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Abstract 
The dynamics of steady, two-dimensional magnetohydrodynamics (MHD) free con- 
vective flow of micropolar fluid along a vertical porous surface embedded in a ther-
mally stratified medium is investigated. The ratio of pressure drop caused by liq-
uid-solid interactions to that of pressure drop caused by viscous resistance are equal; 
hence, the non-Darcy effect is properly accounted for in the momentum equation. 
The temperature at the wall and at the free stream which best accounts for thermal 
stratification are adopted. Similarity transformations are used to convert the non- 
linear partial differential equation to a system of coupled non-linear ordinary diffe-
rential equation and also to parameterize the governing equations. The approximate 
analytical solution of the corresponding BVP are obtained using Homotopy Analysis 
Method (HAM). The effects of stratification parameter, thermal radiation and other 
pertinent parameters on velocity, angular velocity and temperature profiles are 
shown graphically. It is observed that increase in the stratification parameter leads to 
decrease in both velocity and temperature distribution and also makes the micro- 
rotation distribution to increase near the plate and decrease away from the plate. The 
influence of both thermal stratification and exponential space dependent internal 
heat source on velocity, micro-rotation and temperature profiles are presented. The 
comparison of the solutions obtained using analytical techniques (HAM) and 
MATLAB package (bvp4c) is shown and a good agreement is observed. 
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1. Introduction 

The study and structure of a fluid as it flows over a surface results in vertical density 
variations which is of great importance in industry due to its vast application in indus-
try. Dake and Harleman [1] extensively discussed distribution of temperature across a 
deep lake and further explained the applications of thermal stratification in real life sit-
uation. Thermal stratification is a natural process that describes the layering of bodies 
of water based on their temperature. It occurs mainly because of temperature variations 
due to the presence of different fluids of different density. This natural process creates a 
transition zone of temperature gradient between cold and hot fluid zones. In a case of 
natural convection and boundary layer analysis, thermal stratification plays an impor-
tant role in vertical temperature distribution. The concept of thermal stratification is 
based on the division of water bodies about a surface/plate into three layers known as 
epilimnion, metalimnion and hypolimnion. Animasaun [2] explained that all the three 
divisions exists within the thin boundary layer and at each division the nature of veloc-
ity and temperature may vary. Dynamics of thermally stratified fluid has attracted the 
attention of researchers and and it has become an important topic for scientific enquiry 
because of its wide spread applications in a number of industrial engineering and envi-
ronmental applications. Madhu et al. [3] studied effects of viscous dissipation and ther- 
mal stratification on chemical reacting fluid flow over a vertical stretching surface with 
heat source. Hayat et al. [4] investigated thermal and concentration stratifications ef-
fects in radiative flow of a Jeffery fluid over a stretching sheet; it was observed that an 
increase in the thermal stratification parameter leads to reduction in fluid velocity, 
temperature field and thermal boundary layer thickness. Mixed convection flow along a 
stretching cylinder in a thermally stratified medium was carried out by Mukhopadhyay 
[5]. Murthy [6] studied thermo-diffusion effect on free convection heat and mass transfer 
in a thermally linearly stratified non-Darcy porous media. Recently, Omowaye et al. [7] 
investigated heat and mass transfer of upper convected maxwell fluid flow with variable 
thermo-physical properties over a horizontal melting surface, it was reported that in-
crease in the magnitude of thermal stratification parameter corresponds to a systematic 
way of decreasing the heat energy entering into the fluid domain from the free stream. 

Micropolar fluids are fluids with internal structures or micro-structures which be-
long to a class of fluids with nonsymmetric stress tensor that can be called polar fluids. 
The theory of micropolar fluids introduced by Eringen [8] takes into account the mi-
croscopic effect arising from the local structure and micro-rotation of fluid particles 
and is expected to provide a mathematical model for the non-Newtonian fluid behavior 
and studies have also shown that the model can be successfully applied to a wide range 
of applications which is able to describe the behavior of the polymeric additives, blood 
flow, lubricants, porous media, turbulent shear flows, liquid crystals, dirty oils and so-
lutions of colloidal suspension etc. The resulting equations in this fluid involve a mi-
cro-rotation parameter and a gyration parameter in addition to a classical velocity field. 
A thorough review of the subject of the application of micropolar fluid have also been 
discussed by Lukaszewicz [9]. The study of free convection heat transfer in the boun-
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dary layer flow along a vertical surface in a micropolar fluid has been studied by many 
researchers. Mohammad et al. [10] investigated MHD viscous flow of micropolar fluids 
due to a shrinking sheet. Mohammad [11] investigated Soret and Dufour effects on 
steady free convection in MHD micropolar fluid flow, together with hall current, heat 
and mass transfer. Umavathi [12] studied mixed convection flow of a micropolar fluid 
with concentration in a vertical channel in the presence of heat source or sink. Thia- 
garajan [13] considered a semi analytical investigation on MHD micropolar fluid and 
heat transfer in a permeable porous channel. MHD flow and heat transfer near the 
stagnation point of a micropolar fluid over a stretching surface with heat generation/ 
absorption was carried out by Jat et al. [14]. Ravi et al. [15] studied transient free con-
vective flow of a micropolar fluid between two vertical walls. Recently, steady mixed 
convection micropolar fluid flow towards stagnation point formed on horizontal li-
nearly stretchable melting surface is presented in Ref. [16]. The vortex viscosity of mi-
cropolar fluid along a melting surface was considered as a constant function of temper-
ature while dynamic viscosity and thermal conductivity are temperature dependent due 
to the influence of internal heat source on the fluid. 

