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Abstract

One of the mainly interesting things of matroid theory is the representability of a
matroid. Finding the set of all excluded minors for the representability is the solution
of the representability. In 2000, Geelen, Gerards and Kapoor proved that

{UZYG,U 46 F{,(F{ )* P, Fg} is the complete set of GH4)-representability. In this

paper, we show that B, is an excluded minor for GH(4)-representability.

Keywords

Excluded Minor

1. Introduction

Matroid theory dates from the 1930’s when Whitney first used the term matroid in his
basic paper [1]. Matroid theory is a common generalization of linear independence of
graphs and matrices. One of the mainly interesting things of matroid theory is the
representability of a matroid. One problem of representability is to find the fields over
which the given matroid is representable. The other problem is to find the excluded
minors for which the matroid is representable over the given field. It was found the
complete set of excluded minors for two or three element fields [2]-[5]. In 1984, Kahn
U, U6 Fy

26:Usg 7 ,(F{) ,P,} is the complete set of ex-

and Seymour conjectured that
cluded minors for GF4)-representability. Oxley showed that the conjecture is wrong by
showing P, is also excluded minor for GH4)-representability in his brief note [6].
Geelen, Gerarads and Kapoor proved that it is enough to add P, to the list of Kahn
and Seymour [7]. It is not an easy problem to find the excluded minors for GHq)-
representability when ¢ is more than 4. Instead, we have the conjecture by Rota that the
number of excluded minors are finite for any prime powers g [8]. In this paper, we
study the properties of minor and show that P, is excluded minor for GH4)-

representability deliberately.
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2. Preliminaries
2.1. Matroid

Matroid theory has exactly the same relationship to linear algebra as does point set
topology to the theory of real numbers. That is, point set topology postulate the pro-
perties of the open sets of real line and matroid axiomatize the character of the in-
dependent set in vector space:

Definition 2.1. A matroid A is a finite set E and a collection Z of subsets of £
satisfying the following three conditions:

(L) Del.

(L)If XeZ and Y X then YeZ.

(B)If X, Yarein Z and |X|<|Y|, then there exists XY —X such that
Xuxel.

By the definition, for a finite vector space V and for the collection of linearly
independent subsets Z of vectors of V; (V,Z) is a matroid. If M =(E,Z) is a
matroid, M is called a matroid on E Also £ which is denoted by E(M) is called
ground setof Mand I =7 (M) is called the set of independent setin M. A subset of
Ethatisnotin 7 is called dependent set. On the other point of view, matroid can be

defined by abstraction of the properties of the cycles of a graph. Let G be a graph and
let E(G) be the set of all edges of G. Alsolet C be the set of all cycles in G. Then C
has the following properties:

(G) DeC.

(G)If C, and C, arein C and C,cC,,then C,=C,.

(G) If C, and C, are distinct members of C and eeC, NC,, then there is
member C, of C suchthat C,c(C,uUC,)-e.

Now, let C be a subset of the power set 2 of a finite set £ If C satisfies the
conditions (Q), (G) and (G), then C is called the set of circuits of a matroid on E.
Let C be the set of circuits of a matroid M. Then, the set Z of all subsets of £ which
contain no member of C satisfies the independent conditions (4), (&) and (%). Also
for a matroid M =(E,Z), theset C(M) of all minimal dependent set A/ satisfies the
three circuits conditions. Thus, the matroid defined by circuits is the same as the one
defined by independent sets. We need two other definitions of a matroid.

Definition 2.2. Let £ be a finite set and r be a function from 2% to the set of non-
negative integers and satisfies the following conditions:

(R)If X cE,then 0<r(X)<|X|.

(R) XcVYcE,then r(X)<r(Y).

