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Abstract 
We focus on the single layer formulation which provides an integral equation of the 
first kind that is very badly conditioned. The condition number of the unprecondi-
tioned system increases exponentially with the multiscale levels. A remedy utilizing 
overlapping domain decompositions applied to the Boundary Element Method by means 
of wavelets is examined. The width of the overlapping of the subdomains plays an 
important role in the estimation of the eigenvalues as well as the condition number 
of the additive domain decomposition operator. We examine the convergence analysis 
of the domain decomposition method which depends on the wavelet levels and on 
the size of the subdomain overlaps. Our theoretical results related to the additive 
Schwarz method are corroborated by numerical outputs. 
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1. Introduction 

Integral equation simulations have useful applications in synthetic medical design and 
molecular docking. The challenges to be confronted when treating a BEM (Boundary 
Element Method) simulation are multiple. First, the resulting BEM-matrix is dense if 
classical polynomial basis functions are used. Second, the matrix entries are usually in-
tegrals admitting 4D integrands which are singular. In addition, the matrix density re-
sults in a large memory capacity requirement which leads to the need of a dense linear 
solver for standard polynomial bases. On the other hand, the advantage of BEM [1]-[5] 
over the traditional FEM (Finite Element Method) [6]-[8] is that one needs only small-
er geometric data [9] because light-weight 2D-surfaces are utilized instead of massive 
3D-meshes. That is especially true if one is only interested in the solution on the surface 
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of a given geometry or in the infinite domain exterior to the geometry as frequently 
occurring in quantum simulations. In addition, the convergence is substantially faster 
because only a small degree of freedom is sufficient to attain a precise BEM approxima-
tion. Wavelets [1] [10]-[12] partially serve as a remedy to the former challenges as they 
compress the dense matrices into quasi-sparse ones [13]-[16]. In the BEM framework, 
there are generally two formulations (first kind and second kind) which have their own 
advantages and drawbacks. The first kind formulation admits a weakly singular kernel 
while the second one admits a double layer kernel. Therefore, the computation of the 
integrals for the first kind is comparatively more efficient. On the other hand, the first 
kind formulation produces a system which is badly conditioned as the condition num-
ber escalates exponentially with the wavelet levels. In contrast, the second kind formu-
lation produces a system which admits a bounded condition number if the multiscale 
wavelet basis is used. The purpose of this document is to remedy the bad conditioning 
of the first kind formulation. We will use domain decomposition techniques [17]-[19] 
to overcome that bad conditioning of the weakly singular BEM. That amounts to de-
composing the whole surface into subdomains which are overlapping in our case. Each 
subdomain will be an amalgamation of surface patches. We will utilize only the additive 
version of the domain decomposition which is thus equivalent to a block Jacobi struc-
ture. The width of the subdomain overlaps will play an important role in the conver-
gence guarantee of the additive domain decomposition. A graph decomposition into 
subgraphs is applied to carry out the domain decomposition in practice. Before going 
into details, a short survey of related past works is in order. A splitting method for CAD 
surfaces has been proposed in [20] for BEM simulation. Additionally, methods for 
checking the regularity of the mappings have been proved in [21]. While approxima-
tions are required to obtain global continuity in [21] [22] for CAD objects, it can be 
achieved exactly for molecular surfaces in [23] [24]. Furthermore, a real chemical si-
mulation by using wavelet BEM is described in [25] for the quantum computation. The 
surface structure which is required by the wavelet-BEM is unfortunately very compli-
cated to construct in contrast to the standard mesh generation [26]. Domain decompo-
sition of BEM using triangular meshes is found in [2] which is also important because 
many valuable surface geometries (e.g. from 3D-scanner) are only available in triangu-
lar forms. Apart from additive methods, multiplicative ones are treated in [4] where 
planar four-sided patches are utilized. Besides, multigrids [27]-[29] propose an efficient 
method to alleviate the bad conditioning of linear systems originating from partial dif-
ferential equations and integral equations. The use of multigrid for the treatment of 
pseudo-differential operators of order minus one has been examined in [28] which is 
applicable to weakly singular kernels. 

1.1. Principal Contributions 

We want to highlight here our main contributions in the theoretical and practical signi-
ficances. We elaborate mathematical proofs which guarantee the convergence of the 
additive Schwarz method. For a decomposition { } 1

M
p p=

Ω  of the surface Γ , the ASM op-
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erator is used together with the single layer bilinear form ( ),⋅ ⋅ . Our first contribution 
consists in the theoretical estimation of the smallest eigenvalue of the domain decom-
position method. That is, for an arbitrary ( )Lu∈ Γ  on the maximal level L, there is 

( )p pu ∈ Ω  satisfying the representation  

1

M

p
p

u u
=

= ∑
 

such that the single layer bilinear form ( ),⋅ ⋅  fulfills  

( ) ( )
1

, , .
M

p p
p

u u cL u u
=

≤∑ 
 

The significance of the above upper bound is that the ASM operator with respect to 
the weakly singular bilinear form ( ),⋅ ⋅   

1 M
P P PΩ Ω= + +

ASM
Γ  

verifies on the maximal level L the eigenvalue lower bound 

( ) ( )min 1 .P c Lλ ≥ASM
Γ  

Our next contribution is the theoretical estimation of the largest eigenvalue of the 
domain decomposition method. The involvement of the overlap size ( )dist ,p p∂Ω Ω  of 
the subsurfaces in the condition number is analytically examined. For an arbitrary 
function ( )Lu∈ Γ , we have 

( )
( )

( )
3

55 =1
1, ,

, 1 , .
2 min dist ,

M

p pL p
i M i i

Lu u c u u
=

    ≤ +     ∂ 
∑





 
Ω Ω

 
That is significant in deducing the upper estimate  

( )
( )

3

max 55
1, ,

1 .
2 min dist ,L

i M i i

LP cλ
=

 
 ≤ +
 ∂ 



ASM
Γ

Ω Ω
 

The main significance of this study is to provide a rigorous preconditioner which is 
theoretically demonstrated to reduce the condition number. We have an analytical de-
duction of the condition number which does not grow exponentially with the multis-
cale level. Indeed, the condition number admits the upper bound  

( )
( )

4

55
1, ,

.
2 min dist ,L

i M i i

LP c Lκ
=

 
 ≤ +
 ∂ 



ASM
Γ

Ω Ω
 

As for the practical contribution, we present outcomes from computer implementa-
tions which originate from molecular patches. We use realistic geometries consisting of 
molecular surfaces on our domain decomposition. The implementation is complete and 
not just some part of the theory is illustrated. In particular, the BEM linear system as 
well as the domain decomposition technique has been implemented completely. We 
contribute in practically exhibiting that the domain decomposition method admits a 
significant advantage over the unpreconditioned system. A lot of reduction of the itera-
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tion number is achieved. By growing the multiscale levels, the required iteration counts 
grow only very slowly in contrast to the unpreconditioned system whose iteration 
counts increase significantly fast. In addition, we contribute in utilizing a graph based 
approach to practically assemble the domain decomposition for the BEM application. 

1.2. Advantage over Previous Works 

We will describe now the principal advantages of our approach compared with pre-
vious methods. An incomplete Cholesky factorization has been recently used in [30] for 
the preconditioning of the BEM linear system. The principal advantage of the domain 
decomposition over the Cholesky factorization is that the subproblems (see later (62)) 
in the additive Schwarz method can be solved independently. As a consequence, if a 
multiprocessor or a parallel computer is at disposition, the subproblems involving 

p
PΩ  

can be solved simultaneously by different processors. That is, solving the subproblems 
requires no interprocessor communications. In contrast, the Cholesky factorization 
must be solved as a single large entity at once. 

A reverse Schur preconditioning technique for use in hierarchical matrices has been 
newly described in [31]. Hierarchical matrices are entirely other techniques for treat-
ing BEM. Their method is fundamentally different from wavelet method because they al-
ready take another approach from the starting setup by using meshes in addition to po-
lynomial bases which are very well suited for triangular meshes. The H-matrix method is 
based on approximation of the integral kernels. The advantage of our method is that we 
use the original form of the kernels. In addition, the patchwise geometric structure here 
fits well with domain decompositions which can be applied to distributed computing. 