Porous medium is a very important aspect in Science and Engineering which is de-
scribed as a medium or material that contains pores or spaces between solid materials 
or solid matrix through which liquids or gases can pass. Common examples of naturally 
occurring porous medium include sand, soil, sandstone, sponges, ceramics and foams. 
Fluid flow in porous media is an important dimension in many areas of reservoir engi-
neering, such as petroleum, environmental and groundwater hydrology. A number of 
studies have been reported in the literature focusing on the problem of combined heat 
and mass transfer in porous media and the analysis of convective transport in a porous 
medium with the inclusion of non-Darcian effects has also been a matter of study in 
recent years. Non-Darcy behavior is important for describing fluid flow in porous me-
dia in situations where high velocity occurs. Hence, due to its important applications in 
many fields, a full understanding of heat transfer by non-Darcy natural convection 
from a heated vertical surface embedded in fluid saturated porous medium is mea-
ningful. Mohammed et al. [17] examined thermal radiation effects on MHD free con-
vection flow of a micropolar fluid past a stretching surface embedded in a non-Darcian 
porous medium. Emad et al. [18] studied flow and heat transfer of a micropolar fluid 
past a stretching surfaced embedded in a non-Darcian porous medium with uniform 
free stream. RamReddy et al. [19] considered influence of viscous dissipation on free 
convection in a non-Darcy porous medium saturated with nanofluid in the presence of 
magnetic field. Natural convection heat and mass transfer in a micropolar fluid-saturated 
non-Darcy porous regime with radiation and thermophoresis effects was carried out by 
Bakier [20]. 

In the literatures above, little attention has been given to investigate free convective 
micropolar fluid flow along a vertical surface embedded in non-Darcian thermally me-
dium. In addition, no attempt has been made to investigate the behaviour of micro- 
polar fluid in the presence of exponential space dependent and temperature dependent 
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internal heat source along a vertical surface embedded in non-Darcian thermally strati-
fied porous medium using Homotopy Analysis Method. In view of this, it is imperative 
to highlight that, the present study will offer helpful information to scientists and engi-
neers in industry. 

2. Mathematical Formulation 

We consider steady two-dimensional free convective boundary layer flow of an incom-
pressible, electrically conducting micropolar fluid along a vertical surface embedded in 
non-Darcian thermally stratified porous medium. Keeping the origin fixed, the sheet is 
then stretched with a velocity ( )wu x , varying linearly with the distance from the slit. 
The flow is assumed to flow in x-direction which is along vertical surface and y-axis is 
normal to it. Fluid suction/injection is imposed at the plate surface. The temperature of 
the surface wT  is held uniform at which is higher than the ambient temperature T∞  
i.e. ( )wT T∞> . In this study, the thermal stratification is properly accounted for by 
modifying both wT  and T∞ . The uniform magnetic field of magnitude oB  is applied 
normal to the plate. Also the magnetic Reynolds number is assumed to be small so that 
the induced magnetic field is negligible in comparison to the applied magnetic field. 
The viscous dissipation term in the energy equation is assumed to be negligible (since 
the fluid model is characterized with a higher velocity). Under the foregoing assump-
tions with the Boussinesq approximation, the governing equations of the MHD free 
convection flow are: 

Continuity Equation 

0,u v
x y
∂ ∂

+ =
∂ ∂

                             (1) 

Momentum Equation 

( )
22 *

2
2 ,oBu u u N bu v u u u g T T

x y y k ky
µ τ τ ϑσ β
ρ ρ ρ ∞

 ∂ ∂ + ∂ ∂
+ = + − − − + − ∂ ∂ ∂∂ 

   (2) 

Angular Momentum Equation 
2

2
2 2 ,N N N uu v N

x y j j yy
µ τ τ
ρ ρ

   ∂ ∂ + ∂ ∂
+ = − +   ∂ ∂ ∂∂   

               (3) 

Energy Equation 

( ) ( )
2

02
1 e

ay
r

w
p p p

qT T T au v A T T B T T
x y C C y Cy

ϑκ κ
ρ ρ ρ ϑ

−

∞

 ∂∂ ∂ ∂
 + = − + − + −

∂ ∂ ∂∂   
   (4) 

Subject to boundary conditions 

( ) ( ), , , , at 0,w w w
uu u x ax v v x N n T T y
y
∂

= = = = − = =
∂

         (5) 

0, 0, , as ,u N T T y∞→ → → →∞                            (6) 

In this study, wall temperature and free stream temperature are defined as 

0 1 0 2, ,wT T m x T T m x∞= + = +                      (7) 



O. K. Koriko et al. 
 

202 

where u and v are components of velocity in x and y directions respectively, ( )wu x  is 
the wall shrinking or stretching velocity, ( 0a > ) for stretching, ( 0a < ) for shrinking 
and ( 0a = ) for static wall, ( )wv x  is the wall mass flux velocity, ρ  is the fluid densi-
ty, ( )µ ϑρ=  is the dynamic viscosity, ϑ  is the kinematic viscosity, σ  is the elec-
trical conductivity, j is the micro-inertial density, γ  is the spin gradient viscosity, τ  
is the vortex viscosity, T is the fluid temperature in the boundary layer, T∞  is the free  

stream temperature, β  is the thermal expansion coefficient, 
pC

κα
ρ

=  is the thermal  

diffusivity, κ  is the thermal conductivity, wq  is the wall heat flux, n is a constant 
such that 0 1n≤ ≤ . When 1 2n = , we have the vanishing of anti-symmetric part of 
the stress tensor and denotes weak concentration of microelements, the case 1n =  is 
used for the modeling of turbulent boundary layer flows. This study reports that the 
case we consider is when 0n =  (called strong concentration) which represents con-
centrated particle flows in which the microelements close to the wall are unable to ro-
tate, then, 0N =  near the wall and N is the micro-rotation or angular velocity whose 
direction of rotation is in the xy  plane. In this study, a case when 0n =  is considered.  