(Rs) If Xand Y are subsets of E, then r(X UY)+r(XNY)<r(X)+r(Y). Then, r
is called the rank function of a matroid M on E. Let M be the matroid (E,I ) and
suppose that X c E.Let Z |, be {I = X |l €Z}. Then, it is easy to see that the pair
(X,Z|y) isa matroid. We call this matroid the restriction of Mto X or the deletion of
E-X from M. It is denoted by M|, or M\E-X.We define the rank r(X) of
X to be the size of a maximal independent set of M |, . This function which is called
the rank function of M satisfies the conditions (R,), (&) and (R;). This function is
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denoted by 1, and r(E(M)) will be denoted by r(M).On the other hand, if ris a
rank function of a matroid A the set Z={X cE|r(X)=|X|} is the set of in-
dependent set of M. Thus, the definition of a matroid by a rank function is equivalent
to the definition by independent sets. One of the definitions of matroid is the one by
closure operator. Throughout this thesis, by £means a finite set.

Definition 2.3. Let cl be a function from 2% to 2% satisfying the following;

(CL)If X cE,then X ccl(X).

(CL)If X cY cE,then cl(X)ccl(Y).

(CL)If X cE,then cl(cl(X))=cl(X).

(CL)If XcE, xeE,and yecl(Xux)-cl(X),then xecl(XuUy).

Then d/is called the closure operator of a matroid M on E. Let M be a matroid on £
with the rank function r. Define c/to be the function from 2% to 2% by
CI(X):{X eElr(Xux)= r(X)} for all X — E. Then, we can see that ¢/ satisfies
(CL1)-(CL,). On the other hand, if c/is the closure operator of a matroid M on E, then
I= {X c Elxegcl(X —x)forall x e X } satisfies the independent axioms and
M =(E,Z) is the matroid having closure operator c/. Thus, the four definitions of
matroid defined by the above are equivalent. We can see that there are a lot of
equivalent definition of matroid. We have to introduce one more definition of matroid.
For a matroid A4 the maximal independent set in M is called a basis or base of M. It is
easy to see that every basis element has the same cardinal number. Let B(M) be the
set of all base element of M. Then, B(M) has the properties;

(B) B(M) isnon-empty.

(B)If B, and B, arein B(M) and xeB, —B, then thereis yeB,—B, such
that (B,—x)uyeB(M).

Conversely, let B be a collection of subsets of £ satisfying the axioms (B,) and (5,).
Andlet Z={lI cE|l cBforsomeBeB}. Then (E,Z) is a matroid having B as
its collection of bases. If M is a matroid and X — E(M ), then we call cl (X) the
closure or span of X in M, and we write this as cl, (X). If X =cl(X), then X is
called a flat or a closed set of M. A hyperplane of Mis a flat of rank r(M)—1. A subset
X of E(M) is a spanning set of M if cI(X)=E(M). Let M be a matroid and
B (M) be {E(M)-B|BeB(M)}. Then, B (M) satisfies the following axiom
which is equivalent to (B,):

(B)* If B, and B, are in B (M) and xeB,-B,, then there is an element
y€B, —B, such that (B,—y)uUxe B*(M ). The matroid M~ having the set of all
basis element B(M) is called the dual of M. Thus B(M *) =B (M) and (M *)* =M.
Also E(M *) =E (M ) . The bases of M™ are called cobases of M. Similarly, the
circuits, hyperplanes, independent sets and spanning sets of M™ are called cocircuits,
cohyperplanes, coindependent sets, and cospanning sets of M. The next result gives
some elementary relationships between these sets.

Proposition 2.4. Let M be a matroid on a set E and suppose X c E. Then

1) X is independent if and only it E — X Is cospanning.

2) X is spanning if and only if E—X is coindependent.
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3) X is a hyperplane if and only if E— X Is cocircuit.

4) X is a circuitifand only if E—X  is a cohyperplane.

Proof 1) Let Xbe an independent set in M. Then, X < B for some basis element B
of M. Thus E-BcE-X and clI'(E-B)=Eccl’(E-X), where cl” is the clo-
sure in M™.If E—X is cospanning, then E— X > B for some basis element B’
of M”.Itmeansthat X c E—B" and Xis independent set. 2) is deduced by applying
1)to M".3)is obtained by the following equivalent statements; a) X is a hyperplane of
M. b) Xis a non-spanning set of M but X Uy isspanning forall yg X.c) E-X
is dependent in M™ but (E—X)-vy is independentin M" forall yeE—X . d)

