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ABSTRACT 

This paper proposes recursive least-squares (RLS) l-step ahead predictor and filtering algorithms with uncertain ob- 
servations in linear discrete-time stochastic systems. The observation equation is given by        y k k z k v  k


, 

, where  is a binary switching sequence with conditional probability. The estimators require the 
information of the system state-transition matrix 
   z k Hx k   k

 , the observation matrix H , the variance  ,K k k  of the state 
vector  x k , the variance  R k  of the observation noise, the probability     1p k P k   that the signal exists 
in the uncertain observation equation and the  2, 2  element  

2,
|P k j

2
    of the conditional probability of  k , 

given .  j
 
Keywords: Estimation Theory, Synthesis of Stochastic Systems, RLS Wiener Predictor, Uncertain Observations, Markov 

Probability 

1. Introduction 

The estimation problem given uncertain observations is 
an important research topic in the area of detection and 
estimation problems in communication systems [1]. Nahi 
[2], assuming that the state-space model is given, pro- 
poses the RLS estimation method with uncertain obser- 
vations, when the uncertainty is modeled in terms of in- 
dependent random variables, and the probability that the 
signal exists in each observation is available. The term 
uncertain observations refers to the fact that some obser- 
vations may not contain the signal and consist only of 
observation noise. In Hadidi and Schwartz [3], Nahi’s 
results are extended to the case where the variables mod- 
eling the uncertainty are not necessarily independent. 

In the above studies, it is assumed that the state-space 
model for the signal is given. However, in real applica- 
tions, the state-space modeling errors might degrade the 
estimation accuracy. Nakamori [4] derived the RLS 
Wiener fixed-point smoothing and filtering algorithms, 
based on the invariant imbedding method, from uncertain 
observations with uncertainty modeled by independent 
random variables. In the derivation of such RLS Wiener 

estimators, the state-transition matrix Φ, the observation 
matrix H , the variance  , K k k  of the state vector 
 x k , the variance  R k  of the observation noise 
 v k  and the observed values  y k  are used. More- 

over, Nakamori et al. [5], based on the innovation ap- 
proach, proposed the RLS Wiener fixed-point smoother 
and filter in linear discrete-time stochastic systems. Here, 
the observation equation is given by  
       y k k z k v  k    z k Hx k, ,where   k   

is a binary switching sequence with conditional probabil-
ity. The innovation process is given by 

     ˆ , 1 ,s y s y s s   

    2,2ˆ ˆ, 1 1s P s H x s , 1y s s    



 

in terms of the  element 
,2

 of the 
conditional probability of , given 

(2,2)  
2

|P k j
( )j k   (see Na- 

kamori et al. [5,6] for details). 
In the current paper, under the same assumptions for 

the observation equation as in Nakamori et al. [5], an 
algorithm for the RLS Wiener  ahead predictor 
is derived, based on the invariant imbedding method. 
Thus, the observation equation is given by 

stepl 
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       y k k z k v k  , ,    z k Hx k

where  is a binary switching sequence with con- 
ditional probability. The observation equation adopted in 
this paper is suitable, for example, to model remote 
sensing situations with data transmission in multichan- 
nels, where the independence assumption of the variables 
describing the uncertainty in the observations is not real- 
istic. 

  k 

The estimators require the information of the system 
state-transition matrix , the observation matrix  H , 
the variance  , K k k  of the state vector  x k , the 
variance  of the observation noise, the probability 

 that the signal exists in the uncer- 
tain observation equation and the  element  

R k
P 


  1k  p k 

(2,2)

 
2,2

|P k j   of the conditional probability of  k ,  

given  j . The RLS Wiener prediction and filtering 
algorithms are summarized in Theorem 1 and its proof is 
deferred to the Appendix. The main issues in this paper 
which are different from those in Nakamori et al. [5] are 
concerned with the algorithm derivation; namely: 

1) The prediction estimate is given as a linear trans- 
formation of the observed values. 

2) The prediction algorithms are derived on the basis 
of the invariant imbedding method. 