The Micropolar parameter or material parameter is K τ
µ

= , 0K ≠  for micropolar  

fluid and 0K =  for classical Newtonian fluid. Any of these assumptions is invoked to 
allow the field of equations that predicts the correct behaviour in the limiting case when 
the microstructure effects become negligible and the total spin N reduces to the angular 
velocity Adhikari and Maiti [21]. By the Rosseland approximation the radiative heat 
flux can be reduced in the form: 

4

*
4

3r
Tq
yk

σ− ∂
=

∂
                              (8) 

where σ  is the Stefan-Boltzmann constant and *k  is known as the mean absorption 
coefficient. It should be noted that by using Rosseland approximation, the present 
study is limited to optically thick fluids. Expanding 4T  in a Taylor series about T∞  
as: 

( ) ( )24 4 3 24 6 ,T T T T T T T T∞ ∞ ∞ ∞ ∞= + − + − +                  (9) 

and then neglecting higher order terms beyond the first degree in ( )T T∞− , we get 
4 3 44 3 ,T T T T∞ ∞= −                             (10) 

In view of the Equations (8) and (10), Equation (4) becomes; 

( ) ( )
32 2

2 2
16 e .
3

ay
ys

w
e p p

TT T T T au v A T T B T T
x y k C Cy y

σ κα
ρ ρ ϑ

−
∞

∞ ∞

 ∂ ∂ ∂ ∂  + = + + − + −
∂ ∂ ∂ ∂   

 (11) 

The continuity Equation (1) is satisfied by introducing a stream function ψ  such 
that 

, .u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                         (12) 
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The momentum, angular momentum and energy equations can be transformed into 
the corresponding ordinary differential equations by the following transformation 

( ) ( ) ( ) ( )
0

, , , , ,
w

T Ta ay x y x a f N ax p
T T

η ψ ϑ η η θ η
ϑ ϑ

∞−
= = = =

−
    (13) 

where η  is the independent dimensionless similarity variable. Thus u and v are given 
by ( )u axf η′= , ( ) ,v a fϑ η= −  substituting variables (13) into Equations (2), (3) 
and (11), we obtain the following ordinary differential equations: 

( )1 0s
s x

a

FK f f f ff Kp Mf f f P f Gr
D

θ′′′ ′ ′ ′′ ′ ′ ′ ′ ′+ − + + − − − + =         (14) 

( )1 2 0
2
K p fp pf K p f  ′′ ′ ′ ′′+ + − − + = 

 
                         (15) 

( )41 e 0
3 r t r r

a

P S f P f P f A B
R

ηθ θ θ θ− 
′′ ′ ′ ′+ − − + + + = 

 
             (16) 

subject to the boundary conditions (5) and (6) which become; 

( ) ( ) ( ) ( )0 1, 0 , 0 0, 0 1 at 0tf f s p Sθ η′ = = = = − =          (17) 

( ) ( ) ( )0, 0, 0 as .f pη η θ η η′ → → → →∞                 (18) 

In the above equations, primes denote differentiation with respect to η . The dimen-
sionless velocity, angular velocity and temperature are represented as ( )f η , ( )p η   

and ( )θ η  respectively, j
a
ϑ

=  the characteristic length (Rees and Bassom), rP ϑ
α

=  

the Prandtl number, 
2
oBM
a

σ
ρ

=  the magnetic parameter, ( )wv x
s

aϑ
= −  the constant 

mass flux with 0s >  for suction and 0s <  for injection, 
*

s
bF
x

=  the Local For-

chheimer parameter, 2a
kD
x

=  Local Darcy parameter, sP
ka
ϑ

=  Porosity parameter, 

( )*
0

2
w

x
g T T

Gr
a x

β −
=  the Modified Local Grashof number, 2

1
t

mS
m

=  the Stratification 

parameter, 
*

34a
s

k kR
Tσ ∞

=  the Radiation parameter. The physical quantities of in-  

terest are the skin friction coefficient fC  and the local Nusselt number xNu  are de-
fined as; 

( )2 , .
2

w w
f x

w

xqC Nu
T TU

τ
κρ ∞

= =
−

                   (19) 

where the wall shear stress τ  and the heat flux wq  are given by 

( ) 0, 0w w
y y

u TkN q
y y

τ µ κ κ
   ∂ ∂

= + + = = − =   ∂ ∂   
            (20) 

where κ  being the thermal conductivity. Using the similarity variables (13), we get 
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( ) ( ) ( )
1 2

1 2
1 11 1 2 0 , .
2 0

x
f x

x

NuC Re n K f
Re θ

′′= + − =   −
           (21) 

