect to all its neighboring ones. 

( ) ( )2 2

i j
ij

i j i j

Z Z
S

X X Y Y

−
=

− + −
                                (1) 

where, Sij is the slope from the segment under consideration (i) to the neighboring segment (j); iZ  and jZ  are 
the generalized elevations for segments i and j respectively; ,i iX Y  represent the RP planimetric coordinates of 
segment (i), and ,j jX Y  represent the RP planimetric coordinates of segment (j). 

The flowchart for the process of the SegTF technique is provided in Figure 2. As shown, the algorithm loops  
 

 
Figure 2. Flowchart for the proposed segment-based terrain filtering (SegTF) algorithm. 
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through the generated segments to calculate the slopes for each segment with respect to all of its neighbors. 
Then, it examines the maximum slope value against an empirically defined threshold value (T). If the maximum 
slope value is larger than the selected threshold, then the segment is considered an off-terrain object. Otherwise, 
it would be classified as a terrain object. 

The terrain-level class includes objects like traffic areas, grass lands, water bodies, and shadows. On the other 
hand, off-terrain objects include only building and trees. The SegTF technique does not cater for the case of 
green roofs (vegetation lie on top of a building roof) in the image since this case rarely appears in urban areas. 

3. Elevation-Based Building Detection Methodology 
Based on the arguments in Section 1, the main and typical steps of the elevation-based building detection me-
thodology is intended to 1) cluster the DSM elevations based on image segmentation, and 2) filter out the ter-
rain-level objects based on the measured slope information. After incorporating the developed SegTF technique, 
Figure 3 is a flowchart for the specific five steps required to achieve building detection accordingly. The me-
thod starts by co-registering the optical and elevation datasets, followed by an optimized segmentation of the 
image. The average height for each segment is then calculated in the third step. The last two steps are for filter-
ing out the terrain-level objects, using the SegTF technique, and detecting buildings. Further descriptions for 
these steps are provided in the following subsections. 

Optical-elevation data co-registration—This step is required to integrate the elevation data in a DSM with the 
optical data of the corresponding VHR imagery. Optical-elevation data co-registration can be implemented in a 
straightforward fashion using image-to-image registration techniques that use 2D mapping functions and a set of 
matching points. However, this type of co-registration will suffer from severe misregistration when the VHR 
image is acquired off-nadir [4]. In this case, the solution of line-of-sight DSMs is recommended for achieving 
co-registration with sub-pixel accuracy. This solution is based on incorporating sensor model information for 
accurate co-registration as introduced by Suliman and Zhang [4]. 

Image optimized segmentation—After achieving a successful co-registration, the VHR image needs to be 
segmented to reduce its complexity. The image segmentation technique to be used must divide the image into 
objects based on a measure of color or spectral homogeneity. Baatz and Schäpe [16] developed a multiresolution 
segmentation technique that was found later to be one of the most appropriate techniques for segmenting VHR  

 

 
Figure 3. Flowchart for the elevation-based building detection methodology.                    
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images in urban areas [17]. The results of implementing this technique depend heavily on the selected values for 
the segmentation parameters (scale, compactness, and smoothness). Trial-and-error approach is usually followed 
until an acceptable result is achieved. To remedy this situation, Tong, Maxwell, Zhang and Dey [18] developed 
a Fuzzy-based Segmentation Parameter (FbSP) optimizer. It is a supervised segmentation tool for automated 
determination of the optimal parameters for the multiresolution segmentation. Hence, this tool is recommended 
for the proposed building detection methodology. 

Height generalization—This step calculates and assigns elevation values to the RPs of the segments generated 
by the previous step. The boundary of each image segment is first converted into a polygon in a vector format. 
Each polygon typically contains several elevation values enclosed within its boundary. Each polygon should be 
assigned only one elevation value that is simply the average of these elevation values. This generalization by 
averaging mitigates any error caused by misregistration between the two datasets as well as removes the effects 
of elevation outliers resulting from stereo-based approaches. 

The RPs are used to abstract the image segments in point features. Hence, these RPs must be guaranteed to be 
within their corresponding segments. For the convex polygon shapes, this representative point is the centroid 
that lies inside the polygon boundary. However, if the centroid point lies outside the boundary, then the repre-
sentative point shall be the center of the largest circle that fits inside the polygon as introduced by Gar-
cia-Castellanos and Lombardo [19]. Examples of such inner-centroids contained within their segments are 
shown earlier in Figure 1. 

