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ABSTRACT 

Aim of this work is to analyze and to synthesize acoustic signals emitted by organ pipes. An Independent Component 
Analysis technique is applied to study the behavior of single notes or chords obtained in real and simulated environ- 
ments. These analyses suggest that the pipe acoustic signals can be described by a mixture of nonlinear oscillations 
obtained by a self-sustained feedback system (i.e., Andronov oscillator). This system allows to obtain a realistic pipe 
waveform with features very similar to the sound produced by the pipe and to propose an additive synthesis model. 
Moreover, suitable analogical and integrate circuit models, able to reproduce the registered waveforms and sound, 
have been designed. A comparison between real and reconstructed acoustic signals is provided. 
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1. Introduction 

One of the challenge of the researchers working in music 
field is to generate and to control the sound. A synthe- 
sizer (or synthesiser) is an electronic instrument able to 
reproduce musical sounds. Sound can be produced by 
electrical oscillators which are fed to filters (analog syn- 
thesizer), or by performing mathematical operations in a 
microprocessor (digital synthesizers). Both analog and 
digital synthesized sounds may sound dramatically dif- 
ferent than recordings of natural sounds. There are also 
many different kinds of synthesis methods, each applica- 
ble to both analog and digital synthesizers. These tech- 
niques tend to be mathematically related, especially the 
frequency modulation and the phase modulation. Exam- 
ples of these methods are subtractive, frequency modula- 
tion, physical modeling, sample based synthesis and so 
on [1]. We also note that the sound envelope is used in 
many synthesizers, samplers, and other electronic musi- 
cal instruments. Its function is to modulate some aspects 
of the instrument’s sound. The envelope may be a dis- 
crete circuit or module (in the case of analog devices), or 
implemented as part of the unit software (in the case of 
digital devices). When a mechanical musical instrument 
produces sound, the volume of the sound produced 
changes over time in a way that varies from instrument to 

instrument. The envelope is a way to tailor the timbre for 
the synthesizer, sometimes to make it sound more like a 
mechanical instrument. For example, a quick attack with 
little decay helps it to play more like an organ; a longer 
decay and zero sustain makes it more like a guitar. In any 
case, any method to synthesize sound is based on a 
physical model. The first modeling of the sound produc- 
tion and of the acoustics of the musical instruments is the 
linear harmonic approximation. This approximation can 
be suitable for some instruments such as guitar, piano, 
etc., whereas it fails for other instruments such as wind 
instruments, whose sound is produced by a nonlinear 
mechanism [2,3]. 

In this paper, we study the organ pipes that are par- 
ticular wind instruments in which the nonlinearity does 
not depend on the coupling between instrument and 
player but it is intrinsic. The now working model of the 
organ pipes relies upon the mode-mode coupling and 
multiphonic sound production [4]. We investigate the 
real acoustic signals emitted by organ pipes with the aim 
to reproduce their emitted sound. We propose an additive 
synthesis model based on a simple valve analogical cir- 
cuit. This model is able to reproduce sounds similar to 
the recoded ones both in the waveforms and in the lis- 
tening. To reach this goal, we have recorded signals in 
several experiments and we have applied well established 
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techniques of nonlinear processing operating in the time 
domain. A particular role in this analysis is covered by 
the Independent Component Analysis (ICA) [5]. It allows 
to establish whether the experimental time series are a 
linear superposition of statistically independent sources. 
The other step is the noise reduction of the decomposed 
signals [6]. Indeed, in experimental data, even decom- 
posed into simpler sources, a contribution of residual 
noise is still relevant.  

The de-noised components are the basis for the recon- 
struction of the phase space [7-9]. The estimation of the 
embedding dimension and of the other extracted infor- 
mation allow to recognize the class of dynamical systems 
that characterizes the dynamics generating the experi- 
mental series [10].  

Finally, numerical simulations and comparative simple 
methods lead to very simple equations that reproduce 
signals even in the listening as confirmed by a formal 
AB-preference test [11]. These equations, i.e., a low di- 
mension dynamical system, represent on average the 
behavior of the complete fluid-dynamical equations de- 
scribing the phenomenon. We stress that this model pro- 
vides a nonlinear waveform that is highly correlated with 
the original pipe sound signal (including the envelope). 
In other words, we can reproduce the timbre of the pipe 
sound including the attack, decay, sustain and release 
phases by using an analogical circuit.  