3. Homotopy Analysis Method (HAM) 

Nonlinear differential equations are usually arising from mathematical modeling of 
many physical systems. Some of them are solved using numerical methods and some 
are solved using the analytic methods such as perturbation techniques, Adomian De-
composition and δ-expansion method. Generally speaking, it is still difficult to obtain 
analytical solutions of nonlinear problems. In this research, Homotopy analysis method 
is considered as a method of solution because of its efficiency as an approximate solu-
tion of linear and nonlinear differential equations and also; HAM is valid for strongly 
nonlinear problems even if a given nonlinear problem does not contain any small/large 
parameters. Animasaun et al. [22] explained that Homotopy theory was first introduced 
by Hilton [24] and Homotopy Analysis Method (HAM) was proposed by Liao [23] to 
obtain better approximate solution of non-linear differential equation if compared with 
Adomian decomposition. Logically, HAM is believed to contain some analytic techniques 
such as Adomian’s decomposition method, Lyapunov’s artificial small parameter, and 
the δ-expansion method, which can still be considered as generalized theory of the 
aforementioned techniques. Unlike the previously mentioned analytic techniques, HAM 
offers a great freedom to express solutions of a given non-linear problem by means of 
different base functions. Hence, non-linear problem can be approximated more efficiently 
by choosing a proper set of base functions, mainly because, the convergence region and 
rate of a series are determined by the base functions used to express the solution. Fur-
thermore, the HAM provides extremely large freedom to choose initial guess and equa-
tion-type of linear sub-problems. It is found in Liao [23] that lots of nonlinear BVPs in 
science, engineering and finance can be solved conveniently by means of the HAM, no 
matter whether the interval is finite or not. Let consider a differential equation 

( ) 0N f η =                             (22) 

where N is a nonlinear operator, η  denote independent variable and ( )f η  is an ap-
proximate solution of (22) which is an unknown function. Let ( )of η  denote an initial 
approximation of ( )f η , ( )H η  is known as auxiliary function and L denote an aux-
iliary linear operator with the property 

( ) ( )0 when 0L f fη η= =                      (23) 

Instead of using the traditional Homotopy 

( ) ( ) ( ) ( ) ( ); ; 1 ; ;oH f q q q L f q f qN f qη η η η= − − +            

we considered a nonzero auxilary parameter   and a nonzero auxilary function ( )H η  
to construct a new kind of Homotopy of the form; 

( ) ( )
( ) ( )( ) ( ) ( ) ( )( )

; , ,

1 ; , , ; , ,o

H f q H

q L f q H f q H N f q H

η η

η η η η η η

  
   = − − −   



  

    (24) 



O. K. Koriko et al. 
 

205 

[ ]0,1q∈  is an embedding parameter and ( ),f qη  is a function of η  and q. 
When 0q = , Equation (24) becomes 

( ) ( ) ( )( ) ( );0, , ;0, , oH f H L f H fη η η η η = −                  (25) 

Next step is to find solution of ( ) ( );0, , 0H f Hη η =   . Making use of (23), RHS 
of Equation (25) becomes 

( )( ) ( );0, , of H fη η η=                       (26) 

Equation (26) is the solution of ( ) ( );0, , 0H f Hη η =    
When 1q = , Equation (24) becomes 

( ) ( ) ( ) ( )( );1, , ;1, ,H f H H N f Hη η η η η = −                  (27) 

Consider the solution of ( ) ( );1, , 0H f Hη η =    

( ) ( ) ( );1, , 0H N f Hη η η− =     

( )( ) ( );1, , 0 but 0N f H Hη η η  = ≠    

Equating to Equation (22) 

( )( ) ( );1, ,N f H N fη η η  =      

Algebrically, 

( )( ) ( );1, ,f H fη η η=                        (28) 

In many cases, by mean of analyzing the physical background and the initial/ boun-
dary conditions of the nonlinear differential problem, we might know what kinds of 
base functions are proper to represent the solution, even without solving the given non-
linear problem. In view of the boundary conditions (17) and (18), ( )f η , ( )p η  and 
( )θ η  can be expressed by the set of base functions of the form 

( )exp | 0, 0j nj j nη − ≥ ≥                      (29) 

The solutions ( )f η , ( )p η  and ( )θ η  can be represented in a series form as 

( ) ( )0
0,0 ,

0 0
expk k

n k
n k

f a a njη η
∞ ∞

= =

= + −∑∑                  (30) 

( ) ( ),
0 0

expk k
n k

n k
p b njη η

∞ ∞

= =

= −∑∑                       (31) 

( ) ( ),
0 0

expk k
n k

n k
c njθ η η

∞ ∞

= =

= −∑∑                       (32) 

In which ,
k
n ka , ,

k
n kb  and ,

k
n kc  are the coefficients. As long as such a set of base 

functions are determined, the auxiliary function ( )H η , the initial approximation 
( )of η , ( )op η  and ( )oθ η , and the auxiliary linear operator fL , pL  and Lθ  must 

be chosen in such a way that all solutions of the corresponding high-order deformation 
of Equations (65), (66) and (67) exist and can be expressed by this set of base functions. 
This provides us with a fundamental rule on how to choose the auxiliary function 
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( )H η , the initial approximation ( )of η , ( )op η  and ( )oθ η , and the auxiliary linear 
operator fL , pL  and Lθ ; this is called the rule of solution expression. This rule plays 
an important role in the frame of the Homotopy analysis method, as shown in this re-
search. As mentioned above, a real function ( )f x  might be expressed by many dif-
ferent base functions. Thus, their might exist some different kinds of rule of solution 
expressions and all of them might give accurate approximations for a given nonlinear 
problem. In this case we might gain the best one by choosing the best set of base func-
tions. As mentioned above, in Homotopy Analysis method we have great freedom to 
choose the auxiliary linear operator L, the initial approximation ( )0f η , ( )0p η  and 