The current paper’s main contribution is the derivation 
of a recursive least-squares algorithm for the predictor 
and filter design in systems with non-independent uncer- 
tain observations, using covariance information. Without 
making use of the state-space model, the algorithm is 
obtained from the autocovariance functions of the signal 
and the observation noise, the probability that the signal 
exists in the observed values and the (2,2) element of the 
conditional probability matrices of the sequence which 
describes the uncertainty in the observations. This ap- 
proach is suitable in many practical situations where the 
equation generating the signal process is unknown, thus 
being not possible to use the state-space model to address 
the estimation problem. The deduction of the algorithm is 
mainly based on an invariant imbedding method. 

2. Problem Formulation 

Consider the following observation equation 

           , ,y k k z k v k z k Hx k        (1) 

where  is a signal,  z k  x k  is the  zero-mean 
state vector and 

1n
H  is the m n  observation matrix. 

 The sequence   v k  is a white noise with zero 
mean and the variance of  v k  is  R k ; that is, 

       KE v k v s R k k s   
T  ,         (2) 

where  denotes the Kronecker delta function.  K 
 The random sequence   k , which describes the 

uncertainty in the observations, has the following 
stochastic properties [3]: 

(P-1)  k  is a discrete-time random variable taking 
the values 0 or 1 with     1P k p   k . Therefore, 

 represents the probability that the observed value ( )p k
 y k  contains the signal ; this probability is as- 

sumed to be nonzero. 
 z k

(P-2) The noise   k



 is a sequence of random 
variables with initial probability vector  

 and conditional probability matrix    1 0 , 0
T

p p
 |P k j (2,. The  element of the conditional prob- 

ability matrix of 
2)
 k  given  j , is independent of 

, for j j k ; that is,  

     
    2,22,2

| ,
1

0, , 1.

E j k
P k j P k

P j

j k

 


      

 

    (3) 

 The state process   x k  and the sequences 
  k  and   v k  are mutually independent. 

Let us introduce the system matrix  in the state- 
space model for the state vector 


 x k  and the variance 

 ,K s s  of the state vector  x s . Then the autocovari- 
ance function  ,zK k s  of the signal  is factor- 
ized as 

z k 

   
 
     

, , ,

, ( ) ( ), 0

, ,

T
z

T

k T s

K k s HK k s H

.

K k s A k B s s k

A k B s K s



s

  

   

      (4) 

The purpose of this paper is to design a covariance- 
based recursive algorithm to obtain the  ahead 
prediction estimate of 

stepl 
 x k l  from uncertain observa-

tions  y i , 1 i k  . Due to the presence of a multipli-
cative noise component in the observation Equation (1), 
even if the additive noise is Gaussian, the conditional 
expectation of  x k l  given   ,y i  , which 
provides the least-squares estimator, is not a linear func-
tion of the observations and its computation can be very 
complicated requiring, in general, an exponentially 
growing memory. For this reason, our attention is fo- 
cused on the least-squares linear estimation problem. 
Specifically, we are interested in obtaining the least- 
squares linear estimator of the state vector 

1 i k 

 x k l  
based on the observations   ,y i   This estima- 
tor, 

1 i  .k
 ˆ ,x k l k , is the orthogonal projection of  x k l  

on the space of n  dimensional linear transformations 
of the observations. So,  ˆ ,x k l k  is given by 

    
1

ˆ , , ,
k

i

x k l k h k l i k y i


          (5) 

as a linear transformation of the observed values   ,y i  
1 i k  , where  , ,h k l i k , , denotes the 1 i k 
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impulse-response function. 
Let us consider the least-squares prediction problem, 

which minimizes the criterion 

         ˆ ˆ, ,
T

J E x k l x k l k x k l x k l k        
.