The paper is organized as follows. In Section 2 we in- 
sert a brief introduction of the organ pipes. In Section 3 
we focus our attention on the description of the wind 
instruments remarking their nonlinear features. In Sec- 
tion 4 we introduce the ICA approach and the FastICA 
algorithm, and in Section 5 a noise reduction method is 
described. In Section 6 we present the experiments ob- 
tained on real data and we propose the analogical model 
to reproduce the registered waveforms. The conclusions 
are described in Section 8.  

2. Organ Pipe Ranks 

The pipe organ is essentially a mechanized wind instru- 
ment of the panpipe type. Each pipe is a simple sound 
generator optimized to produce just one note with a par- 
ticular loudness and timbre, and the organ mechanism 
directs air to particular combinations of pipes to produce 
the desired sound. A set of pipes of uniform tone quality, 
with one pipe for each note over the compass of the or- 
gan keyboard, is called rank. The pipes are set out logi- 
cally, and generally to a large extent physically, in a ma- 
trix. Each row of the matrix contains the pipes of a single 
rank and each column of the matrix contains all the pipes 
for a single note. There are two types of ranks: flues and 
reeds. Flue pipes, also called labial (the upper lip of the 
mouth is important in sound production) belong to the 

flute-instrument family. Open flue pipes are historically 
the basis of the pipe organ and still provide its foundation 
sound. We can also have stopped flue pipes [3]. In addi- 
tion, there are various partly stopped pipes in which the 
stopper has a vent or chimney to produce special effects. 
Reed pipes, or lingual, have a metal tongue vibrating 
against a rather clarinet-like structure called a shallot. 
There are two major classes of reeds: those with full 
length conical resonators supporting all harmonics and 
those half-length cylindrical resonators supporting pri- 
marily the odd harmonics. In addition, we find short reed 
pipes with cavity resonators rather like trumpet mutes, 
but they are quite unusual in modern organs. In virtually 
all natural sounds, increase loudness is associated not 
simply with a uniform increase in sound pressure level at 
all frequencies, but rather with a change in the slope of 
the frequency spectrum to give more weight to compo- 
nents of higher frequencies. This is a natural cones- 
quence of the nonlinearities associated with the produc- 
tion of such sounds. We also note that the air column in a 
cylindrical pipe is only approximately harmonic in its 
resonances [12]. In [3] is demonstrated the mechanism 
that provides considerable nonlinearity for the generation 
of the harmonics which are then amplified by the reso- 
nator (or not amplified, in the case of even harmonics 
and a stopped cylindrical pipe). It also provides the 
mechanism for mode locking and, when the conditions 
are satisfied, for multiphonic production. The pipe organ 
is a very complex instrument, with thousands of pipes at 
a multitude of pitches, all under the control of a single 
organist.  

3. Sustained-Tone Instruments and 
Nonlinearity 

Musical instruments are often thought as linear harmonic 
systems. A closer examination, however, shows that the 
reality is very different from this. 

Sustained-tone instruments, such as violins, flutes and 
trumpets, have resonators that are only approximately 
harmonic, and their operation and harmonic sound spec- 
trum both rely upon the extreme nonlinearity of their 
driving mechanisms. It is helpful to consider the whole 
system made of the sustained-tone instrument and its 
player, as shown in Figure 1. The instrument itself gen- 
erally has a primary harmonic resonator that is main- 
tained in oscillation by a power source provided by the 
player, together with a secondary resonator, generally 
with some broad and inharmonic spectral properties, that 
acts as a radiator for the oscillations of the primary reso- 
nator. In the linear harmonic approximation, the genera- 
tor is assumed simply to provide a negative resistance to 
overcome the mechanical and acoustic losses in the pri- 
mary resonator, but no information is provided about the 
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Figure 1. System diagram for a sustained-tone musical in- 
strument. In most cases the generator is highly nonlinear 
and all the other elements are linear. 
 
spectral envelope, and thus about the tone quality of the 
sound. 