( )0θ η , and the auxiliary function ( )H η  to construct the zero-order deformation eq-
uation. Invoking the rule of solution expressions above for ( )f η , ( )p η  and ( )θ η  
on (14), (15) and (16) together with boundary conditions (17) and (18), the initial 
guesses ( )of η , ( )op η  and ( )oθ η  which satisfies both the initial and boundary con- 
ditions (17) and (18) are; 

( ) ( ) ( ) ( ) ( ) ( )1 exp , 0, 1 expo o o tf S p Sη η η θ η η= + − − = = − −       (33) 

Linear operators fL , pL  and Lθ  are 

( ) ( ) ( )3

3

; ;
;f

f q f q
L f q

η η
η

ηη
∂ ∂

= −   ∂∂
                 (34) 

( ) ( ) ( )
2

2

;
; ;p

p q
L p q p q

η
η η

η
∂

= −   ∂
                  (35) 

( ) ( ) ( )
2

2

;
; ;

q
L q qθ

θ η
θ η θ η

η
∂

= −   ∂
                   (36) 

The operators fL , pL  and Lθ  have the following properties 

( ) ( )
( )
( )

1 2 3

4 5

6 7

exp exp 0,

exp 0,

exp 0

f

p

L C C C

L C C

L C Cθ

η η

η

η

+ − + =  
− + =  
− + =  

                (37) 

In which 1C , 2C , 3C , 4C , 5C , 6C  and 7C  are constants. 

3.1. Zero Order of Deformation 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;f o f fq L f q f q H N f q p q qη η η η η θ η− − =            (38) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;p o p pq L p q p q H N f q p q qη η η η η θ η− − =            (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 ; ; , ; , ;oq L q q H N f q p q qθ θ θθ η θ η η η η θ η− − =             (40) 

Subject to boundary conditions 

( ) ( ) ( ) ( )0;
0; , 1, 0; 0, 0; 1 t

q
f q S p q q S

η
η η θ η

η
∂ =

= = = = = = = −
∂

    (41) 

( ) ( ) ( );
0, 0, ; 0

f q
p q

η
η θ η

η
∂ →∞

→ →∞ → →∞ =
∂

                 (42) 
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where the nonlinear operators are defined as 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( )

3 2

3 2

; ; ; ; ;
1 ;

;

f q f q f q f q p q
K f q K

f q
M

η η η η η
η

η η ηη η

η
η

∂ ∂ ∂ ∂ ∂
+ − + +

∂ ∂ ∂∂ ∂

∂
−

∂

         (43) 

( ) ( ) ( )
( ) ( ); ; ;

; 0s
s x

a

f q f q f qF P Gr q
D

η η η
θ η

η η η
∂ ∂ ∂

− − + =
∂ ∂ ∂

                       (44) 

( ) ( ) ( ) ( ) ( ) ( )( )

( )

2

2

2

2

; ; ;
1 ; ; 2 ;

2
;

0

p q p q f qK f q p q K p q

f q

η η η
η η η

η ηη
η
η

∂ ∂ ∂ + + − −  ∂ ∂∂ 
∂

+ =
∂

         (45) 

( ) ( ) ( ) ( ) ( ) ( )2

2

; ; ; ;4 11 ; ;
3 r t r r

a

q f q f q q
P S P q P f q

R
θ η η η θ η

θ η η
η η ηη

  ∂ ∂ ∂ ∂ 
+ − − +   ∂ ∂ ∂∂  

 (46) 

( )( )e ; 0A B qη θ η−+ + =                                                (47) 

when 0q = , zero order of deformation Equations (38) to (40) leads to 

( ) ( ) ( ) ( ) ( ) ( );0 0, ;0 0, ;0 0f o p o oL f f L p p Lθη η η η θ η θ η− = − = − =            (48) 

With the property 

( ) ( );0 of fη η=                         (49) 

( ) ( );0 op pη η=                         (50) 

( ) ( );0 oθ η θ η=                         (51) 

Subject to 

( ) ( ) ( ) ( )0;0
0;0 , 1, 0;0 0, 0;0 1 t

f
f S p S

η
η η θ η

η
∂ =

= = = = = = = −
∂

  (52) 

( ) ( ) ( );0
0, ; 0, ;0

f
p

η
η θ η

η
∂ →∞

→ → ∞ → →∞
∂

                  (53) 

when 1q = , the zero order of deformation Equations (38) to (40) leads to 

( ) ( ) ( ) ( )0 ;1 , ;1 , ;1f fH N f pη η η θ η=     

( ) ( ) ( ) ( )0 ;1 , ;1 , ;1p pH N f pη η η θ η=     

( ) ( ) ( ) ( )0 ;1 , ;1 , ;1H N f pθ θ η η η θ η=     

Based on the fact that ( ) ( )0, 0f f p pH Hη η≠ ≠   and ( ) 0Hθ θ η ≠  but, 

( ) ( ) ( )0 ;1 , ;1 , ;1N f pη η θ η=                        (54) 

( ) ( ) ( )0 ;1 , ;1 , ;1N f pη η θ η=                        (55) 

( ) ( ) ( )0 ;1 , ;1 , ;1N f pη η θ η=                        (56) 
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Equating Equations (54) to (56) with Equations (22), we have 

( ) ( );1f fη η=                           (57) 

( ) ( );1p pη η=                           (58) 