E - X isa cocircuit of M. 4) is the one obtained by applying 3) to M".
O

Let’s remind of the finite fields. If Fis a finite field, then Fhas exactly p*-elements for
some prime p and some positive integer k. Indeed, for all such p and 4, there is a
unique field GF ( pk) having p*-elements. This field is called the Galois field of order
P When k=1, GF ( pk) coincides with Z , the ring of integers modulo p. When

k>1, GF ( pk) can be constructed as follows. Let h(®) be a polynomial of degree &
with coefficients in Z, and suppose that the polynomial is irreducible. Consider the
set S of all polynomials in @ that have degree at most k —1 and have coefficients in
Z, . There are exactly p choices for each of the &-coefficient of a member of S. Hence,
|S| = p“. If we take p = 2 and k = 2 we get the field GR4). Moreover, under addition
and multiplication, both of which are performed modulo h(w), Sforms a field namely
GF ( p ) .In case of GF (4), we can take the irreducible polynomal to
h(w)=0’+o+1.

Let A be a matrix over a field £ Then, the collection of independent column vectors
Z of A satisfies the independent axioms of matroid. Thus, (COIA,I ) is a matroid
and this matroid is denoted by M [A], where ColA is the set of all column vectors of
A.

Now, let Gbe a graph. Then M (G) is the matroid on the edge set E(G) with the
set of all cycles of G as circuit. This matroid is called the cycle matroid of G. Two
matroids M; and M, are isomorphic, denoted by M, =M, , if there is a bijection
y from E(M,) to E(M,) such that, forall X <« E(M,), y(X) isindependent
in M, if and only if X is independent in M,;. A matroid that is isomorphic to the
cycle matroid of a graph is called graphic. If Mis isomorphic to M [A] for a matrix A
over F, then Mis called F-representable. In the sequel, by Fwe mean a finite field.

We call an element e a Joop of a matroid M if {e} is a circuit of M. Moreover, if £
and gare element of E(M) such that {f, g} isa circuit, then fand gare said to be
parallel in M. A parallel class of M is a maximal subset Xof E(M) such that any two
distinct members X are parallel and no member of X'is a loop. A parallel class is trivial
if it contains just one element. If A/ has no loops and no non-trivial parallel classes, it is

called a simple matroid or a combinatorial geometry.

2.2. Uniform Matroid Upn,n

Let m and n be non-negative integers such that m<n. Let £ be a set of cardinality n
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and Z be all subsets of £ of cardinality less than or equal to . This is a matroid on £,
called the uniform matroid of rank m and denoted by U . By definition, the set of
basis B(Um’n) of U, is {X cE ||X| = m} , and the set of circuits C(Um‘n) is
{X cE[|X|=m+1}.

2.3. Affine Matroid

Now, we are going to define affine matroid. A set {V,,V,,---,V,} < F" is affinely
dependent if k>1 and there are elements a;,a,,-:-,8, of £ not all zero, such that
> av,=0 and > a =0.Itis easy to show that affine dependence of

{Vl, Vo, o, Vk} c F™ is equivalent to each of the followings;

(Ad) {(l V., (1, vy )} c F™" is linearly dependent, where (1,v;) isthe (m+1)-
tuple of elements of F.

(Ad,) {Vk =V, V, = V1} c F" islinearly dependent.

Aset {V,,--,V,} = F™ isaffinely independent if it is not affinely dependent.

Suppose that E={v;,V,,~-,v,} ©F".Let Abe the (m+1)xn matrix over £ the
I-th column of with is (1, v, )T . The matroid M [A] is called an affine matroid over F.
In particular, if F=GF(q), and E=F", then the affine matroid is denoted by
AG(m,q). In general, if M is an affine matroid over R of rank (m +1), where
m <3, then a subset Xof E(M) is dependent in A if, in the representation of X by
points in R™, there are two identical points, or three collinear points, or four coplanar
points, or five points in space. Hence the flats of M of ranks one, two, and three are
represented geometrically by points, lines, and planar, respectively.

We extend the use of diagram of affine matroid to represent arbitrary matroids of
rank at most four. Generally, such diagrams are governed by the following rules. All
loops are marked in a single inset. Parallel elements are represented by touching points.
If three elements form a circuit, the corresponding points are collinear. Likewise, if four
elements form a circuit, the corresponding points are coplanar. In such a diagram, the
lines need not be straight and the planes may be twisted. Certain lines with fewer than
three points on them will be marked as part of the indication of a plane, or as con-
struction lines. We call such a diagram a geometric representation for the matroid.