In term of domain decompositions [17] [19], our presented method is somewhat in-
novative in the application of additive method to wavelet BEM for free-form curved 
patches because the currently available methods in domain decompositions are well 
developed only for finite element method and finite volume method. In the framework 
of BEM, the domain decomposition techniques are mostly restricted to polynomial 
bases. Domain decompositions on four-sided patches have been utilized in [4] but they 
considered only planar patches admitting edges which are parallel to the axes. We are 
not aware of any more recent generalization of [4] to curved patches. A direct compar-
ison is somewhat difficult because our geometric patches form closed and free-form 
NURBS manifolds. In addition, they use standard polynomial basis. An advantage of 
the presented method here is that we use wavelet basis which yields a quasi-sparse li-
near system that enables faster matrix-vector multiplications. It is beyond the scope of 
this document to reproduce all the programming tasks that the other authors had im-
plemented for their own approach. Therefore, we base our work on rigorous mathe-
matical theory while the computer results are mainly for illustrative purpose to prac-
tically exhibit the remedy of the problem of exponential condition number. 

2. Weakly Singular Integral on Patched Manifold 

This section is occupied by the presentation of the integral equation of first kind which 
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is formulated on a boundary surface Γ  that is decomposed into four-sided patches. 
After presenting the required surface structure, we will introduce the problem setting as 
well as the variational formulations using a nested sequence of subspaces. We suppose 
the geometry Γ  satisfies the following conditions.  
• We have a covering of the surface by four-sided patches 

1

N
pp=

=


Γ Γ ,  
• The intersection of two different patches pΓ  and qΓ  is supposed to be either emp-

ty, a common curvilinear edge or a common vertex,  
• Each patch pΓ  where 1,2, ,p N= 

 is the image by [ ]2: : 0,1p p= → Γγ  which is 
described by a bivariate function that is bijective, sufficiently smooth and admitting 
bounded Jacobians,  

• The patch decomposition has a global continuity: for each pair of patches pΓ , qΓ  
sharing a curvilinear edge, the parametric representation is subject to a matching 
condition. That is, a bijective affine mapping : →Ξ    exists such that for all 

( )p s=x γ  on the common curvilinear edge, one has ( ) ( )( )p qs s= Ξγ γ . In other 
words, the images of the functions pγ  and qγ  agree pointwise at common edges 
after some reorientation,  

• The manifold Γ  is orientable and the normal vector ( )n x  is consistently point-
ing outward for any ∈Γx .  

An illustration of the above surface structure is depicted in Figure 1. The CAD re-
presentation of the former mappings pγ  uses the concept of B-spline and NURBS [20] 
[32] [33]. Consider two integers ,n k  such that 1n k≥ ≥ . The interval [0,1] is subdi-
vided by a knot sequence ( ) 0

n k
i i
τ +

=
=τ  such that 1i iτ τ +<  for 1, , 1i k n= − −  and such 

that the initial and the final entries of the knot sequence are clamped  

0 1 0kτ τ −= = =  and 1n n kτ τ += = = . One defines the B-splines [32] [34] [35] basis 
functions as  

( ) ( )[ ]( ) [ ]1, : , , for 0, , and 0,1kk
i i k i i i kN t t i n tτ τ τ τ −

+ + +
= − ⋅ − = ∈ 

τ

 
where we employ the divided difference 1, , ,i i p fτ τ τ+    in which we use the trun-
cated power functions ( )kt

+
⋅ −  given by ( ) ( ):k kx t x t

+
− = −  if x t≥ , while it is zero 

otherwise. The integer k controls the polynomial degree 1k −  of the B-spline which  
 

 
Figure 1. Patch representation of a Water Cluster with 1089 NURBS. 
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admits an overall smoothness of 2k−  while the integer n controls the number of 
B-spline functions for which each B-spline basis ,k

iNτ  is supported by [ ],i i kτ τ + . The 
NURBS patch pγ  admitting the control points 3

,i j ∈d  and weights ,i jw +∈  is 
expressed as  

( )
( ) ( )

( ) ( )
( )

, ,
, ,

0 0 3

, ,
,

0 0

, , , .

n n
k k

i j i j i j
i j

p n m
k k

i j i j
i j

w N u N v
u v u v

w N u N v

= =

= =

= ∈ ∀ ∈
∑∑

∑∑
 

d τ τ

τ τ
γ          (1) 

We will consider only geometries which are globally smooth and which admit mod-
erate curvature. For each patch pΓ , the Gram determinant is denoted by  

( ) ( ) ( ) ( ) ( )1 2 1 2
1 2

, : , .p p
p pG G t t t t

t t
∂ ∂

= − × ∀ = ∈
∂ ∂

t t
t t

γ γ
          (2) 

After transformation onto [ ]20,1= , the 2 -scalar product and 2 -norm are ex-
pressed respectively as  

( ) ( )( ) ( )( ) ( ) ( ) ( )2 2 2
1 2

1
, : d , , .

N

p p p
p

u v u v G v v v
=

= =∑∫Γ Γ Γt t t tγ γ          (3) 

Upon the whole surface Γ , we use the Sobolev semi-norm  

( )

( )( ) ( )( )
( ) ( )

( ) ( )1 2

2

2
2

1 1
d d .

N N p q
p q

p q
p q

v v
v G G

×
= =

−
=

−
∑∑∫ Γ

t γ
t t

t

γ θ
θ θ

γ γ θ
          (4) 

We will use the next Sobolev space on the manifold Γ   

( ) ( ) ( ){ }1 2
1 2 2 :v v= ∈ < ∞ΓΓ Γ                      (5) 

where 

( ) ( ) ( )1 2 2 1 2
2 2 2 .v v v= +Γ Γ Γ  

                      (6) 

We introduce also the dual space ( ) ( )
*1 2 1 2 =  Γ Γ   equipped with the dual 

norm  

( )
( )

( ) ( )1 2 2 1 2
1 21 2

0
sup , .

v
u u u v v

−
≠ ∈

= =Γ Γ Γ
Γ

  


               (7) 

By designating the 3D region enclosed within Γ  by Ω , our objective is to solve the 
next interior problem with Dirichlet boundary condition for a given ( )1 2g ∈ Γ :  

( )
( ) ( ) 1

0 for

for .N
pp

g
=

∆ = ∈


= ∈ = ∂ = 





x x Ω

x x x Γ Ω Γ
                (8) 

We make now the change of unknown by using the density function ( )1 2u∈ Γ   

( ) ( )1 1 d .
4π

u=
−∫ ΓΓ

x y y
x y

                     (9) 

Introduce the single layer operator ( ) ( )1 2 1 2: − →V Γ Γ   such that for ( )1 2v −∈ Γ   
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( )( ) ( )1 1 d for .
4π

v v= ∈
−∫ ΓΓ

V x y y x Γ
x y

             (10) 

The continuous problem is to search for ( )1 2u −∈ Γ  such that  

.u g=V                              (11) 

Once the solution u to the integral Equation (11) becomes available, the solution   
to the initial problem (8) is obtained by applying (9). For the discrete Galerkin varia-
tional formulation, we consider a nested set of finite dimensional spaces  

( ) ( ) ( ) ( )0 L⊂ ⊂ ⊂ ⊂ ≡


    Γ Γ Γ Γ              (12) 

whose construction will be specified later on. By discretizing (11) in each subspace 
( )



 Γ , one has ( )u ∈
 

 Γ  such that  

( ) ( ) ( ) ( ) ( ) ( ), d d du v g v v= ∀ ∈∫ ∫ ∫    

 Γ Γ ΓΓ Γ Γ
x y x x x y x x x Γ      (13) 

which is a boundary integral equation of the first kind where we use the kernel  

( ) 1 1, : .
4π

=
−

 x y
x y

                        (14) 

We are only interested in the solution Lu  to (13) for the finest space  
( ) ( )L≡ Γ Γ  corresponding to the maximal level L. We will use the bilinear form 
( ),⋅ ⋅  defined as  