Wind instruments are rather different, in that the pri- 
mary resonating body is a air column, which also radiates 
the sound. There is therefore one less element in the total 
system diagram. In the more detailed nonlinear treatment, 
the generator is usually highly nonlinear, and it is 
strongly coupled with the primary resonator. The latter is 
usually appreciably inharmonic in its modal properties. 
The feedback coupling between the resonator and the 
generator therefore assumes prime importance in deter- 
mining the instrument behavior.  

4. The ICA Method 

ICA is a method to find underlying factors or compo- 
nents from multivariate (multidimensional) statistical 
data, based on their statistical independence [5]. In the 
simplest form of ICA, one observes m scalar random 
variables 1 2, , , mx x x  which are assumed to be linear 
combinations of n unknown independent components 
(ICs) denoted by 1 2, , , ns s s . These ICs si are assumed to 
be mutually statistically independent, and zero-mean. 
Arranging the observed variables xj into a vector  

1 2 T
, m, ,x x xx  and the IC variables si into a vector s, 

the linear relationship can be expressed as x = As. Here A 
is an unknown mxn matrix of full column rank, called the 
mixing matrix. The basic problem of ICA is then to esti- 
mate both the mixing matrix A and the realizations of the 
ICs si using only observations of the mixtures xj. Estima- 
tion of ICA requires the use of higher-order statistical 
information. Some heuristic approaches have been pro- 
posed in literature for achieving separation and some 
authors have derived “unsupervised neural” learning al- 
gorithms from information-theoretic measures. Among 
them, a good measure of independence is given by 
negentropy. In the following we shall use the fixed-point 

algorithm, namely FastICA, developed to perform linear 
mixtures separation by using the negentropy information 
[5].  

ICA has revealed many interesting applications in dif- 
ferent fields of research (bio-medical signals, geophysics, 
audio signals, image processing, financial data, etc.). For 
instance, it was fruitfully applied in volcanic environ-
ment [8,13], physics of musical instruments [12,14,15] 
and dynamical systems in mixtures [16]. Moreover, fur- 
ther studies have been conducted on signals recorded in 
real environments with delay and reverberation (e.g., 
convolutive mixtures) [17,18].  

5. Noise Reduction 

The method used in the experiments to accomplish the 
nonlinear noise reduction (RNRPCA in the following) is 
based on the application of the compression and decom- 
pression (reconstruction) of the noise data [6]. To esti- 
mate the noise strength we followed the heuristic method 
of Natarajan [19]. Many runs of compression/decom- 
pression algorithms of various compression losses, mea- 
sured as Peak Signal-to-Noise Ratio (PSNR), have been 
tried. After all runs one has to plot the compression ratio 
versus PSNR values to obtain the rate-distortion charac- 
teristic of the signal. At the point of PSNR corresponding 
to the strength of the noise, the plot of the noisy signal 
shows the knee point, that is a point at which the slope of 
the curve changes rapidly. The precise determination of 
the knee point can be obtained by drawing the second 
derivative. The point of PSNR at which the second de- 
rivative attains its maximum is the measure of the noise 
strength. The practical solution of filtering the random 
noise has been obtained through the use of Robust Prin- 
cipal Component Analysis Neural Network [14].  

6. Experimental Results 

The aim of the following experiments is to analyze the 
data recorded playing organ pipes, by using the ICA ap- 
proach in order to establish how many independent 
components, if there are, are necessary to retain all the 
information of the recorded signals. 

6.1. Recording Data 

The first part of our work examines the sound recordings 
performed in the church of St. Antonio di Padova located 
in Mercato San Severino (SA). We have used a digital 
acquisition board with a sampling frequency of 44,100 
Hz and nine microphones. The organ is located at three 
meters from the principal floor of the church. The mi- 
crophones have been positioned linearly along the prin- 
cipal floor. Three clusters, composed of three micro- 
phones each, have been posed five meters far each other. 
In this setup, we have recorded nine signals in each ex- 
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periment, recording the notes C, E, G. Furthermore, we 
have also performed experiments playing chords. A pre- 
liminary analysis of this experimental survey is contained 
in [10]. The second part of our work looks at the experi- 
ments performed playing an organ pipe in the acoustic 
laboratory of Salerno University, where we have used the 
same acquisition board and six microphones (see Figure 
2 for details of the organ pipes). In these experiments, we 
have recorded single notes played with three different 
levels of the blowing pressure in order to evidence how 
the frequencies depend on the forcing. The pipe blowing 
pressure has been supplied by a standard organ mecha- 
nism in the church, whereas it is induced by the human 
breath at the Department. At the end of the complete 
survey, our data set is composed of many scalar series for 
each note. The notes are produced by using organ pipe in 
different registers and octaves. 