Now we will define the projective geometry. Let V' be a vector space over F. For each
v,weV — {0} , v~w if vand wlie on the same 1-dimensional subspace of V. Then, ~
is an equivalence relation on Vand V —{0}/~ is called the projective space of V or
projective geometry and will be denoted by PG (V). For a matroid A delete all the
loops from M and then, for each non-trivial parallel class X, delete all but one
distinguished element of X, the matroid we obtain is called the simple matroid
associated with A/ and is denoted by M . Evidently the construction of PG (V) from
V'is analoguous to the construction of the simple matroid M from a matroid M. It is
clear that a matroid A is F-representable if and only if its associated simple matriod is
F-representable. Hence, when we discuss representability questions, it is enough to

concentrate on simple matroids.
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2.4. Projective Geometrices

If V=F", then PG(V) has dimension n and it is denoted by PG(n,F). In
particular, when Fis GF(q), it will be written PG(n,q) for PG(n,F). Let’s find
the geometric representation of PG(2,2). For each Ve 73 —{0} , there are no non-

zero elements except von the 1-dimensional subspace of Z3 through v(Figure 1). Thus
PG(2,2)= z3 -{0} = {1: (1,0,0),2=(1,1,0),3=(0,1,0),4=(0,1,1),
5=(0,0,1),6=(1,0,1),7 = (11,1)}

It is easy to see {1,2,3},{3,4,5} and {1,56} lie on the same line (plane) of
PG(2,2) (Z3). Also, {1,4,7},{2,5,7} and {3,6,7} are circuits of PG(2,2).
Furthermore, {2,4,6} is a circuit, because (1,1,0)+(0,1,1)=(10,1). Thus the geo-
metric representation of PG(2,2) is Figure 2.

PG(2,2) is called the Fano matroid and will be denoted by F,.In F,, {2 4,6}
is a circuit and a hyperplane. The matroid N obtained from F, by relaxing the circuit

hyperplane {2,4,6} is called non-Fano matroidand is denoted by F; (Figure 3).

2.5. Duals of Representable Matroids

Give a mxn matrix A by elementary row operations and interchanging two columns

) 4
7
——
0 3
2
Figure 1. Vector space Z;.
1
2 6
3 5
4

Figure 2. Geometric representation of PG(2,2)=F,.
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3

4

Figure 3. Geometric representation of F; .

or deleting a zero row. A can be transformed to a form [l |D], where I is rxr
identity matrix and Dis rx(n—r) matrix. It is clear that M =M [A] is isomorphic
to M[I,|D]. We can show that the dual matroid M” of Mis M [—DT | Infr] (19D.

Hence, the dual of F-representable matroid is F-representable. For example, let

123 456 7

100/01 11
A=/0 1 0|1 0 1 1|=[lI,|D]
0011101

be a matrix over Z,.Then, we can see that M [A] is isomorphicto F,.

12

[-D"|1,]=

[ = = e

1
0
1
1

and we can see that the set of circuits of M [—DT |1

3

1
1
0
1

4

1
0
0
0

5

0
1
0
0

ik

6

0
0
1
0

S

7

= O O O

{{1,5,6,7),{2,4,6,7},{3,4,5,7},{1,2,3,7},{1,2,4,5},{1,3,4,6},{2,3,5,6} .

3. Minors

In this section, we define minors which are important to representability. For the

definition of minor, we have to define contraction which is the dual of the operation of

deletion. We can see that contraction for matroids generalizes the operation of
contraction for graphs. Let M be a matroid on £ and 7 be a subset of E. Then
M/T =(M*\T) is called the contraction of T from M and also denoted by

M -(E—-T). For easy understanding, let us see what it means in graphic matroids. Let

Gbe a graph
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4
2 3
1

and T = {3} . Then, G/3 is the graph

4
< o
2

4

4

<0
NG

and G* is

Also G™\3 is

and (G \3)* is

>

which is the same as G/3. Thus,
M(G)/3=(M"(G)\3) =(M(G)\3) =(M(G"\3))
~M*(GT\3)=M ((G*\s)*): M (G/3)

and we see that the contraction of a graphic matroid is the same as the matroid of the
contracted graph, where we used M~ (G)=M (G*) for a planar graph G.