 

(6) 

The orthogonal projection lemma [7] assures that 
 ,x k l k  is the only linear combination of the obser- 

vations  y i ,  such that the estimation error is 
orthogonal to them,  

1 i k 

     ˆ , ,       1 ,x k l x k l k y s s k          (7) 

that is, 

       
1

, , 0,   

1 .

k
T

i

E x k l h k l i k y i y s

s k



      
 

 








 

This condition is equivalent to the Wiener–Hopf equa- 
tion 

         
1

, , ,  

1 ,

k
T T

i

E x k l y s h k l i k E y i y s

s k


      

 

  (8) 

useful to determine the optimum impulse-response func- 
tion  , ,h k l i k , , which minimizes the cost 
function (6). From , the left-hand 
side of (7) is written as 

1 i k 
P k     1 p k 

      ,T TE x k l y s K k l s H p s      .     (9) 

Let  E 
 

 denote the statistical expectation with re- 
spect to  

 v k

. Then, from the observation equation (1) 
and the covariance function (2) for white observation 
noise ,  is reduced to    TE y i y s 

T         

   

,

.

T

K

E y i y s E i s HK i s H

R i i s

 


      

 
  (10) 

Substituting (9) and (10) into (8), we have 

       

       
1

, , ,

, , , .

T

k
T

i

h k l s k R s K k l s H p s

h k l i k E i s HK i s H  


  

    
  (11) 

Under these conditions, in Section 3 the RLS Wiener 
prediction and filtering algorithms are presented. 

3. RLS Wiener Prediction and Filtering  
Algorithm 

Nakamori et al. [5,6], based on the innovation approach, 
proposed the algorithms for the fixed-point smoothing 
estimate and the filtering estimate. These algorithms are 
derived taking into account that the innovation process is 

expressed as 

     
    2,2

ˆ , 1 ,

ˆ ˆ, 1 1, 1

s y s y s s

y s s P s H x s s

   

.    
 

Under the preliminary assumptions made in Section 2, 
Theorem 1 proposes the RLS Wiener algorithms for the 

stepl   ahead prediction estimates of the signal 
 z k l  and the state vector  x k l . These algo- 

rithms are derived, starting with (11), by iterative use of 
the invariant imbedding method. 

Theorem 1. Consider the observation equation de- 
scribed in (1) and assume that the probability  p k  and 
the  element (2,2)  2,2P k  of the conditional probabil- 
ity matrix  

,
|P k j  are given. Let the system state- 

transition matrix   the observation matrix ,H  the 
autovariance function  ,K s s  of the state vector  x s , 
the variance  R k  of the white observation noise 
 v k  and the observed value  y k

l 
 be given. Then the 

RLS Wiener algorithms for the  ahead predic-
tion estimate 

step
 ,l kẑ k   of the signal  and the z k  l

l  step ahead prediction estimate  ,x̂ k l k  of the 
state vector  x k l  consist of (12)-(17).  

l  step ahead prediction estimate of the signal 
   ˆ: ,l z k l k z k  

  ˆˆ ,z k l k Hx k l k   ,           (12) 

l  step ahead prediction estimate of the state vector 
   ˆ: ,x k l x k l k   

   
        

 
2,2

ˆ ˆ, 1, 1

ˆ, , 1, 1 ,

ˆ ,0 0

l

x k l k x k l k

h k k k y k P k H x k k

x l

     

    



  (13) 

Filtering estimate of    ˆ: ,z k z k k  

  ˆˆ ,z k k Hx k k ,              (14) 

Filtering estimate of    ˆ: ,x k x k k  

   
        

 
2,2

ˆ ˆ, 1, 1

ˆ, , 1, 1 ,

ˆ 0,0 0

x k k x k k

h k k k y k P k H x k k

x

   

   



  (15) 

Filter gain:  , ,h k k k  

     
    
     
    

2,2

12
2,2

, , ,

1

,

1

T

T T

T

T T

h k k k K k k H p k

P k S k H

R k p k HK k k H

P k H S k H




   

 

   

     (16) 
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     
        

 
2,2

1 , ,

, 1

0 0

T

T

S k S k h k k k

HK k k p k P k H S k

S

    

   



,    (17) 

Proof of Theorem 1 is detailed in the Appendix. 
Clearly, the algorithms for the filtering estimate are the 

same as those proposed in Nakamori et al. [5]. From 
Theorem 1, the innovation process  k  is represented 
by 

       2,2 ˆ 1, 1 .k y k P k H x k k           (18) 

4. A Numerical Simulation Example 

In order to illustrate the application of the RLS Wiener 
prediction algorithm proposed in Theorem 1, we consider 
a scalar signal  z k  whose autocovariance function 

 zK m

 
 is given as follows [8] 