6.2. Data Analysis 

In the first experiment we focus our attention to analyze 
the notes and chords obtained by the organ pipe. The aim 
is to analyze this kind of sources, using the FastICA ap- 
proach, to study the features of the Dynamical Systems 
(DSs) that generate these signals. Our data set, taking into 
account the linear geometry of the microphones, can be 
viewed as different spatial records of the same physical 
phenomenon. Before applying FastICA we need to align 
the recordings, using cross-correlation, to avoid the de- 
lays among the microphones. Analyzing the geometry of 
the sampling we conclude that the delay and the rever- 
the microphones, the environment and the features of 
 

 

Figure 2. Organ pipes in the acoustic Laboratory of Salerno 
University. 

beration in this case can be neglected and then we can 
consider a generative model based on instantaneous 
mixtures. In our analysis first of all we focus the atten- 
tion on the single C note. In Figure 3(a), 9 recorded sig- 
nals for the C note and the relative Power Spectrum Den- 
sities (PSDs) are reported. In this case the fundamental 
frequency is at 523 Hz. Applying the FastICA approach 
to the nine recorded signals we obtain the separation of 
three waveforms with the fundamental frequency at 523 
Hz and other frequency peaks (see Figure 3(b)). They 
are nonlinear signals in limit cycle regime that are line- 
arly superimposed. The study of principal components of 
the covariance matrix of the signals reveals that there are 
only six principal components. Using this information 
and applying to these signals the noise reduction method 
RNRPCA, we obtain a more clear separation, as we can 
see in Figure 3(c). The separated signals are the funda- 
mental of the C note with frequency at 523 Hz, one 
waveform with lower frequency at 263 Hz and another at 
1046 Hz. Moreover, the FastICA approach has extracted 
two independent signals more with frequencies of 98 Hz 
and 784 Hz. The signal with a main peak equal to 98 Hz 
can be ascribed the power supply or to G note, whereas 
784 Hz signal can be a harmonic of C or another G pipe 
in resonance. 

In the second experiment, we have considered chords. 
In particular, we have played the C, E and G notes si- 
multaneously. The estimated sources are related to the 
principal modes (C = 523 Hz, E = 331 Hz and G = 393 
Hz) and other frequency peaks (C = 262 Hz, E = 663 Hz, 
G = 784 Hz and G = 98 Hz). Also in this case we have 
applied the RNRPCA algorithm obtaining clearer results. 
Coming to the laboratory experiments, we have played 
organ pipes under controlled conditions looking at the 
sound produced by a single organ pipe without the pres- 
ence of the others which could influence the sound. We 
have recorded many pipes played with three levels of 
blowing pressure: full-toned, intermediate and low level 
of pressure. For brevity we report the results relative to 
the E note stressing that the acoustic field produced by 
the other pipes displays the same features. The record- 
ings are preprocessed to avoid the contribution of the 
power supply, high-pass filtering the experimental sig- 
nals over 50 Hz. To get some knowledge about the dy- 
namics generating acoustic signals we have estimated 
their phase space and the embedding dimension. The 
standard techniques to reconstruct the phase space, based 
on the theorem of Takens [9], are well known [7]. To 
estimate an upper bound of the attractor dimension, we 
used the False Nearest Neighbors (FNN) techniques and 
the Average Mutual Information (AMI) [20]. 