Now let M" be the dual of a matroid M. Then the rank function r” of M™ is
given by 1 (X)=|X|+r(E-X)-r(E) ([9]).1f T cE, the rank function of M\T
is the restriction of 1, tothe subsetof E-T ,thatis,forall XcE-T,

T (X) =1y (X).

K2
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Proposition 3.1. If T c E, then forall X cE-T, r,,(X)=r, (X UT)-1, (T).
Proof. By definition, I, (X)=r _ .(X).Thus

(m \T)

[y (X):|X|”ww (E—T—X)—rM*\T (E-T)

=[X]+r (E-(TUX))-r" (E-T)

=|x|+[|E—(Tux)|+rM (TuX)-r, (E)]—[|E—T|+rM (T)-ry (E)]
=ry (TUuX)-1,(T)

because |E—(TUX)/=E-[T|-|X| and E-[T|=|E-T]|. O
Proposition 3.2. Let B; be a basisfor M |; . Then
I(MIT)={IcE-T|IUB, eZ(M)}
= {1 < E—T | there exists a basis B of M |, suchthat Bul e Z(M)}.

Proof. For the convenience, let’s denote the equality by A =B=C. It is clear that
BcC.Toshowthat Cc.A,let | €C.Then, Bul eZ for some basis Bof M|, .
Cleary 1UB isabasisof 1UT.So r,(1UB)=r, (1UT).Thus

fr (D) =0y (1UT)=1, (T)=n, (1UB)—1, (T)=|1 UB|-|B|=1]+|B|-|B|=]1],

and it was proved that | e Z(M /T). Now if we show that A c B, the proof is
completed. Let | € Z(M /T). Then

|I|=rM/T(I)=rM (1uT)=r (T)=r, (1 uBT)_|BT|'

since B; isa basisof M| .Hence r, (1 UB;)=|B|+|l|=[lUB;| and 1 eB. O
Proposition 3.3. If T — E(M), then
1) MAT =(M*/T),
2) M7/T=(M\T), and
3) M\T=(M/T).

Proof1) M /T =(<M*)*\T)* ~(M\T) . Thus M\T =(M"/T)
T

*

2) M*/Tz((M*)*\ ) =(M \T)*.3) is obtained if we replace Mby M in the left-

hand side of 1). O
Now, let A be a matroid over Fand 7 be a subset of the set £ of column levels of A.
We shall denote by A\T the matrix obtained from A by deleting all the columns
whose labels are in 7. Clearly, M[A]\T =M [A\T]. Moreover, by the following, we
can see that the class of F-representable matroids is minor closed.
Proposition 3.4. Every contraction of an F-representable matroid is F-representable.
Proof. The duals of F-representable matroid are Frepresentable. Since
M[A]/T = (M* [A]\T)*, we proved that a contraction of F-representable matroid is
F-representable. O
Now suppose that e is the label of a non-zero column of A. Then, by pivoting on a
non-zero entry of e we can transform A into a matrix A’ in which the column
labelled by e has single non-zero entry. In this case, A'/e will denote the matrix

obtained from A’ by deleting the row and column containing the unique non-zero
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entry in e. Then, we have the following property.

Proposition 3.5. M[A]/e=M[A]/le=M[A'/e].

Proof It is enough to show that the second equation is true, because the first
equation is clear. By using row and column swaps if necessary, A" can be considered
as the matrix in which the unique nonzero entry of eis in row 1 and column 1. Let /be
a k-element subset of the ground set of M[A'] such that e¢l. Then the set of
columns labelled by | Ue is linearly independent if and only if the matrix B which
has columns €U | and the 1st column of it is the column corresponding to e has rank
k +1. This is equivalent to the matrix deleted row 1 and column 1 of B has rank kand
this is equivalent to the columns of A’'/e labelled by [7is linearly independent. Thus,
I(M[Ale])=Z(M[A]/e).