      

     

2

2 2
1 2 1 2 1 2 1

2
2 1 2 2 1 2 1

0 ,

1 1

1 1

0 ,

z

m
z

m

K

K m

m

,



       

      



    

     



(19) 

with  2
1 2 1 1 2, 4a a a      2,  

where   and 1 20.1,a   0.8a  0.5.   
The covariance function (19) corresponds to a signal 

process generated by a second-order AR model. There- 
fore, according to Nakamori [4], the observation vector 

,H  the variance  of the state vector   ,K k k K 0
 x k  and the system matrix  in the state equation 

are as follows: 


       
   

   
2 1

0 1
1 0 , , ,

1 0

0 1
, 0 0.25, 1 0.125.

z z

z z

z z

K K
H K k k

K K

K K
a a

 
   

 
 

      

 (20) 

As in Nakamori et al. [5], we consider that the signal 
 is transmitted through one of two channels, char- 

acterized by its observation equation as follows: 
 z k

Channel 1:       ,y k z k v k 
   

 
Channel 2:     ,y k U k z k  v k


 

where  is a zero-mean white observation noise 
and  is a sequence of independent random 
variables taking values  or 1  with  

 v k
  U k

0

  1P U k p   0.8

.7

is described by 

, for all . k

We assume that channel 1 is chosen at random with 
probability  and, hence, channel 2 is selected 
with probability . Then, the observation equation 

1 0q 
0.3q 

        ,y k k z k v k              (21) 

where     1 1k     U k  and   is a random 
variable, independent of    , taki  values 0 or 1 
with 

U k ng
 1 0.3P q    . C   k  is a sequence 

of rand h take valu  1 with 
learly

om variables whic
, 

es 0 or

    1p k P k 

    
 

1, 1 0

1 0.94

P U k P

pq q

     

   
 

for all , and conditional probability matrix k

   
 

 
 

2

1 p p

| 1 11

1 1 1 1

0.2 0.8
            ,

0.0510638 0.9489362

P k j q pqp p

q p q p

 
 

   
     
 

  
 

 
   

for all .

 

, 0, , 1k j k    
 (3), From    2,22,2

| 0.9489362,P k j P k   
1.

 for all 
, 0, ,j kk    

,H   ,K k k
gorithm 

Substituting  and , given by
in

  (20), 
to the predict of Theo m 1, the predict- 

tion estimate of the signal has been calculated recur- 
sively. 

Figure 1 illustrates the signal  z k  and its prediction 
es

ion al re

timate  ˆ 3,z k k  for zero-m hite observation 
noise with 20.3 . Figure 2 illustrates the mean- 
square values (MSV f the filtering and prediction er- 
rors for zero-mean white observation noises with vari- 
ances 20.1 , 20.3 , 20.5  and 20.7 , comparing both the 
uncerta nd servati he latter cor-  

 

ean w

ns cases (t

 variance
s

 a  certain

) o

 obin o

 

( )z kFigure 1. Signal  and its prediction estimate 

ˆ ,( 3 )z k k  for the zero-mean white observation noise with 
2the variance 0.3 . 
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responds 
red ated by 

to the case    2,2 1p k P k  ). The MSVs of 
the filtering and p

observation Equation (1), the RLS Wiener algorithms for 
the l  step ahead prediction estimates  of 

the signal 

 ˆ ,z k l k

 z k l  and ˆ ,

iction errors are evalu

     x k l k  of the state vector 

 x k l  are derived by iterative use of the invariant 

imbedding method. The prediction algorithms take into 
account the stochastic properties of the random variables 

  k  in the observation Equation (1) such as the 

probability     1kp k P    that the signal exists in 

the uncertain observation equation, and the  (2,2)

2000 2
ˆ , 2000, 1,2, ,5.z i z i l i l     

1i

Here,  corresponds to the calculation f the 
MSVs of the filtering errors. 

igur
ns for both the uncer- 

ta

s

process in the simulations, is give

5. Conclusions 

y assumptions of Section 2, for

0l  o

From F e 2, it is deduced that, as l  becomes lar- 
ger, the prediction accuracy worse

in and the certain observations cases, with each differ- 
ent observation noise. It might also be noticed that the 
MSVs with uncertain observations are almost equal to 
those with certain observations except for the observation 
noise with variance 20.1 . For the observation noise with 
variance 20.1 , the MSVs of the prediction errors with 
the certain observati are smaller than those with the 
uncertain ob ervations, particularly for the 2 and 4-step 
ahead predictions. 