( ) ( );1θ η θ η=                           (59) 

Subject to 

( ) ( ) ( ) ( )0;1
0;1 , 1, 0;1 0, 0;1 1 ,t

f
f S p S

η
η η θ η

η
∂ =

= = = = = = = −
∂

    (60) 

( ) ( ) ( );1
0, ;1 0, ;1 0

f
p

η
η θ η

η
∂ →∞

→ →∞ → →∞ →
∂

               (61) 

3.2. High Order of Deformation 

Expanding ( );f qη , ( );p qη  and ( ); qθ η  in Taylor series with respect to the em-
bedding parameter q, 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

f q
f q f f q f

m q
η

η η η η
∞

= =

∂
= + =

∂∑       (62) 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

p q
p q p f q p

m q
η

η η η η
∞

= =

∂
= + =

∂∑       (63) 

( ) ( ) ( ) ( ) ( )
1 0

;1; where
!

m
m

o m m m
m q

q
q q

m
θ η

θ η θ η θ η θ η
η

∞

= =

∂
= + =

∂∑        (64) 

The auxiliary parameters are so properly chosen that the series (62), (63) and (64) 
converge at 1q = . Hence, 

( ) ( ) ( )
1

; m
o m

m
f q f f qη η η

∞

=

= +∑                     (65) 

( ) ( ) ( )
1

; m
o m

m
p q p p qη η η

∞

=

= +∑                     (66) 

( ) ( ) ( )
1

; m
o m

m
q qθ η θ η θ η

∞

=

= +∑                     (67) 

For the mth order deformation, differentiate (38) to (40) m times with respect to q, 
divide by !m  and set 0q = , then we have; 

( ) ( ) ( ) ( )1
f

f m m m f f mL f f H Rη χ η η η−− =                   (68) 

( ) ( ) ( ) ( )1
p

p m m m p p mL p p H Rη χ η η η−− =                   (69) 

( ) ( ) ( ) ( )1m m m mL H Rθ
θ θ θθ η χ θ η η η−− =                    (70) 

Subject to 

( ) ( ) ( ) ( )0;0
0;0 0, 0, 0 0, 0 0m m m

f
f p

η
η η θ η

η
∂ =

= = = = = = =
∂

    (71) 
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( ) ( ) ( )0, 0, 0
d

m
m m

f
p

η
η θ η

η
∂ →∞

→ →∞ → →∞ →             (72) 

where 

( ) ( )
3 1 1

1 1 1 1
3

0 0

1 1 1
1

d d d d d1
d d d dd

d d d 0
d d d

m m
f m m k k m k m

m k
k k

m s m k m
s x m

a

f f f f pR K f K

f F f fM P Gr
D

η
η η η ηη

θ
η η η

− −
− − − − − −

= =

− − − −
−

= + − + +

− − − + =

∑ ∑
            (73) 

( )
2 21 1

1 1 1 1
12 2

0 0

d d d d1 2
2 d dd d

m m
p m m k m k m

m k k m
k k

p p f fKR f p K p Kη
η ηη η

− −
− − − − − −

−
= =

 = + + − − + 
 

∑ ∑    (74) 

( )

( )

2 1 1
1 1 1 1

0 0

1

d d d d41
3 d d d d

e 0

m m
m m m k m k

m r t r k r k
k k

m

f fR P S P P f
N

A B

θ

η

θ θη θ
η η η η

θ

− −
− − − − − −

= =

−
−

 = + − − +  

+ + =

∑ ∑
       (75) 

And 

0 when 1m mχ = ≤  

1 when 1m mχ = >  

The general solutions of equations are given by 

( ) ( ) ( )*
1 2 3exp expm mf f C C Cη η η= + + + −  

( ) ( ) ( )*
4 5 6exp expm mp p C C Cη η η= + + + −  

( ) ( ) ( ) ( )*
7 8exp expm m C Cθ η θ η η η= + + −  

Here, ( )*
mf η , ( )*

mp η  and ( )*
mθ η  are the particular solutions of Equations (66)- 

(68). Following the rule of solution expression, the rule of coefficient ergodicity and the 
rule of solution existence as discussed in [21] we choose auxiliary functions as 

1f pH H Hθ= = =                          (76) 

4. Results and Discussion 

In order to gain an insight into the behavior of the fluid as it flows, analytic approx-
imate solution of the dimensionless governing equation described in the previous sec-
tion has been carried out using various values of stratification parameter tS , Magnetic 
parameter M, temperature dependent heat source A and B. The accuracy of the adopted 
method of solution (Homotopy Analysis Method) is achieved by comparing the values 
of ( )0f ′′ , ( )0p′  and ( )0θ ′  at various values of stratification parameter ( tS ) with 
the solution of MATLAB package (bvp4c). 

Table 1 reveals the comparison and it is important to remark that good agreement is 
observed. It is noticed from the table that the magnitude of skin friction decreases with 
an increase in tS . The magnitude of couple stress increases with an increase in tS . 

In addition, it is also noticed from the table that the magnitude of the local heat 
transfer rate increases with an increase in tS . 