0

4. Representability of Pg

Now, we shall describe the construction of representations for matroids. Two matrices
A and A, are equivalent if M[A] and M[A,] are isomorphic. It is easy to see
that if M[A] is a rank-r matroid, then A is equivalent to a standard matrix [l |D],
where |, isthe rxr identity matrix. Given such a matrix, let its columns be labelled
in order, e,€,,---,6 . Let B be the basis {e,e,,---,e,} of M[A]. For all / in
{1, 2, r} , the unique non-zero entry in column 7 of [Ir | D] is in row Z Thus it is
natural to label the rows of [I |D] by e,&,, :-,€ . Hence, D has its rows labelled by
--,e,.Forall ke{r+1,r+2,-,n},
there exists a unique circuit C(e,,B) containedin € UB.In fact,

C(e..B)=e u{e | B and D has anon-zero entry in row ¢, and columnee, |} .
C(e,,B) is called the B-fundamental circuit of e,. Let D* be the matrix obtained

from D by replacing each non-zero entry of D by 1. Then the columns of D* are

€,8,,:--,6 and its columns labelled by e, ,,e

r+21"

precisely the incidence vectors of the sets C(e,,B)—¢, . This matrix D* is called the
B-fundamental-circuit incidence matrix of M [A]. Now let M =M [A] be a rank-r
matroid and B be a basis {ee,,---,e,} for M. Let X be the B -fundamental-circuit
incidence matrix of M. And let columns of X be labelled by e,,,€.,,":,€,. Then,
X = D". Thus the task of finding an F-representation for M can be viewed as being one
of finding the specific elements of F that correspond to the non-zero elements of D*.
We can see that most of the entries of D can be predetermined by the following
Proposition 4.1. Before stating it, we shall require some preliminaries.

Let the rows of D* be indexed by e,e,,-:-,e e e,.
Let G (D#) denote the associated simple bipartite graph, that is, G (D#) has vertex

classes {e,,e,,---,e,} and {e.je.,,~--,e,} and two vertices ¢ and €; are ad-

and its columns by e

r Tl Cra2s

jacent if and only if the entry in row € and column €; of D* is 1. For example, if

e, € &
e/l 01
D*=e,|0 1 1],
g1 10

288
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then G (D#) is

€1 €4
€9 €5
€3 €6

We have a nice way for representing matroid;

Proposition 4.1. Let the rxn matrix [|,|D,| be an F-representation for the
matroid M. Let {b,b,,---,b.} be a basis of the cycle matroid of G(Df). Then
k= n—a)(G(Df)), where a)(G(Df)) is the number of connected component of
G ( Df ) Moreover, if (6,,6,,---,6,) is an ordered k-tuple of non-zero elements of F,
then M has an F-representation [1,|D,]| that is equivalent to [1,|D,] such that, for
eachiin {1,2,---,k}, where the entry of D, correspondingto b, is 6, ([9][10]).

By the above proposition, we can find the fields on which given matroid is re-
presentable.

Example 4.2, P, is the matroid whose geometric representation is the following

Figure 4.
Let [I,]|D] bearepresentation over GF(q) of Pj.Then
e, & €
ef1 11
D*=X=¢,|1 1 1|.
g0 11

Thus, the associated simple bipartite graph G ( D#) is

e1 €4

€2 ;g €5

€3 €6
and a basis of G(D#) is

€1 @ €4

€2 Q €5

es €6

Therefore, [l,|D] is equivalent to the form of

KD
+%%, Scientific Research Publishing 289



S. Ahn, B. Han

12 3 456
100 1ac
010 1b 1/
0010 11

1 e3
8 .
5

Figure 4. Geometric representation of 7.

det(1,5,6)=b-1=0, det(2,56)=c-a=0, det(356)=a-bc=0,
det(3,4,5)=b—-a=0, det(3,4,6)=c—1=0, det(4,56)=b—a+c—1=0.

We want to find the fields GF(q) in which the negative equations satisfy. It is easy
to see that the equations have no solution if GF(q) isequalto Z, or Z,.In case of

GF (4)={0,1,0,+1}, let’s check if the equations have a common solution. There are
three cases;

1) a=1.

If b=c, then b-a+c-1=2b-2=0. Thus, b#c and bc=w(w+1)=1=a.
Hence, we don’t have a solution.