( ) ( )1 2 1 2: ,− −× → Γ Γ                        (15) 

( ) ( ) ( ) ( ), : , d d .u v u v
×

= ∫  Γ ΓΓ Γ
x y x x x y                 (16) 

The Gram determinant pG  and its partial derivatives are assumed to be bounded  

( ) ( )
1, , 1, ,

0 min inf max sup ,p pp M p M
c G G C

= ∈ = ∈
< ≤ < ≤ < ∞

  t t
t t             (17) 

( ) ( ) ( )
1 2 1 2

1 2

sup sup , ,p pG G C t t
t tα α

∈ ∈

∂
∂ = ≤ < ∞ =

∂ ∂ t t
t t t

α

α          (18) 

for ( )1 2,α α=α  where 1 2α α η= + ≤α  for η  sufficiently large. The Galerkin var-
iational formulation with respect to a finite dimensional space spanned by ( ) 1

m
α α

ψ
=

  
uses the approximating functions ( ) ( ) ( )1

m
Lu u α

αα ψ
=

= ∑ x x  where  
( ) ( )1T : , , m mu u = ∈    are the BEM-unknowns. The linear system =   is even-

tually obtained such that the matrix entries and the right hand side are respectively  

( ) ( ) ( ) ( ),
1 1

: , d d
p qp q

N N

p q
α βα β ψ ψ

= =

= ∑∑∫ ∫   Γ ΓΓ Γ
x y x y x y             (19) 

( ) ( )
1

: d .
pp

N

p
gα αψ

=

= ∑∫  ΓΓ
x x x                      (20) 

The determination of a matrix entry ( ),α β  calculates an integration in 4D where 
the integrand is highly nonlinear and possibly singular depending on the patch pair 

p q×Γ Γ . By using tensor product B-spline wavelet basis functions, the matrix   be-
comes quasi-sparse. In contrast to the second kind formulation, the weakly singular 
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integral equation produces a symmetric positive definite matrix which is very badly 
conditioned. Since the stepsize of the discretization is of the form ( )2 Lh −=  for the 
maximal level 1L ≥ , the smallest and largest eigenvalues [36] for the current 3D prob-
lem are as follows  

( ) ( ) ( ) ( )3 3 2 2
min max2 and 2 .L Lh hλ λ− −= = = =             (21) 

That means, the condition number increases exponentially as ( )2L . In this docu-
ment, we intend to remedy this problem of bad conditioning by using the ASM (Addi-
tive Schwarz Method) form of the domain decomposition. It consists in splitting the 
whole surface Γ  into several subdomains pΩ . The ASM method is similar to the 
block Jacobi while the MSM (Multiplicative Schwarz Method) [4] is similar to the block 
Gauss-Seidel. In contrast to the multiplicative case, the ASM fits very well with parallel 
computations in practice because every processor can treat its own subdomains with a 
minimal interprocessor communication. There are two versions of domain decomposi-
tion: the overlapping and the non-overlapping ones. We treat in this document the 
overlapping domain decomposition but the construction of the decomposition starts 
from a non-overlapping one. In our case, each subdomain pΩ  constitutes of a set of 
patches. For a function u defined on the surface Γ  and functions pu  defined on the 
subsurface pΩ  such that 

1
M

ppu u
=

= ∑ , the key ingredient for a functional domain de-
composition method is the following equivalence:  

( ) ( ) ( )1 2
1 1

, , ,
M M

p p p p
p p

c u u u u c u u
= =

≤ ≤∑ ∑                  (22) 

whose verification is the purpose of this document. 

3. Multiscale Wavelet Galerkin Formulation 

This section will be occupied by the construction of the nested subspaces (12) on the 
whole surface Γ . First, we will introduce the subspaces by using the single-scale bases. 
We present afterward the multi-scale basis which is more efficient with respect to the 
first kind integral equation. Since we have a four-sided decomposition, constructing the 
wavelet basis on the unit square   is sufficient to form basis functions on the whole 
surface Γ . On level 0,1, , L=  , we introduce the knot sequence  

{ } [ ]0 1 2
, , , 0,1 , where 2 .i iζ ζ ζ ζ −= ⊂ =



     

ζ              (23) 

The internal knots on the next level ( )1+  are obtained by inserting one new knot 
inside two consecutive knots on the lower level  . Introduce the piecewise constant li-
near space in the unit interval [ ]0,1  on level  :  

[ ]
1 ,

0,1 : span , 1, , 2
i i

i i
ζ ζ

φ χ
− 

 

 = = = 
 

 

 



                (24) 

where Dχ  designates the characteristic function having unit value in D and zero value 
beyond D. By using the two scale relation  

( ) ( ) ( ) [ ]0 0 0
1 1 12 2 1 for all 0,1t t t tφ φ φ= + − ∈               (25) 
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and the inclusion 1+⊂ ζ ζ , the spaces [ ]0,1


  form a nested sequence of subspac-
es:  

[ ] [ ] [ ] [ ]0 1 20,1 0,1 0,1 0,1 .L⊂ ⊂ ⊂ ⊂                  (26) 

On each patch pΓ  ( 1, ,p N= 
), we define the piecewise constant space on level 

0,1, , L=   as  

( ) ( ) ( ) ( )

2
1

, ,
, 1

: , .p i j pi j i j
i j

d dφ φ −

=

   = ⊗ ∈    
∑


 



 Γ γ              (27) 

On the whole surface 
1

N
pp=

=


Γ Γ , we define  

( ) ( ) ( )1: N= ⊕ ⊕
  

  Γ Γ Γ                   (28) 

with the dimensionalities  

( ) ( ) 2dim where : dim 2 1, , .pNn n p N = = = ∀ =    


   

 Γ Γ     (29) 

It is deduced from the above construction that we have the inclusion  
( ) ( )1+⊂

 

 Γ Γ . We will denote the orthogonal projection with respect to the 2  
scalar product onto ( )



 Γ  by 


  such that  

( ) ( ) ( )
22

, , .v w v w w= ∀ ∈
 

 ΓΓ Γ                 (30) 

Since the single-scale basis functions ( ) 1
i j pφ φ −⊗ 

γ  produce dense matrices, we will 
introduce another basis which spans the space ( )



 Γ . On account of the nestedness 
(26), the space [ ]0,1



  can be expressed as an orthogonal sum  

[ ] [ ] [ ]10,1 0,1 0,1−= ⊕
  

                        (31) 

with respect to the 2 -scalar product where [ ]0,1


  is the complementary wavelet 
space  

[ ] [ ]
[ ]

[ ]{ }2 10,1
0,1 span 0,1 , , 0, 0,1 .i iψ ψ φ φ −= ∈ = ∀ ∈ 

  
          (32) 

For the explicit expression of the wavelet functions iψ  , we use the Haar wavelet de-
fined on [ ]0,1  by  

( ) [ )
( ) [ ]

( )1

0

: 1 for 0,1 2
such that d 0

: 1 for 1 2,1

t t
t t

t t

ψ
ψ

ψ

 = + ∈ =
= − ∈

∫
Haar

Haar
Haar

        (33) 

whose relation with the single scale basis is such that [1/2,1][0,1/2)= χχψ −Haar . By using 
dilation and shift, one obtains for 1, , L=   and 11, , 2i −= 

   

( ) ( ) ( ) ( ) ( )
1 2 1

22 12 2 1 where Support , .i i iit t iψ ψ ψ ζ ζ− −
−

 = − + =  


    Haar     (34) 

The wavelet functions constitute an orthonormal basis  

( ) ( )1 2
1 2 1 21 2

1
, ,0

d i ii it t tψ ψ δ δ=∫  

 

                     (35) 

where the first Dirac 
1 2,δ
 

 comes from the inter-level orthogonality while the second 
Dirac 

1 2,i iδ  is justified by the non-overlapping of ( )1
Support iψ   and ( )2

Support iψ   on 
the same level. By applying the decomposition (31) recursively, one obtains on the max-
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imal level L  