Segment-based terrain filtering (SegTF) technique—By now, each segment has one elevation value assigned 
to its RP and indicating the height of that segment above the vertical/elevation datum. The vertical dimension of 
the RPs is the object-space elevation, while the horizontal dimensions are the image-space coordinates. The 
slopes between each segment and all of its neighbors can now be calculated. The distances between the RPs and 
the generalized elevations are used to detect the off-terrain objects as described in the SegTF technique (Section 2).  

Building detection and post-processing—Once off-terrain objects are detected based on executing the SegTF 
technique, the results usually need to be post-processed for enhancement. Some off-terrain objects may have 
been over-segmented into some smaller objects. In this case, thus, the finishing step shall include merging the 
neighboring off-terrain segments. Furthermore, there may be some small objects (have the noise appearance) 
that were misdetected because of their elevations. Such objects can be removed following an area-based thre-
sholding. However, prior to the merging of segments, the off-terrain objects detected in the previous step include 
building roofs and trees. Thus, building segments need to be further discerned from other non-building objects. 
Additionally, specific scenarios were noticed in early experiments where SegTF technique would fail in identi-
fying a building. Most of these incidents can be resolved by applying rule-based filtering or morphological func-
tions. 

One such case is caused by the existence of large trees in the scene. Fortunately, vegetation objects can be 
identified easily using vegetation indices based on the spectral information of the VHR images. However, this 
does not work in the case of trees without leaves. In this case, the standard deviation of the elevations within 
each segment can be used as a discrimination feature. Building roofs have a smoother texture than trees do and, 
hence, have relatively lower values of standard deviations. 

Another case may arise when some objects related to shadow areas are detected as elevated objects. This situ-
ation is caused when a shadow segment covers a part of the building and, thus, incorporates its elevations in its 
generalized elevation. This situation may also be caused by a slight misregistration between the image and ele-
vation data at the edges of buildings. In this scenario, the average of brightness values in the relevant segment 
shall provide a simple delineation component to exclude shadows from the detected off-terrain objects.  

A third case noticed in the early experiments is related to the small and slightly elevated objects on top of 
building roofs. SegTF technique cannot detect such objects surrounded by other roof segments since they have 
slope values lower than the selected threshold. To resolve this, a rule can be applied to assign the class of build-
ing rooftop to any segment surrounded completely by building segments.  

4. Datasets and Experiments  
4.1. Test Data  
The datasets used in this study were a VHR airborne imagery acquired by ADS40 linear array sensor along with 
the corresponding LiDAR-based DSM for the same area. The datasets cover an area in Woolpert, Colorado, US 
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as shown in Figure 4. The ground resolution of the VHR imagery is 0.5 m, while the LiDAR DSM has a resolu-
tion of 2.5 m. 

4.2. Experimental Results and Discussion  
Since the image is of a nadir view, a direct image-to-image co-registration was implemented as it was deemed 
sufficient to yield successful co-registration between the image and the DSM. The image was then segmented 
using multiresolution segmentation algorithm. Because the achieved segmentation result was not acceptable 
even after a few trial-and-errors, the segmentation parameters were optimized by executing the FbSP tool. Fig-
ure 5 illustrates the initial image segmentation and the optimized result after executing the FbSP tool. 

The boundary of each image segment was then converted into a polygon and representative points (RP) were 
generated. Finally, the DSM elevations were generalized by assigning each RP the mean value of all elevation 
values within the corresponding segment. Figure 6 shows the calculated RPs for all of the generated polygons 
along with the generalization of the co-registered DSM.  

Thereafter, the SegTF technique was implemented after a Python tool was developed to conduct this task au-
tomatically. At each RP, slopes to the neighboring segments were calculated; the maximum value of these 
slopes was compared against a threshold value. This threshold was determined empirically to reflect the ex-
pected gradient of urban areas. 

 

  
(a)                                         (b) 

Figure 4. Test data used in the study: (a) VHR imagery; (b) LiDAR-based DSM.                                     
 

  
(a)                                         (b) 

Figure 5. Results of image segmentation: (a) Initial result; (b) Optimized segmentation us-
ing FbSP tool.                                                                         
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(a)                                         (b) 

Figure 6. Generalization of elevations: (a) RPs and polygons of image segments; (b) Gene-
ralized DSM elevation.                                                                         

 
The detection result was post-processed after applying the thresholding criterion and map roughly the build-

ing roofs. Figure 7(a) shows the initial detection result. Trees and shadow segments were detected as off-terrain 
objects, while some roof objects were missed. The standard deviation values were calculated for all detected 
off-terrain polygons. The values higher than the 30 percentile of the standard deviation range were deemed 
representing tree branches and, hence, eliminated from the class of buildings. Likewise, the brightness of the all 
VHR bands was calculated and the values lower than the 20 percentile of the brightness range were eliminated 
from buildings class since they considered representing shadows attached to building edges and have some high 
elevation values.  