Pertinent to inquire the effects of variation of tS , sP , M and A & B, the numerical 
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results are thus presented in the form of velocity profiles, micro-rotation profiles and 
temperature profiles in Figures 1-15 for the different values of each parameter. It is 
very important to remark that the local skin friction coefficient is denoted by ( )0f ′′ , 
Nusselt number ( )0θ ′−  is proportional to local heat transfer rate while couple stress 
is denoted by ( )0p′ . Table 2 shows the convergence of HAM solutions for different 
order of approximations when 1.0M = , 1.0K = , 1rG = , 0.4A = , 0.4tS = , 

0.2B = , 0.4sP = , 0.71rP = , 0.5sF = , 0.5aD = , 0.7aR =  and 0.3s = . 
Figures 1-3 represent the velocity, micro-rotation and temperature profiles with 

variation in the magnitude of thermal stratification parameter tS . Figure 1 depicts the 
effects of variation of thermal stratification parameter tS  on velocity profiles of Mi- 
cropolar fluid in the presence of internal heat source (i.e. 0.4, 0.2A B= = ), in the pre- 
sence of magnetic field ( 1.0M = ) and uniform suction ( 0.3s = ); it is observed that 
velocity profile decreases with an increase in stratification parameter tS . It is worth 
mentioning that increase in the magnitude of stratification parameter tS  corresponds 
to a decrease in temperature distribution. This can be confirmed in Figure 3. In addition,  

 
Table 1. Comparison of the results of HAM and bvp4c on ( )0f ′′ , ( )0p′  and ( )0θ ′  for 

various values of St, when M = 1.0, K = 1.0, Gr = 1.0, A = 0.4, B = 0.2, Ps = 0.4, Pr = 0.71, Fs = 0.5, 
Da = 0.5, Ra = 0.7, s = 0.3. 

 HAM bvp4c 

tS  ( )0f ′′  ( )0p′  ( )0θ ′  ( )0f ′′  ( )0p′  ( )0θ ′  

0.4 −1.07323092325528 0.29572619181767834 −0.1817220296067319 −1.0728 0.2953 −0.1800 

0.6 −1.14391400312143 0.31350600136745343 −0.1402800127453434 −1.1436 0.3132 − 0.1397 

0.8 −1.21490100151245 0.33164300216441233 −0.0961960011275332 −1.2140 0.3315 −0.0960 

 
Table 2. Convergence of Homotopy Solution for different order of approximation on ( )0f ′′ , 

( )0p′  and ( )0θ ′  for various values of St, when M = 1.0, K = 1.0, Gr = 1.0, A = 0.4, B = 0.2, Ps = 

0.4, Pr = 0.71, Fs = 0.5, Da = 0.5, Ra = 0.7, s = 0.3. 

Order of approximation ( )0f ′′  ( )0p′  ( )0θ ′  

1 −1.102850698204918 0.3142916584602799 −0.298855474342964 

2 −1.091353120619502 0.3070703970974996 −0.256685615712014 

3 −1.095907204113479 0.3074890117246342 −0.217902469545101 

4 −1.079781088675545 0.309348721194765 −0.208535910987546 

5 −1.080611230231204 0.3023404211947201 −0.194456011581959 

6 −1.076262532448428 0.300770604344728 −0.192129902182097 

7 −1.075622898014302 0.2981949587200132 −0.186197762941896 

8 −1.074421204429870 0.2970219453865645 −0.208444518149192 

9 −1.073223644756899 0.2952554670367616 −0.181690035630036 

10 −1.073230923255284 0.2957261918176783 −0.181722029606731 
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Figure 1. Effect of stratification parameter tS  on velocity profile. 

 

 
Figure 2. Effect of stratification parameter tS  on micro-rotation profile. 

 
this can be traced to the fact that, as tS  increases, the surface temperature within 
thermally stratified medium ranges from epilimnion to hypolimnion. Physically, this 
decrease of temperature distribution as the Micropolar fluid flows along a vertical sur-
face may accounts for an increase in the viscosity of the fluid. Consequently, intermo-
lecular forces between the bond of Micropolar fluid becomes stronger and hence ac-
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count for the decrease in velocity profiles. Infact, it is noticed that the influence of in-
creasing stratification parameter tS  dominates the likely influence of both space- and 
temperature dependent heat source. This may be traced to the fact that the magnitudes 
assigned to A & B are 0.4 & 0.2 respectively. In addition, with an increase in stratifica-
tion parameter tS , the decrease in temperature profile is more significant near the wall 
0 8η≤ ≤ . This result is true since the heat energy around the porous vertical wall is 
substantial and even greater than that of freestream. This result actually complements 
the one reported in Ref. [7]. It is also noticed from Figure 2 that increase in the mag-
nitude of stratification parameter makes the micro-rotation distribution to increase 
near the vertical wall and decrease thereafter as η →∞ . The increment we noticed 
near the wall can be traced to the fact that a case ( 0n = ) is considered in this study; the 
micro-elements close to the wall are unable to rotate. Nevertheless, it is noticed that 
when 0.8tS =  the maximum value of micro-rotation is estimated as 0.094 (i.e. the 
micro-rotation increases negligible with an increase in tS ). Figure 4 depicts the effect 
of micropolar parameter K on micro-rotation profile ( )p η . It is observed that increase 
in the magnitude of micropolar parameter K leads to increase in the micro-rotation 
profile. Likewise, an increase in the magnitude of K corresponds to a decrease in tem-
perature and micro-rotation distributions within the fluid domain (see Figure 5, Fig-
ure 6). 