[ ] [ ] [ ] [ ]0
1 0

0,1 0,1 0,1 0,1 ,
L L

L
= =

 = ⊕ = 
 
⊕ ⊕

 

 

                 (36) 

where 

[ ] [ ] 0 0
0 0 1 10,1 : 0,1 and :ψ φ= =                    (37) 

so that we have the dimensionalities  

[ ]( ) 1
0: dim 0,1 where 1 and 2 , 1, , .Lω ω ω −= = = ∀ =

  

         (38) 

A function [ ]0,1Lu∈  has two representations: in the single-scale basis and in the 
multiscale basis, we have respectively  

( ) ( )
2

1
where ,

L
L

i i i
i

u t u t uφ
=

= ∈∑ S.Sc. S.Sc.                     (39) 

( ) ( ), ,
0 1

where .
L

k k k
k

u t u t u
ω

ψ
= =

= ∈∑∑




 



M.Sc. M.Sc.                 (40) 

The next norm equivalences related to the coefficients are valid [1] [16] 

[ ] { } { }2 2 21 2 ,0,1 ,i ki k
u c u c u= =









S.Sc. M.Sc.
                 (41) 

with constants 1c  and 2c  independent on the levels. Due to the property (35) and 
( )1 0

10
d 1t tφ =∫ , the orthogonal projection of any [ ]0,1Lu∈  onto [ ]0,1q  verifies  

[ ]2 0,10 1
, .

q

q k k
k

Q u u
ω

ψ ψ
= =

= ∑∑


 




                      (42) 

The 2D-wavelet spaces on the unit square   is defined for any level 0,1, , L=   
as follows  

( ) [ ] [ ] [ ] [ ]( )1 2
1 20 0

: 0,1 0,1 0,1 0,1 .
= =

= ⊗ = ⊗⊕⊕
 

    

 

             (43) 

We have therefore  

( ) ( ){ }
( ){ }1 2

1 2 1 2

1

1
1 2 1 2

:

span : , 0, , ; 1, , ; 1, , .

p p

k k p

f f

k kψ ψ ω ω

−

−

= ∈

= ⊗ = = =

 

 

 



      

 Γ γ

γ
 

With respect to the wavelet basis functions, the integrals in (19) and (20) become  

( ) ( ) ( ) ( ) ( ) ( ) ( ),
1 1

, d d
N N

p p p q
p q

G Gα βα β ψ ψ
×

= =

 =  ∑∑∫ 
 u γ v u v u v u vγ      (44) 

( ) ( ) ( )
1

d ,
N

p p
p

g Gα αψ
=

 =  ∑∫ u u u uγ                  (45) 

where 

( )1 2
1 2 1 1 2 2, , ,k k k kαψ ψ ψ α α= ⊗ = 

                 (46) 

( )1 2
1 2 1 1 2 2, , , .r r

q q q r q rβψ ψ ψ β β= ⊗ =                (47) 



M. Randrianarivony 
 

1808 

Before embarking to the next statement, let us enumerate the 2D-basis  
1 2
1 2k kαψ ψ ψ= ⊗   which are on different levels 0, , L=  . The indices of the basis αψ  

which are on level   or lower are  

( ){ }1 21 1 2 2 1 2 1 2, , , : , 0, , , 0, , , 0, , .k k k kα α ω ω= = = = =
  

       
 

Similarly for level ( )1−   

( ){ }1 21 1 1 2 2 1 2 1 2, , , : , 0, , 1, 0, , , 0, , .k k k kα α ω ω− = = = − = =
  

       
 

As a consequence, the basis indices which are exactly on level   are the difference 
between those lower than   and those lower than ( )1− . That corresponds to  

1\ −= = ∪
    

                           (48) 

where 

( ){ 1 1 2 2 1 2, , , : , 0, , ,k kα α= = = =


                     (49) 

}1 21 20, , , 0, ,k kω ω= =
 

                       (50) 

( ){ 1 1 2 2 1 2, , , : 0, , , ,k kα α= = = =


                     (51) 

}1 21 20, , , 0, , .k kω ω= =
 

                      (52) 

The following theorem is a collection of properties which enable the subsequent 
statements. 

Theorem 1. (see for e.g. [37]) We have the continuity and the coercivity of the 
weakly singular bilinear form ( ),⋅ ⋅  with respect to the norm 

1 2−
⋅   

( ) ( )1 2
1 1 2 1 2, for ,u v c u v u v −

− −
≤ ∈ Γ               (53) 

( ) ( )2 1 2
2 1 2, foru u c u u −

−
≥ ∈ Γ                  (54) 

and hence the equivalence  

( ) ( )1/2 1 2
1 2, for .u u u− −
− ∈ Γ                   (55) 

4. Domain Decomposition for the Wavelet BEM 

We will focus in this section on the framework of the ASM domain decomposition. In 
term of geometric structure, the overlapping domain decomposition will be as follows  

1
such that

p

M

p p i
p i= ∈

= =
 



Γ Ω Ω Γ                   (56) 

where 

is not necessarily empty for .p q p q∩ ≠Ω Ω                (57) 

In term of linear spaces, this leads to the decomposition  

( ) ( ) ( )1 M= + +  Γ Ω Ω                    (58) 

where 
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( ) ( ): .
p

p L i
i∈

= ⊕


 Ω Γ                       (59) 

On account of the overlapping condition (57), the space decomposition (58) is not 
necessarily a direct sum. Denote the orthogonal projection onto ( )p Ω  with respect 
to the bilinear form ( ),⋅ ⋅  from (16) by  

( ) ( ) ( ) ( ) ( ): , , , .
p pp pP P v vφ φ φ→ = ∀ ∈    Ω ΩΓ Ω Ω       (60) 

The ASM operator is defined by  

( ) ( )
1

: , : .
M

P P P P→ = + + ASM ASM
Γ Γ Ω ΩΓ Γ             (61) 

The initial problem (13) is identical [3] to  

( )
1

such that where : .
p

M

L p p L p
p

P u b b b b P u
=

= = = ∈∑ ASM
Γ Ω Ω        (62) 

The expression of each term pb  of the right hand side b is obtained by locally solv-
ing the next equation on the subdomain pΩ  without explicitly knowing the solution 

Lu   

( ) ( ) ( ) ( )1 2 1 2, , for everyp pb gφ φ φ− ×
= ∈ Γ Γ Ω             (63) 

where ( ) ( )1 2 1 2, − ×
⋅ ⋅ Γ Γ   designates the duality pairing between ( )1 2− Γ  and ( )1 2 Γ . 

The following two criteria are important for the theoretical convergence [3] [38] of the 
above additive domain decomposition. 

(i) For any function )(Γ∈u , there exist functions ( )p pu ∈ Ω  such that we 
have the representation 

1
M

ppu u
=

= ∑  verifying  

( ) ( )
1

, ,
M

p p
p

u u u uµ
=

≤∑                        (64) 

for a constant µ  independent of u and pu . 
(ii) For an arbitrary representation 

1
M

ppu u
=

= ∑  such that ( )p pu ∈ Ω , there is 
a constant µ  such that  

( ) ( )
1

, , .
M

p p
p

u u u uµ
=

≤ ∑                        (65) 

If those two criteria (i) and (ii) are satisfied, then we have the following spectral 
properties of the additive domain decomposition in term of the smallest and largest ei-
genvalues [3]  

( ) ( )min max1 , .P Pλ µ λ µ≥ ≤ASM ASM
Γ Γ                  (66) 

The objective of the next description is to verify those two properties for the BEM 
bilinear form ( ),⋅ ⋅  stemming from the single layer potential as introduced in (16). 
Our construction of the overlapping decomposition (56) and (57) starts from a non- 
overlapping decomposition (see Figure 2)  

1
such that , for .

p

M

p qp p i
p i

p q
= ∈

= = ∩ = ∅ ≠ 



 

 

Ω
Γ Ω Ω Γ Ω Ω         (67) 
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Figure 2. Domain decomposition of a Water Cluster molecule admitting 1109 patches { }Γi  and 

20 non-overlapping subdomains { }Ω p
 . 