In the experiments illustrated in this paper the embed- 
ding dimension of the notes i  4. s 
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In Figures 4(a)-(c), we can see the results of the E 

note full-toned played. In Figure 4(b) we have the ei- 
genvalues of the PCA. If we look at Figure 4(c), i.e., the 
ICA extracted components, we recover three modes at 
the appropriate frequencies (principal mode at 331 Hz, 
higher at 663 Hz, lower at 165 Hz), corresponding to E 
note. When an isolated organ pipe is played in standard 
condition there are always present three nonlinear modes 
[21]. We reduce the blowing pressure at the intermediate 
value, as one can observe in Figures 5(a)-(c), until to ex- 
cite just two nonlinear modes: the principal and the higher 
mode. Finally, at the low level of pressure, just one 
mode is activated as clearly shown in Figures 6(a)-(c).  

These analyses suggest to synthesize the pipe organ 
sound by using an additive synthesis, taking into account 
the independent components information of the sound in 
order to obtain a better sound quality. In other words, to 
obtain the full toned voice of an organ pipe, we need to ex- 
cite three modes. Although the signals could appear as com- 
posed by a mixture of linear oscillators, by ICA we have 
proved that they result a mixture of nonlinear oscillators. 

Summarizing, ICA establishes that the sound produced 
by a full-played single organ pipe can be modeled by a 
low-dimensional dynamical system. Furthermore, this 
system is the superposition of three nonlinear oscillators, 
in self-oscillating regime. 

7. Analogical Model and Circuit 

By using ICA we have had information about the dy- 
namic system involved in the generation of sound. On 
this basis, we propose an analogical model able to re- 
produce in the listening the recorded notes. This model 
represents the simplest nonlinear dynamical system, that 
can generate “harmonicity”. This system works with a 
feedback and produces self-sustained oscillations [22] 
under suitable parameters (Andronov oscillator). We 
remind that a limit cycle which is asymptotically ap- 
proached by all the other phase paths and it is dynami- 
cally stable. A simple example of application is the valve 
oscillator with the oscillating RLC circuit in the anode 
circuit and an inductive feedback on the grid (see Figure 
7). Simple mathematical equations can be obtained by 
neglecting the anode conductance, the grid currents and 
the inter electrode capacitances, and assuming a piece- 
wise linear approximation for the valve characteristic ia = 
ia(u), where u is the grid voltage and ia is the anode cur- 
rent. Under these hypotheses, the equations of the An- 
dronov oscillator are: 

   
0

0 0

d

d
0                 

    

a

a

i
LCu RCu u M

t
u u

i f u
S u u u u

  

      

 

         (1) 

where M is the mutual inductance (which has to be nega- 
tive to install self-coupling; S is the positive slope of the 
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Figure 4. Separation related to E note produced by a pipe 
when it is full toned (played in the laboratory): (a) original 
signals; (b) PCA: eigenvalues of the covariance matrix; (c) 
signals separated by ICA with principal peak at 331 Hz and 
lower and higher modes respectively at 165 Hz and 663 Hz. 
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Figure 5. From top to bottom: Separation related to E note 
produced by pipe when two nonlinear modes are enhanced: 
(a) original signals; (b) PCA: eigenvalues of the covariance 
matrix; (c) signals separated by ICA with a principal fre- 
quency peak at 331 Hz and a higher peak at 663 Hz. 
 
valve characteristic and –u0 is the cut-off voltage. This 
system can be arranged in order to get the following very  
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Figure 6. Separation related to E note produced by pipe 
when one nonlinear mode is enhanced: (a) original signals; 
(b) PCA: eigenvalues of the covariance matrix; (c)signal sepa- 
rated by ICA with principal nonlinear mode at 331 Hz. 
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where b is the hopping threshold in which the nonlinear- 
ity of the system is concentrated, 2

0 1 LC   is the 
natural frequency,  2

1 0 2h    RC and  2
2 0 2h   

(MS-RC). The latter parameters represent the dissipative 
and pumping parameters. The phase space is divided by a 
straight line x = b into different regions identified by the 
two differential equations of the system [22]. Notice that 
self-oscillations can be installed for suitable parameters 
and only if the threshold is negative. Apart from the 
derivation of this model based on electric circuits, for- 
mally the equations can hold for every system, including 
organ pipe, in which self-oscillations are settled by the 
competition of a dissipative and a pumping parameter. A 
discussion of the true physical meaning of h1, h2 is out of 
our purpose, since our modeling is, at the present stage, 
only analogical. But it is clear that these two parameters 
represent, in an effective way, pumping due to the blow-
ing and all the typical dissipating effects always present 
in the organ pipe sound production. 