For reference, the autoregressive (AR) model used to 
generate the signal 

ons 

element  
2,2

P k j    of the conditional probability of 

 k , given  j . 
A numerical simulation example in Section 4 shows 

that the prediction algorithm proposed in this paper is 
feasible. 
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et us introduce the equation concerned with the function 

 

Appendix A. Proof of Theorem 1 

L
 ,J k s  as 

       , T TJ k s R s p s B s H

     
1

, ( ) ,
k

T

i

.J k i E i s HK i s H  


   


(A-1) 

From (11) and (A-1) it follows that 

        (A-2) 

 putting  
in (A-1) from (A-1) yields 

,

    , , , .h k l s k A k l J k s    

Subtracting the equation obtained by
1k k   

      
     
, 1,

,

J k s J k s R s

 
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     

1

1
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, .

T

k

i

T

J k k E k s HK 

 

    k s H

J k i J k i

E i s HK i s H



  







  

   


   (A-3) 

From (A-1), (A-3) and the relationship  

, it follows that        2,2E k s P k p s    

   
   

, 1,

1, ,

J k s J k s

   2,2,

1 .

J k k P k HA

s k

 

 

 k J k s

 

     (A-4) 

Putting s k  in (A-1) yields 

     

       

   
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i
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i
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J k k R k p k B k H
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k

J k i J k k P k HA k J k i

p i P k HB i A k H







 

 

 













   



   

   

 
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







(A-5) 

Here, the relationship      E k k p k      , (4) and 

(A-4) are used. Let us introduce a function 

     

Hence, 

  
1

k

i

r k J


     (A-6)     ,k i p i HB i .

 
         
     
       

2,2

12
2,2

,

1

,

1 .

T T T T

T

T

J k k

p k B k H r k A k H P k

R k p k HK k k H

P k HA k r k A k




 



 

 (A-7) 

Subtracting the equation obtained by putting  
in (A-6) from (A-6) yields 1k k   

         

        

     

    

            
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,

, 1

, 1

k

i

i

r k r k J k k p k HB k

J k i J k i p i HB i

J k k p k HB k
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1

2,2 ,
k

.

J k k p i HB i

J k k p k HB k P k HA k r k







  

  



 

 



P k HA k J k i






(A-8) 

Here, (A-5) and (A-7) have been used. Clearly, from 
(A-6), the initial condition for the recursive Eq
(A-8) of 

uation 
 r k  at 0k   is given by

The 
  0 0r  . 

ah iction estiead pred mate l  step ˆ ,x k l k  of 
 x k l  is given by (5). From (5) and (A ws -2), it follo

that 

       
1

ˆ , , .
i

k

x k l k A k l J k i y i


         (A-9) 

Let us uce a tion introd  func

Hence, the 
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1

,
k

i

e k J k i y i


  .        (A-10) 

l  step ahead prediction estimate 
 ˆ ,x k l k  of the state vector  x k l  and the filtering 

estimate  ,x̂ k k  of the state vector  x k  are given by 

     ˆ ˆ, ,      ,x k l k A k l e k x   k k A k e k . (A-11) 

Subtracting the equation obtained by 
in (A-10) from (A-10) yields 

putting  
1k k   

   

 
1

1

.
k

e k

        
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 (A-12) 

From (A-4) and (A-10), we get 

       1 ,e k J k k y k

         
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  (A-13) 

ws that From (A-2), (A-11) and (A-13), it follo
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   
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Introducing 

        ,TS k A k r k A k         

it follows, from (A-8) and (A-15), that 
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Finally, the filter gain      , , ,h k k k A k J k k  is 
expressed as follows 
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(Q.E.D.) 
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