 
Each subdomain p

Ω  which forms a connected subsurface is expanded by addition-
al margin patches to obtain p p⊃ Ω Ω . One margin extension amounts to including 
the patches which share a node with ( )p∂ Ω . That construction is not only important 
for practical reason but our convergence results depend also on the overlap size  

( )distance , 0.p p ∂ > 
Ω Ω                       (68) 

In the construction, we assume additionally that ( )\p qq p≠
Ω Ω  is nonempty. That 

is to say, the subdomain pΩ  is not completely covered by the margins of the other 
subdomains. 

Theorem 2. Consider an overlapping domain decomposition { } 1

M
p p=

Ω  verifying (56) 
and (57). For an arbitrary ( ) ( )Lu∈ ≡ Γ Γ  on the maximal level L, there exists 

( )p pu ∈ Ω  fulfilling the representation  

1

M

p
p

u u
=

= ∑                              (69) 

such that the single layer bilinear form ( ),⋅ ⋅  in (16) satisfies  

( ) ( )
1

, , .
M

p p
p

u u cL u u
=

≤∑                        (70) 

Proof. Let us consider any function ( )u∈ Γ . We have the representation  

( ) ( )( ) ( )( )1 11 2 1 11
\ \\

| | | | .p M
M ip i ii

u u u u u− −
==

= + + + + +




 Ω Ω Ω Ω ΩΩ Ω
         (71) 

By using the above construction of pΩ , the subsurface ( )1

1
\ p

p ii

−

=
Ω Ω  is nonemp-

ty. We define therefore  

( )( ) ( )1
=1\

: | .p
p ii

p pu u −= ∈



Ω Ω

Ω                      (72) 

By using the orthogonal projections 


  where 1 0− ≡ , we estimate [16] [39] 
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( ) ( ) ( )( )1
2 =1

2
1 \

1 1 0
, 2 p

p ii

M M L

p p p
p p

u u c u −
−

−
= = =

≤ −∑ ∑∑ 

 





  
Ω Ω

           (73) 

( ) ( )( )1
2 =1

2
1 \

0 1
2 .p

p ii

L M

p
p

c u −
−

−
= =

≤ −∑ ∑
 





 
Ω Ω

          (74) 

Since ( ){ }1

=1 1
\

Mp
p ii p

−

=


Ω Ω  constitutes a non-overlapping covering of the whole sur-

face Γ , we obtain  

( ) ( ) ( )2

2
1

1 0
, 2 .

M L

p p
p

u u c u−
−

= =

≤ −∑ ∑ 

 



  
Γ

                (75) 

On the other hand, we have  

( ) ( ) ( ) ( ) ( ) ( )2 2 2

2 2 2
1 12 2 2 .u c I u I u− − −
− −− ≤ − + −  

     
   

Γ Γ Γ  
By using ( ) ( ) ( )22

1I u c u−− ≤


 ΓΓ 
 and the inverse inequality [37] 

( ) ( )1 2
2

22 u c u −
− ≤

Γ Γ                        (76) 

for piecewise constant functions, we obtain  

( ) ( ) ( )1 2
2

2 2
12 .u c u −

−
−− ≤

 

  ΓΓ 
                  (77) 

Eventually, we conclude from the equivalence (55) 

( ) ( )
=1

, , .
M

p p
p

u u cL u u≤∑                        (78) 

 
We find in [39] a lengthy deduction of (73) on screen domains whose proof can be 

extended to curved patches. Another way to obtain (73) for a piecewise constant func-
tion ( )pv∈ D  in which ( )1

=1
: \ p

p p ii

−=


D Ω Ω  is as follows. Since Lv v≡ ,  

( ) ( )

( ) ( )

1 2 1 2

1 2

2 2
1 1 2

2
1

=0
.

p p

p

L L L L

L

v v v v v

c v

− −

−

− − −

−

= − + − +

≤ −∑
 



 



   

 

D D

D
 

The operator 


  being a projection, we deduce ( ) ( )2I Iφ φ− = −
 

   and hence  

( ) ( )
( )

( ) ( )

( )
( )

( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 2
21 2

21 2

21 2

2 21 2

1

2

1

1

1

sup ,

sup ,

sup ,

sup .

p p
p

p
p

p
p

p p
p

w

w

w

w

I I w

I w

I I w

I I w

φ φ

φ

φ

φ

−
=

=

=

=

− = −

= −

= − −

≤ − −

 



 

 









 





 

 



 

 

D

D

D

D

D D

D

D

D D

 
One has the next piecewise constant approximation for 2h −=    

( ) ( ) ( )1 2 1 2
2

1 2 22 .
p pp

w w ch w c w−− ≤ = 



 D DD               (79) 

By applying that to 1vφ +=


 , we obtain  
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( ) ( ) ( ) ( )1 2 2
2

1 12
p p

v c v−
−

+ +− ≤ −

   

   
D D 

             (80) 

( ) ( ) ( )1 2 2

22
1

0
2 .

p p

L
v c v−

−
+

=

≤ −∑ 

 



 D D 
                (81) 

Lemma 1. Consider two different subdomains pΩ  and qΩ  in the overlapping do-
main decomposition (56) and (57). For a pair of patches i j×Γ Γ  such that  

i p⊂ Γ Ω  and ( )C
j q p⊂ ∩Γ Ω Ω  and for the 2D-wavelet basis 1 2

1 2k kαψ ψ ψ= ⊗   and 
1 2
1 2k kαψ ψ ψ′ ′

′ ′ ′= ⊗   where ( )1 1 2 2, , ,k kα α=    and ( )1 1 2 2, , ,k kα α′ ′ ′ ′ ′=   ,  

( ) ( ) ( ) ( ) ( ) ( ),
, : , d d .i j

i j i jR G Gα α α βψ ψ′ ×
 =  ∫ 

 u v u v u v u vγ γ        (82) 

The next estimate is valid  

( ) ( )
1 2 1 23 2 3 2 3 2 3 2

,
, 5

2 2 2 2max
dist ,

C
i j p q p

i j

C
p q p

R cα α

′ ′− − − −

′
× ⊂ × ∩

≤
 ∩ 

   

 

 

Γ Γ Ω Ω Ω Ω Ω Ω
            (83) 

where the constant c is independent of the maximum level L.  
Proof. We have  

( )( )( )( )( )1 2 1 2
1 2 1 2

,
, , d di j

k k k kRα α ψ ψ ψ ψ′ ′
′ ′ ′×
= ⊗ ⊗∫    



 
 u v u v u v           (84) 

where ( ) ( ) ( ) ( ) ( ), ,p p p qG G =  
 u v u v u vγ γ . Since  

( ) ( ) ( )
1 1 2 2

1 21 22 22 1 2 1Supp , ,k kk kαψ ζ ζ ζ ζ− −
   = ×   

     and  

( ) ( ) ( )
1 1 2 2

1 21 22 22 1 2 1Supp , ,k kk kαψ ζ ζ ζ ζ′ ′ ′ ′
′ ′ ′′ ′− −

   = ×   
    , one expresses  

( ) ( ) ( ) ( )
( ) ( )( )

1 2 1 2
2 2 2 21 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 11 2 1 2

, , d d .k k k k

k k k k
k k k kR

ζ ζ ζ ζ

ζ ζ ζ ζ
ψ ψ ψ ψ

′ ′
′ ′

′ ′
′ ′− − − −

′ ′
′ ′= ⊗ ⊗ ⊗∫ ∫ ∫ ∫

   

   

   

 u v u v u v    (85) 

By using the primitive kρ
  of kψ   and partial integrations on all four variables, one 

obtains  

( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

2 21 2 1 2 1 2
1 2 1 2 1 2

2 1 2 11 2

4

1 2 1 2
1 2 1 2

,
d d .k k

k k
k k k kR u u v v

u u v v
ζ ζ

ζ ζ
ρ ρ ρ ρ

′
′

′
′− −

′ ′
′ ′

∂
=

∂ ∂ ∂ ∂∫ ∫
 

 

   





 u v
u v     (86) 

By using the boundedness of the functions pG , qG  and their derivatives as well as 
the Calderon-Zygmund estimate, one deduces  