While Figure 7(b) shows the achieved result after detecting trees and shadow segments, Figure 7(c) shows 
the result after excluding these segments. After that, the remaining segments were merged and the segments 
surrounded by building segments were assigned to the building object detection result. The final finished build-
ing detection result in Figure 7(d). 

4.3. Accuracy Assessment 
To assess the quality of the detection, this study adopts the commonly used performance measures of complete-
ness, correctness, and overall quality. While completeness is the percentage of entities in the reference data that 
are successfully detected, correctness indicates how well the detected entities match the reference data. Finally, 
the overall quality of the results provides a compound performance metric that balances completeness and cor-
rectness. The formulas for these three measures are expressed as follows: 

( ) ( )
TPCompleteness Comp.

TP FN
=

+
                             (2) 

( ) ( )
TPCorrectness Corr.

TP FP
=

+
                               (3) 

( ) ( )
TPOverallQuality OQ.

TP FN FP
=

+ +
                            (4) 

where the true positive (TP) is the number of building objects appear in both detection result and the reference 
data. The false negative (FN) is the number of building objects in the reference dataset that are not detected. The 
false positive (FP) represents the number of building objects that are detected but do not correspond to the ref-
erence dataset [20]. 

For the purpose of accuracy assessment, a reference dataset was generated manually by visually identifying 
and digitizing all buildings in the test image. The detection performance measures were then calculated and 
listed in Table 1. The total areas in pixels of true positive (TP), false negative (FV), and false positive (FP) were  
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Figure 7. Intermediate results in building detection: (a) Initial SegTF filtering result; (b) Detected trees 
and shadows segments; (c) After removing trees and shadows segments; (d) The final finished building 
detection result.                                                                         

 
Table 1. Buidling detection accuracy measures.                                                         

Completeness Correctness Overall Quality 

93% 100% 93% 

 
used as the input entities in the equations for performance measures. 

Based on Table 1, the detection result was 100% correct. This means that all detected buildings are also in the 
reference dataset without any false positive. Thus, this value indicates a high level of reliability for the results of 
the developed technique. On the other hand, the completeness measure indicates that 7% of building pixels were 
missed from being detected. The main reason for this condition is that roof segments surrounded by other roof 
objects of the same or slightly different elevations would have a very small slope values. Therefore, they would 
not pass through the filter and would not be considered as building objects. However, the post processing and fi-
nishing procedures are capable to improve the detected building objects. 

Finally, the overall quality performance value of 93% shown in this table signifies the capability of the de-
veloped algorithm and its usefulness in detecting buildings. This quality is also depicted visually in the finished 
detection results in Figure 7(d). 

The high success rate for detecting buildings based on the SegTF technique is attributed to three reasons that, 
at the same time, validate the premise for this research; 1) the incorporation of the elevation information with 
VHR imagery, 2) achieving successful and accurate image-elevation data co-registration, and 3) reducing the 
sensitivity to the misregistration by segmenting the surface and averaging the elevation within the boundaries of 
each segment 

5. Conclusions 
This paper introduced the Segment-based Terrain Filtering (SegTF) technique that aims to filter out terrain fea-
tures from a DSM. Based on the un-normalized DSM elevations, this technique calculates slope information 
among image segments to distinguish the off-terrain from the terrain ones. Considering the technique is founded 
on a very localized and relative operation, its novelty lies in detecting off-terrain segments without the need for 
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extracting the DTM elevations. 
The validity of the SegTF technique is demonstrated through elevation-based building detection in VHR re-

mote sensing imagery. Using radiometric-based image segments and co-registered DSM elevations, the tech-
nique was able to identify building roof objects without generating nDSM elevations as it is typically required in 
most elevation-based building detection methods. The result of building detection was evaluated and found to be 
100% correct with an overall detection quality of 93%. These values indicate a highly reliable and promising 
technique for detecting buildings in remotely sensed VHR images.  

There were few incidents when the SegTF algorithm was challenged. Two of these incidents are associated 
with segments corresponding to trees (without leaves) and building shadows. In both cases, the generalized ele-
vation for such a segment is an aggregate of elevations for different objects within the segment. Another case is 
actually when the thresholding operation missed detecting building roof segments that are completely sur-
rounded by other roof segments. Most of these limitations can easily be corrected in the finishing and 
post-processing step. Nevertheless, a more robust treatment of these cases should be considered. Hence, future 
research will address these cases in addition to other challenges associated with more complex and extended size 
urban environments. 
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