2) a=w.

In this case, b=c=w+1 and bc=w=a. Thus, there are no solution.

3) a=w+1l.

In this case, b=c=® and bc =@’ =w+1=a. Thus we have no solution.

In Z,if a=1b=2,c=4,then bc=8=3%1=a and
b-a+c-1=2-1+4-1=4+0. Therefore we showed that P, is representable over
Fifand onlyif |F|>5.

Example 4.3. If

0111
A= I, 1011
1101

is the matrix over Fwith charF = 2, then it is easy to see that M [A] =F, by Figure
3. Also, if [l,|D] isamatrix over Fand M[l,|D]=F; , then

4 5 6 7

110 1 11
D=X=2/10 11
3|11 1 01
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By taking a basis of M[G(D#)J, [1;1D] is equivalent to a matrix
123 456 7
1000111
[,ID]=l0 10 10 ¢ 1]
0 01abo1

Since det(1,4,7)=1-a=0,a=1. Also, because det(2,5,7)=b-1=0 and
0111
det(3,6,7)=1-c=0, b=c=1.Thus D,=[1 0 1 1|,
1101

Since det(4, 5, 6) =2#0, charF =2 . Therefore, we showed that F, is repre-
sentable over Fif and only if charF =2. P, isthe matroid of the matrix

123 4 56 7
1 001 011
A=|0 1 0|1 1 01
0001|1110

over Z,.It’s geometric representation is the following Figure 5.
Lemma 4.4. P, isrepresentable over a field F if and only if |F| >3.
Proof.1f B ={1,2,3}, then the B-fundamental circuit incidence matrix of P, is
4 56 7
111 0 1 1
X=2/1 10 1|
3;)1 1. 1 0

By taking a basis of M [G (X )} , Ais equivalent to a matrix [l,| D], where
4 56 7

111 0

D=2|1 1

3la 1

1
0
b

O O -

Figure 5. Geometric representation of 7.
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Because det(3,4,7)=c-1=0 and det(4,56)=b+1-a=0,c=1 and b=a-1.
As b=0,a=1. Therefore

4 5 7
11 0 1
D=21 1 1],
3la 1 a-1 0

where a ¢ {0,1} . Therefore, we proved that P, is representable over Fif and only if
|F|=3. O

Non F-representable matroid for which every proper minor is Frepresentable is
called the excluded or forbidden minor for F-representability. Because a matroid M is
F-representable if and only if all its minors are F-representable (Proposition 3.5),
finding the complete set of excluded minors for F-representability is the solution for the
F-representability. Since the duals of F-representable matroid are F-representable, the dual
of an excluded minor for Frepresentability is an excluded minor for Frepresentability.

To find an excluded minor for Z, -representability, we need the following property:

Proposition 4.5. Let F be a field and k be an integer exceeding 1. Then uniform
matroid U, is F-representable if and only if |F| >k-1.

Proof.Let U,, =M [A], where Aisa 2xk matrix. We can consider A4 as a matrix

101 1 - 1
[O 1 o a, - akzj'
where ¢, (1£ i<k- 2) are non-zero different elements of F Thus, it should be
|F|-1=k -2 and so |F|>k-1. Conversely, if |F|>k-1, then |F|-1>k-2 and
we can choose non-zero different (k —2) -elements of £
O

From the above proposition, we can see that U, , and (Uzyq+2 )* =U, g, are
excluded minors for GHg¢)-representability. In 1958, Tutte showed that U,, is the
only excluded minor for Z,-representability ([2]). The problem of finding the com-
plete set of excluded minors for Z, -representability was solved by Bixby and Seymour
in 1979 ([3] [4]). The setis {U,;,U;q,F F7

By Proposition 4.5, it is easy to see that U,, and U,  are excluded minors for
GH4)-representability. In Examples 4.2 and 4.3, we can see that P, and F, are not
GH4)-representable. It is not difficult to see that every proper minor of them is
GH4)-representable. Thus P, and F, are excluded minors for GH4)-represent-
ability. Clearly P is self-dual.