( )
( ) ( )1 2 1 2

1 2 1 2

4

5
Supp Supp1 2 1 2

, 1max max
k k k k p q

c
u u v v ψ ψ ψ ψ′ ′

′ ′
   ∈ ⊗ ∈ ⊗      

∂
≤

∂ ∂ ∂ ∂ −   



u v

u v

u vγ γ
        (87) 

( ) 5

1 .
dist , C

p q p

c≤
 ∩ 
 Ω Ω Ω

                     (88) 

We use the expression ( ) ( )1 2 12 2 1k t kρ ρ− − −= − +

   where ( ) :t tρ =  if [ ]0,1 2t∈  
and ( ) : 1t tρ = − +  else. On that account, one obtains  

[ ]
( ) ( ){ } ( ){ }1 2 1

22 10,1
max ( ) = 2 and meas Supp meas , 2 .k k kkt

tρ ρ ζ ζ− + − +
−∈

 = = 


       (89) 

By combining (88) and (89), one deduces from (86)  
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( )
( ) ( ) ( ) ( )

( )

1 2 1 2
1 2 1 2

1 2 1 2

1 1 1 1
1 2 1 2 1 2 1 2,

, 5

3 2 3 2 3 2 3 2

5

2 2 2 2 2 2 2 2
dist ,

2 2 2 2 .
dist ,

i j

C
p q p

C
p q p

R c

c

α α

′ ′− + − + − + − +
′ ′− + − + − + − +

′

′ ′− − − −

≤
 ∩ 

≤
 ∩ 

   

   

   

 

 

Ω Ω Ω

Ω Ω Ω
 

 
Theorem 3. Consider an overlapping domain decomposition { } 1

M
p p=

Ω  of the sur-
face Γ  such as in (56) and (57). For any function ( )u∈ Γ , we have on level L the 
next estimate for the weakly singular potential ( ),⋅ ⋅  from (16) in term of the overlap 
widths ( )dist ,i i∂Ω Ω  

( ) ( ) ( ) ( )2 1 21 2

55
| , | | , | | , |

2 min dist ,
C C Cp p pp q p q p qL

i ii

Lu u c u u u u
∩ ∩ ∩

≤
∂

  

  



  Ω Ω ΩΩ Ω Ω Ω Ω ΩΩ Ω
 

where the constant c is independent of the maximal level L and the overlap widths.  
Proof. Let a patch pair ( )i j×Γ Γ  be such that i p⊂ Γ Ω  and ( )C

j q p⊂ ∩Γ Ω Ω . 
Consider a function ( ) ( )Lu∈ ≡ Γ Γ  such that  

, , ,
=1 =0

= where : .p
M L

p
p

u uα α α α
α

ψ ψ ψ
∈

=∑∑ ∑


   








Γ Γ               (90) 

We intend first to estimate ( ), : | , |
i ii j u u=  Γ Γ  where  

, ,
0 0

| , | .ji
i j

L L
u u u uα α α α

α α
ψ ψ

′

′ ′ ′ ′
′ ′= ∈ = ∈

= =∑ ∑ ∑ ∑
 

   

 

 

 

ΓΓ
Γ Γ                (91) 

For ( ) ( ) ( ), ,, , , ,α αα α ψ ψ ′ ′′ ′ =  

 

   , one deduces from the Cauchy-Schwarz inequality  

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

, , , , , ,
=0 =0 , ,

2 2
, , ,

, ,

1 22
2

, , ,
, , ,

,

2 2

2 2

j ji i

ji

ji

L L

i j u u u u

u u

u u

α α α α α α α α
α α α α

α αα α
α α

α αα α
α α α

ψ ψ ψ
′

′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′∈ ∈

′ ′−
′ ′′ ′

′ ′

′ ′−
′ ′′ ′

′ ′ ′ ′

= =

 
=  

 

  
 ≤  
   

∑∑ ∑ ∑ ∑∑

∑ ∑

∑ ∑ ∑

 

     

 

   

 

 

 

 

 

 

 

  

  

 
 





Γ ΓΓ Γ

ΓΓ

ΓΓ
1 2

2
.

 
 
 

 
In addition, one has [1] [16] 

( ) { } ( )1 2
2

22 22

, 0
: 2 2 ,j j

j

L
B u u cL uα α

αα
−

′ ′− −
′ ′ ′ ′

′′ ′ ′=

= = ≤∑ ∑ 

 



 

Γ Γ
Γ

          (92) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } 2

2 2
2 2 2 2 2

, , , , , ,
, , , ,

2
2

, , , , ,op
, ,

: 2 2 2 2

( )

i iC u u

b b

α αα α α α
α α α α

α α α α
α α

′ ′ −
′ ′ ′ ′

′ ′ ′ ′

′ ′
′ ′

   
= =   

   

= ≤

∑ ∑ ∑ ∑

∑ ∑

   

 

   

   

   



 

 

 Γ Γ

 
where   and b are respectively the matrix ( ) ( ) ( ) ( )

2 2
, , , , , ,: 2 2α α α α

′
′ ′ ′ ′=  

   

  and the 
vector ( )

2
, : 2 ib uαα

−= 





Γ . As done previously in (92), one has  

( ){ } ( ) ( )1 2 1 22

2 2 22
, opand hence

i i
b cL u C cL uα − −≤ ≤




Γ Γ         (93) 
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where { }( ) { }( )2 2

2
, ,op supx x xα α=
 

 

  . As a consequence, by using (92), one 
obtains  

( ) ( )1 21 2

, op | , | | , | .
i i j ji j cL u u u u≤  Γ Γ Γ Γ               (94) 

On the other hand, one has the estimate  

( ) ( )
( ) ( )

1 2 1 2 1 2 1 2

2 2
, , ,op

0 0 , , , = , , ,
2 2 .

L L

k k k k
α α

α α α α ′

′
′ ′

′ ′ ′= = = ∈ ∈

≤ ∑ ∑ ∑ ∑
 

 

 

      
          (95) 

On account of the result in (83), one deduces  

( ) ( ) { } ( )
1 2 1 2

2
,, , , 3 3 3 310

,

1 where dist , .
2 2 2 2 p q p p

p q
α α′ ′ ′ ′− − − −

≤ ∆ = ∂
∆ 

   

 Ω Ω      (96) 

Therefore, by using the enumerations of 


  and ′


  from (48), one deduces  

2 1 2 1

2 1 2 1

2 3 3 3 33 3 3 3
10op

0 0 0 0 0 0

1 2 2 2 2 2 2 2 2 2 2 .
L L

pq

′ ′
′ ′′ ′− − − −− − − −

′ ′ ′= = = = = =

         ≤ + × +      
∆          

∑ ∑ ∑ ∑ ∑ ∑
   

        

     


 

Consequently, it yields the next estimate  

( )22 2 3 2 3 5
10 10op

0 0

1 12 2 2 2 2 2 2 .
L L

L

pq pq

c c′ ′− − − − −

′= =

  ≤ ≤  
∆ ∆  

∑ ∑   

 

         (97) 

On account of the fact that  

and ,
C

p p q

C
p i p q j

i j∈ ∈ ∩

= ∩ =




 

 

  

Ω Γ Ω Ω Γ                (98) 

we deduce 

( ) ( )

( ) ( )

( ) ( )

( )

1 21 2

5 5

1 21 2

5 5

1 2

5 5

| , | | , |

| , | | , |
2

= | , | | , |
2

| , |
2

C i jp p q Cp p q

i i j j
C

p p q

i i j j
C

p p q

i i
C

p p

i j

L
i jpq

L
i jpq

L
i jpq

u u u u

Lc u u u u

Lc u u u u

Lc u u

∩
∈ ∈ ∩

∈ ∈ ∩

∈ ∈ ∩

∈ ∈

=

≤
∆

  
  

∆      

 
≤  

∆   

∑ ∑

∑ ∑

∑ ∑

∑





















  

  

 

 

 

 



Γ ΓΩ Ω Ω
Ω Ω

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ ( )
1 2

| , |
j j

q

u u
∩

 
 