Figure 7 reveals the effect of Porosity parameter ( sP ) on the temperature profiles. It 
is noticed from Figure 7 that increase in the magnitude of the porosity parameter cor-
responds to an increase in the temperature of the fluid and thermal boundary layer 
thickness. It is noted that large values of porosity parameter sP  corresponds to high 
porosity in porous medium, obviously, increase in the magnitude of the porosity para-
meter implies that the porous medium is offering more resistance to the fluid flow  
 

 
Figure 3. Effect of stratification parameter tS  on temperature profile. 
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Figure 4. Effect of micropolar parameter K on micro-rotation profile. 
 

 
Figure 5. Effect of Porosity parameter sP  on velocity profile. 

 
and this results in reduction in the velocity distribution and likewise micro-rotation 
distribution and this also corresponds to reduction in the thickness of velocity boun-
dary layer. 

The variation of the dimensionless velocity, micro-rotation, temperature profiles for 
different values of magnetic parameter M is illustrated in Figures 8-10 respectively. It 
is observed from Figure 8 that, the velocity distribution decreases as the magnetic pa-
rameter increases. This is due to the fact that, the application of a transverse magnetic 
field normal to the flow direction induces an electric field which gives rise to a resistive 
force or dragline force called Lorentz force. This force has the tendency to slow down  
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Figure 6. Effect of Porosity parameter sP  on micro-rotation profile. 

 

 
Figure 7. Effect of Porosity parameter sP  on temperature profile. 

 
the velocity of the fluid and angular velocity of micro-rotation in the boundary layer 
and to increase its temperature. It is observed from Figure 9 that the micro-rotation 
component increases negligibly near the surface and decreases far away from the sur-
face with an increasing values of magnetic parameter. Figure 10 shows the effect of M 
on the temperature profile, from this figure, we observe that the temperature increases 
with the increase in magnetic parameter M. 

Figures 11-13 depicts the effect of space-dependent and temperature-dependent heat 
source parameters A and B. It is shown that increase in A and B leads to an increase in  
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Figure 8. Effect of magnetic parameter M on velocity profile. 
 

 
Figure 9. Effect of magnetic parameter M on micro-rotation profile. 

 
velocity, micro-rotation and temperature profiles respectively. The presence of the ex-
ponential term in the space-dependent heat source is to produce additional heat energy 
across the fluid region, leading to increase in velocity and temperature of the fluid and 
also the thickness of the velocity and thermal boundary layer increase. It is revealed in 
Figure 12 that heat source parameters A and B have noticeable effect on the mi-
cro-rotation profile in such a way that, as the value of heat source parameters A and B 
increases, micro-rotation distribution reduces near the surface and increases away from  
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Figure 10. Effect of magnetic parameter M on temperature profile. 

 

 
Figure 11. Effect of (A and B) on velocity profile. 

 
the surface. In other words, we can still say that when heat source parameters A and B 
have increasing positive values, it is observed that substantial heat source will be gener-
ated within the fluid domain and hence influence the thermal boundary layer. 

Convergence of the Homotopy Solution 

It is obvious that the series Equations (65)-(67) consists of the non-zero auxiliary pa-
rameters f , p  and θ  which can adjust and control the convergence. The inter-
val on -axis for which the -curve becomes parallel to the -axis is recognized as the  
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Figure 12. Effect of (A and B) on micro-rotation profile. 
 

 
Figure 13. Effect of (A and B) on temperature profile. 
 
set of admissible values of f , p  and θ  for which the solution series converges. 
For this purpose, the -curves are plotted for the 10th-order of approximations in Fig- 
ures 14-16 when 1.0M = , 1.0K = , 1rG = , 0.4A = , 0.4tS = , 0.2B = , 0.4sP = , 

0.71rP = , 0.5sF = , 0.5aD = , 0.7aR = , 0.3s = . These figures show that the ranges 
for the acceptable values of f , p  and θ  are 0.2 0.6f− ≤ ≤ − , 0.2 0.8p− ≤ ≤ −  
and 0.2 0.55θ− ≤ ≤ − . Obviously, from the -curves for this problem, we obtained the  
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Figure 14. The -curve of ( )0f ′′  obtained at 10th-order of approximation. 

 

 

Figure 15. The -curve of ( )0p′  obtained at 10th-order of approximation. 

 
approximate optimal values of f , p  and θ  at 10th-order of approximation as 

0.38385364845138986− , 0.7016067329710203−  and 0.5425308279591171− . 

5. Conclusions 

The study describes free convective boundary layer flow of a conducting micropolar 
fluid in the presence of exponential space and temperature dependent heat source is 
analyzed, the set of non-linear ordinary differential equations are then solved by an 
analytic approximate techniques (Homotopy Analysis Method) and the behaviours of 
embedded parameters are investigated. The following conclusions are drawn from the  
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Figure 16. The -curve of ( )0θ ′  obtained at 10th-order of approximation. 

 
analysis: 

1) Velocity profiles and micro-rotation profiles are strongly influenced by the 
magnetic field in the boundary layer, which decreases with increase in the Magnetic 
parameter M. 

2) Increase in the stratification parameter tS  leads to decrease in both velocity pro-
file and temperature profile. In the presence of space- and temperature-dependent in-
ternal heat source and thermal stratification, the micro-rotation profile negligibly in-
creases within the thin layer near the wall. 

3) Increasing the value of Micropolar parameter results in increase in micro-rotation 
profile. 

4) Micro-rotation profile has a parabolic distribution when micro-gyration para- 
meter 0n = . 

5) Micropolar fluids reduce the shear stresses and enhance couple stress as compared 
to Newtonian fluids. 

6) Variation of stratification parameter result in decrease in the local skin friction 
coefficient and increase the couples stress and local heat transfer rate respectively.  
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