Let
123 45 6 7 8
0 11 -1
1 01 1
A= 1,
1 10
-1 11

be the matrix over Z,.Then, P, isthe matroid M[A].
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Lemma 4.6. P, isrepresentable over a field F if and only if charF = 2.
Proof. Let [I |D] be an F-representation for P,. If B={1,234}, then the B
fundamental circuit incidence matrix for P, is
01

D¥=X =

O R
e

10
11
11

By choosing a basis for M [G (D# )] , we can consider
6 7 8
d

T D = O u»
P P O

1
11
0 e
c 0
Because det(1,4,58)=e—a=0 and det(2,3,
Substituting these to the matrix D, we have

6,7)=c—-1=0,a=e and Cc=1.

5 6 7 8
01 1d
101 1
D= .
a 10 a
b 11 0
From the circuits {1,5,6,7}, {2,5,6,8}, {3,5,7,8} and {4,6,7,8}, we get the

equations
a=b-lad+ab-bd =0,b+d-db=0anda+1=d.

From the first and fourth equation, we get b=d . Substituting b for d'in the second
and third equation, we get b(2a—-b)=0 and b(2-b)=0.As b=#0, it follows that
b=2 and a=1.Because 0=b=2, charF #2.Thus

5 6 7 8
0112
1011
D= .
1101
2 110
In fact, we can show that M[l,|D]=P,. O

For a matroid A4 an automorphism is a permutation o of E(M) such that
r(X)= r(o-(X )) for all X < E(M). The set of automorphisms of A forms a group
under composition. This automorphism is transitive if, for every two elements xand y
of E(M), there is an automorphism that maps xto y.

Lemma 4.7. The automorphism group of B, acts transitively on B, .

Proof. We can see that the geometric representation of P, is the following Figure 6
because P, has only 10 4-circuits {1,2,3,8}, {1,2,4,7}, {1,3,4,6}, {2,3,4,5},
{1,458}, {2,3,6,7}, {1,5,6,7}, {2,56,8}, {3,5,7,8} and {4,6,7,8) . From the
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geometric representation of B, it is easy to see that the permutations
0,=(18,4,5)(2,7,3,6) and 0,=(12,4,3)(5,6,8,7) are both automorphisms of P, .
For example, o,P, and o,P, are the following Figure 7 and Figure 8.

Thus the automorphism group of B, is (cy,0,).

Any two elements in {1,8,4,5} and {2,3,6,7} can be mapped to each other by an
automorphism in (o-1> . Similarly, any two elements in {1, 2,4, 3} and {5, 6,8, 7}
can be mapped to each other by an automorphism in (c,). For the remaining two
elements of P,, they are mapped each other by the following; &,0;" (1) =0, (5) =6,
Ggldl(Z) =0, (7)=8, 0,0,(1)=0,(8)=7, 0,0,(2)=0,(7)=5,

/\

4

/\

Figure 6. Geometric representation of A.

/\

)

/\

Figure 7. Geometric representation of o,F, .
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)
S
/

/\

Figure 8. Geometric representation of o,P, .

o, o (3)= 0'2'1(7) =8, 020'1_1(4) =0,(8)=7, 0"20'1'1(3) =0,(7)=5,
0,0,(4)=0,(5)=6.
Thus, the automorphism group of P, acts transitivelyon P, .

Now, we get the following result, which is the purpose of this paper.

Theorem 4.8. B, is an excluded minor for GR4)-representability.

Proof. By Lemma 4.6, P, isnot GF(4) representable. Because the automorphism
group of P, acts transitively on P, by Lemma 4.7, for any element e of E(P,), we
have B, /e=PR, /1.

By Proposition 3.5, B,/1=M [A]/l: M [A/l]. Because

1 011
All= I 1 10 1y,
-1110

P,/1=P,. But, since P, is representable over GF(4) by Lemma 4.4, every
contraction of P, is GH4)-representable. By Proposition 3.3(1), for each element
ecE(R), Ps*\e = (PB* /e)* .Because P, isself-dual, P, = P,. Thus
P \e= (PS* / e) = (R, /e)* = P,". Hence, every deletion of P, is GH4)-representable.
Therefore, every proper minor of B, is GH4)-representable and we proved that B,

is an excluded minor for GH4)-representability. O
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