  
∑



 Γ Γ

 
where the last relation was due to the 1 -norm and 2 -norm equivalence. In the same 
manner as we did in (78), we have the bound  

( ) ( )| , | | , | | , | ,
i i i i p p

p p pi i i
u u cL u u cL u u

∈ ∈ ∈

 
≤ =  

 
∑ ∑ ∑  

    

  Γ Γ Γ Γ Ω Ω

 

( ) ( )| , | | , | | , | .C Cj j j j p q p qC C C
p q p q p qj j j

u u cL u u cL u u
∩ ∩

∈ ∩ ∈ ∩ ∈ ∩

 
 ≤ =
 
 

∑ ∑ ∑
 

       

  Γ Γ Γ Γ Ω Ω Ω Ω

 
As a consequence, we obtain  
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( ) ( ) ( )2 1 21 2

5 5| , | | , | | , | .
2C C Cp p pp q p q p qL

pq

Lu u c u u u u
∩ ∩ ∩

≤
∆

  

  

  Ω Ω ΩΩ Ω Ω Ω Ω Ω
     (99) 

Since ( )1, ,min dist ,i M i i pq= ∂ ≤ ∆


Ω Ω , we conclude  

( )

( ) ( ) ( )2 1 21 2

55

| , |

| , | | , | .
2 min dist ,

Cp p q

C Cp p p q p qL
i ii

u u

Lc u u u u

∩

∩ ∩
≤

∂





 

 





 

Ω Ω Ω

Ω Ω Ω Ω Ω Ω
Ω Ω

    (100) 

 

Theorem 4. Consider an overlapping domain decomposition { } 1

M
p p=

Ω  verifying  

(56) and (57). Consider also a function ( ) ( )Lu∈ ≡ Γ Γ  fulfilling the representa-
tion  

( )
1

such that for 1, , .
M

p p p
p

u u u p M
=

= ∈ =∑  Ω           (101) 

By using the bilinear form ( ),⋅ ⋅  from (16), we have the next estimation in term of 
the maximal level L and the margin widths ( )dist ,i i∂Ω Ω   

( )
( )

( )
( )

1

3

55 1
| , | ,

2 min dist ,
i j

M
i j p pp

M

p p
L p

i ii

Lu u c u u
=

=× ⊂ ×/

 
≤  

 ∂
∑ ∑




 Γ Γ
Γ Γ Ω Ω Ω Ω

   (102) 

where the constant c is independent on the maximal level L.  

Proof. We are showing first that ( ) ( )1 1

CM M C
p p p pp p= =

 × ≡ × 


 

Ω Ω Ω Ω . Consider a 

patch pair ( ),i jΓ Γ  such that ( ) ( )1

M
i j p pp=
× ⊂ ×/



Γ Γ Ω Ω . Since { }
1

M

p p=
Ω  constitutes 

a non-overlapping partitioning of Γ , there exists some p such that i p⊂ Γ Ω  and some 

q p≠  such that ( )\ C
j q p p⊂ ⊂Γ Ω Ω Ω . Hence, we have  

C
i j p p× ⊂ ×Γ Γ Ω Ω  and thus ( ) ( )1 1

CM M C
p p p pp p= =

 × ⊂ × 


 

Ω Ω Ω Ω . The opposite in-

clusion is evident because p p⊂Ω Ω . Therefore, we obtain  

( )
( )

( )

( )
( )

( )
( )

1

1
=1

:= | , |

| , | | , |

i j
M

i j p pp

i j i j
C CM

i j p p i j p pp

M

p

B u u u

u u u u

=

=

× ⊂ ×/

× ⊂ × × ⊂ ×

= =

∑

∑ ∑ ∑
 







 

Γ Γ
Γ Γ Ω Ω

Γ Γ Γ Γ
Γ Γ Ω Ω Γ Γ Ω Ω  

because { }
1

MC
p p p=
×Ω Ω  are mutually disjoint. Further, we have  

( )
1 1

| , | | , |
i j j

C C p
j p j ppi

M M

p
p p

B u u u u u
= =⊂ ⊂⊂

    = =      
∑ ∑ ∑ ∑ ∑





 Γ Γ Γ
ΩΓ Ω Γ ΩΓ Ω

       (103) 

where we used in the last equality | |
i pi p pu u

⊂
=∑ 

 Γ ΩΓ Ω  which holds because p
Ω  is 

not overlapped by any other subdomain and ppu u= ∑ . Note also that  

( )C C
p q pq p≠
≡ ∩



Ω Ω Ω  for the same partitioning reason as above and C
p p∩ =∅Ω Ω . 
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We deduce therefore  

( )
( )

( )
( )

( )

( )
( )

1 1

=1 1

| , | | , |

= | , | | , | .

j jp pC C
j q p j q pq p

Cjp p q pC
j q p

M M

p p
p p q p

M M

p p q
p q p p q p

B u u u u u

u u u u

≠
= = ≠⊂ ∩ ⊂ ∩

∩
≠ = ≠⊂ ∩

= =

 
  =
 
 

∑ ∑ ∑∑ ∑

∑∑ ∑ ∑∑

 

 

 







 

 

Γ ΓΩ Ω
Γ Ω Ω Γ Ω Ω

ΓΩ Ω Ω Ω
Γ Ω Ω

 
By combining that with (100), we obtain  

( )
( ) ( ) ( )2 1 21 2

551
| , | | , | .

2 min dist ,
C Cp p q p q p

M

p p q qLp q p
i ii

LB u c u u u u
∩ ∩

= ≠

≤
∂

∑∑  

 



 Ω Ω Ω Ω Ω ΩΩ Ω
 

In the same fashion as in the deduction of (78), we have  

( ) ( ) ( )1 2 1 2 1 2

\ \| , | | , | | , |
p p p p p p p pp p p p p pu u u u u u≤ +
     

  Ω Ω Ω Ω Ω Ω Ω Ω      (104) 

( )1 2

\ \| | , | |
p p p p p pp p p pc L u u u u≤ + +
   

 Ω Ω Ω Ω Ω Ω     (105) 

( ) ( )
1 2 1 2

| , | , .
p pp p p pc L u u c L u u= = Ω Ω       (106) 

Similarly, we have  

( ) ( )
1 2 1 2

| , | , .C C
q p q p

q q q qu u c L u u
∩ ∩

≤
 

 
Ω Ω Ω Ω

              (107) 

As a consequence,  

( )
( )

( ) ( )
3 1 2 1 2

55 =1
, ,

2 min dist ,

M

p p q q
L p q p

i ii

LB u c u u u u
≠

≤
∂

∑∑


 
Ω Ω

       (108) 

( )
( )

23 1 2

55 1
, .

2 min dist ,

M

p p
L p

i ii

Lc u u
=

 
≤  

 ∂
∑




Ω Ω

               (109) 

By using the 1
 -norm and 2

 -norm equivalence, we conclude  

( )
( )

( )
( )

1

3

55 1
| , | , .

2 min dist ,
i j

M
i j p pp

M

p p
L p

i ii

Lu u c u u
=

=× ⊂ ×/

 
≤  

 ∂
∑ ∑




 Γ Γ
Γ Γ Ω Ω Ω Ω

   (110) 

 
Corollary 1. Consider an overlapping domain decomposition { } 1

M
p p=

Ω  of the sur-
face Γ  verifying (56) and (57). The ASM operator with respect to the weakly singular 
bilinear form ( ),⋅ ⋅   

1 M
P P P= + +

ASM
Γ Ω Ω                       (111) 

verifies on the maximal level L the eigenvalue range  

( ) ( )min 1 1P c Lλ ≥ASM
Γ                        (112) 

( )
( )

3

max 2 55
1, ,

1
2 min dist ,L

i M i i

LP cλ
=

 
 ≤ +
 ∂  



ASM
Γ

Ω Ω
           (113) 
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and the condition number upper bound  

( )
( )

4

3 55
1, ,2 min dist ,L

i M i i

LP c Lκ
=

 
 ≤ +
 ∂  



ASM
Γ

Ω Ω
            (114) 

where the constants 1c , 2c  and 3c  are independent on the level L.  
Proof. Consider an arbitrary representation 

1
M

ppu u
=

= ∑  where ( )p pu ∈ Ω . We 
have  

( )
( )

( )
( )

( )

( )
( )

( )
1 1

11

, | , | | , |

, | , |

i j i j
M M

i j p p i j p pp p

i j
M

i j p pp

M

p p
p

u u u u u u

u u u u

= =

=

× ⊂ × × ⊂ ×/

= × ⊂ ×/

= +

≤ +

∑ ∑

∑ ∑

 



  

 

Γ Γ Γ Γ
Γ Γ Ω Ω Γ Γ Ω Ω

Γ Γ
Γ Γ Ω Ω  

because | |
i ii p pu u

⊂
= ∑Γ ΓΓ Ω . Combining that last inequality with (102), we obtain  

( ) ( )
( )

( )
3

551 1
1, ,

, , ,
2 min dist ,

M M

p p p p
Lp p

i M i i

Lu u u u c u u
= =

=

≤ +
∂

∑ ∑




  
Ω Ω

    (115) 

( )
( )

3

55 1
1, ,

1 ,
2 min dist ,

M

p p
L p

i M i i

Lc u u
=

=

    ≤ +      ∂ 
∑






Ω Ω

          (116) 

where the constant c is independent on the level L and the functions u, pu . The bound 
of the smallest eigenvalue ( )min Pλ ASM

Γ  is obtained from (66) and (70). We deduce the 
estimate of the largest eigenvalue ( )max Pλ ASM

Γ  from (66) and (116). The condition num-
ber is estimated by  

( ) ( )
( ) ( )

4
max

55
min 1, ,

.
2 min dist ,L

i M i i

P LP c L
P

λ
κ

λ
=

 
 = ≤ +  ∂ 



ASM
ΓASM

Γ ASM
Γ Ω Ω

     (117) 

 
The spectral range might not be optimal yet but our current objective in this docu-

ment is mainly to eliminate the exponential dependence ( )2L  which was described 
in (21). In fact, we have the estimate  

( ) ( )
54

5 55
1, , 1, ,

1
22 min dist , min dist ,

LL
i M i i i M i i

L Lc
= =

 
  ≤    ∂ ∂   

 Ω Ω Ω Ω
     (118) 

which becomes very small as the maximal level L increases. Therefore, the proposed 
method reduces the upper bound of the condition number from ( )2L  to ( )L . 

5. Practical Implementation and Numerical Results 

In this section, we present some practical results related to the previous theory where 
we use several molecular models. For the quantum models, we employ Water Clusters 
and other molecules which are acquired from PDB files. When the molecular dynamic 
steps attain its equilibrium state where the total energy becomes stable, a water cluster 
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is obtained by extracting the water molecules which are contained in some given large 
sphere whose radius controls the final size of the Water Cluster. The Hydrogen and Oxy-
gen atoms contained in that large sphere constitute the components of the Water Clus-
ters. The creation of the patch decomposition of the molecular surfaces is performed as 
described in [24] [40] [23]. 

For the practical construction of the domain decomposition on molecular surfaces, 
we apply a graph partitioning technique. We assemble a graph   whose vertices { }pv  
correspond to the patches { }pΓ  of the geometry Γ . Two graph vertices pv  and qv  
are connected by a graph edge if the corresponding patches pΓ  and qΓ  are adjacent. 
Afterwards, the graph   is decomposed into subgraphs { } 1

M
p p=
 . The patches pertain-

ing to each subgraph p  generate one subdomain Ω  in the nonoverlapping domain 
decomposition. The Water Cluster on Figure 2 is an illustration of the result of such a 
graph decomposition technique. 

We compare in Figure 3 the convergence histories of the direct method and the do-
main decomposition method. The plots depict the relation between the number of ite-
rations and the residual errors. The quantum model is a Borane containing 432 patches 
and 100 subdomains. One observes that the number of iterations grow very rapidly in 
function of the level for the direct method. In contrast, the levels hardly affect the re-
quired numbers of iterations for the domain decomposition method. In fact, the itera-
tion counts to drop the error below 10−9 are respectively 83, 145, 339, 804 for levels 1 till 
4 by using the direct method. In order to perceive the plots of the domain decomposi-
tion results more clearly, we depict in Figure 4 an enlargement the curves of below ite-
rations 60 where the whole iterations of the direct method cannot be observed. We ob-
serve that the errors decrease very quickly for all four levels requiring iteration counts 
between 28 and 42 by using the domain decomposition technique. 

Although it is not the purpose of this document, we summarize in Figure 5(a) the 
BEM-simulation using single layer potential for a couple of molecules (propane and 

 

 
Figure 3. Comparison of the direct method and the domain decomposition. Number of itera-
tions vs. residual error. 



M. Randrianarivony 
 

1819 

 
Figure 4. Close-up of the convergence history of the domain decomposition method for four 
multiscale levels. 

 

 

 
Figure 5. (a) BEM error in function of the maximal level 1, ,5L =  , (b) Density function on a 
Water Cluster molecule. 
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Water Cluster) and several right hand-sides. We consider two exact solutions which are 
respectively ( ) 2 2 2

1 0.2 0.15 0.05x y z= − − x  and ( ) ( ) ( )2 exp 0.5 cos 0.5x y= x  that 
have vanishing Laplacian. The right hand side ( )g x  is the restriction of the function 
  on the boundary Γ . The curves display the BEM convergence in function of the 
multiscale level 1, ,5L =  . The error reduction is affected by the exact solutions but in 
general the errors reduce satisfactorily in function of the wavelet levels. The error plots 
lightly vary in function of the used molecules but in general all the curves exhibit the 
same slope characteristic. In fact, they decrease linearly in logarithmic scale in function 
of the BEM levels. Figure 5(b) exhibits the density function Lu  from (13) on the 
molecular surface where the triangulation is only used for graphical presentation and 
not for simulation where a Water Cluster molecule is used. 

In Table 1, we collect the error reduction of the direct method and the domain de-
composition where we consider a Water Cluster which consists of 1109 patches. We 
gather only some iteration steps where the reduction corresponds to the ratio of two 
consecutive residuals. The data have been the outcomes of a simulation on the maximal 
level 4L = . We observe that the domain decomposition is very efficient in comparison 
to the direct method because the error reduction is substantially smaller for the domain 
decomposition than for the direct method. For the domain decomposition approach, 54 
iterations are needed to drop the error below 10−9 whereas 1007 iterations are required 
for the direct method to obtain an error of order 85.8 10−× . 

 
Table 1. Error reductions for Water Cluster admitting 1109 patches at level 4L = . 

Iteration 
Direct method Domain decomposition 

Error Reduction Error Reduction 

0 1.288400e+03 --- 8.399300e+03 --- 

3 1.081400e+02 0.689492 2.362800e+03 0.485394 

13 8.052800e+00 0.917719 2.568000e+02 0.640958 

24 4.379000e+00 0.955863 8.671400e−01 0.472788 

35 3.490100e+00 0.964836 3.553900e−03 0.430791 

46 2.343700e+00 0.967192 3.893700e−07 0.489318 

54 1.830400e+00 0.973203 7.446200e−10 0.692799 

200 2.023200e−01 0.981374   

300 5.048100e−02 0.981586   

430 4.493300e−03 0.983647   

560 5.759100e−04 0.981659   

697 4.573200e−05 0.978120   

885 8.928400e−07 0.976550   

1007 5.863900e−08 0.979455   
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6. Conclusion 

We considered the single layer formulation using multiscale wavelet basis where the 
resulting system is badly conditioned. The additive version of the domain decomposi-
tion was used to circumvent the problem of bad conditioning. We concentrated on the 
non-overlapping domain decomposition where every subdomain is constituted of sev-
eral patches. The convergence of the corresponding additive Schwarz method was ex-
amined. The smallest and the largest eigenvalues as well as the condition number have 
been estimated. Practical implementations exhibit satisfactory numerical results cor-
responding to the proposed theory. 
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