7.1. Synthesized Sound 

We simulate the three nonlinear modes separately. First 
step is to filter the recorded E, C, G notes. We fix the 
best pass-band width by comparing the filtered signals 
with the ICs. We remark that the filtered signals have 
high correlation with the signals obtained by the ICA 
analysis previous explained. To estimate the parameters 
h1, h2 and  of the single Andronov oscillator, we con-
struct a 3-dimensional matrix, whose elements generate, 
separately, a signal that can be compared to the original 
filtered one.  

We choose the best 3-tuple in the sense of minimum 
square, i.e., we fix those parameters that generate a 
minimum root mean square deviation with respect to the 
reference signal. The value of  corresponds, within the 
statistical errors, to the frequency of the excited mode. 
We report the detailed analysis only for C note. Table 1 
contains all the parameters for the other notes. Regarding 
C, the first Andronov oscillator, corresponding to the 
first nonlinear mode, has the following parameters: h1 = 
1630, h2 = 450, b = –0.005. In this case, the best correla-
tion coefficient between source signal and simulated one 
is 0.9893 as you can see in Figure 8(a). In Figure 8(b), 
the phase spaces of recorded and simulated signals con-
firm such a good similarity between the two signals. In 
this way we obtained not only the frequency information 
of the signal but we reproduced exactly the waveform of 
the sound as we can see from the attack phase. The same 
analysis has been made for the mode with lower fre-
quency (263 Hz) and the mode with higher frequency 
(1046 Hz). In the two cases, the parameters are respec-
tively h1 = 1230, h2 = 320, b = –0.0013 and h1 = 1100, h2 
= 430, b = –0.0055. The correlation coefficients are 0.86 

Table 1. All the parameters obtained on the basis on the 
best RMS relative to different notes. 

E G 
mode

1st 2nd 3rd 1st 2nd 3rd 

h1 1200 250 1200 1200 250 1200 

h2 350 100 500 350 100 500 

b –0.075 –0.001 –0.06 –0.035 –0.013 –0.008

fo(Hz) 331 663 165 397 785 198 

corr 0.92 0.96 0.97 0.99 0.96 0.83 
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Figure 7. Valve generator with the resonant network in the 
anode circuit. 
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Figure 8. Phenomenological Dynamical system reproducing 
the C sound: (a) Comparison between the recorded signal 
and the filtered one at 523 Hz (solid line) and the respective 
synthetic signal (dot); (b) Phase spaces of the synthetic sig-
nal; (c) Phase spaces of the recorded signal filtered at 523 
Hz. 
 
and 0.98, respectively. The correlation between simu 
lated and original signal is very high as in the case of an 
harmonic oscillator, but the quality of the sound, in the 
listening, is improved, giving the full tone of the original 
note w.r.t the metallic sound, due to the coupling of 3 
harmonic oscillators. In this way we obtained a nonlinear 
waveform that is highly correlated to the envelope of a 
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pipe sound. The main idea, now, is to use these features 
to analogical reproduce the real timbre of the pipe sound. 
By comparing the synthesized waveform with that ob-
tained from a simple additive synthesis we obtain a more 
realistic waveform and sound. 

7.2. AB-Preference Test 

To validate the introduced nonlinear model we perform a 
formal AB-preference test [11] versus the linear oscilla-
tor based model and the recorded notes. In these tests we 
select 10 listeners and they are subjected to several notes 
processed by the two systems in randomized order. For 
each note the listeners have made a preference decision.   

In details, in Table 2 the listeners are invited to make 
a choice between the modes simulated by using the linear 
and nonlinear oscillators. Totally, we have 7 notes simu-
lated by the two models. Each note has been simulated 
by the two models varying the number of modes from 1 
to 3. We see from these results that a nonlinear model is 
preferred in all the cases with higher order percentages. 
In Table 3 and Table 4, instead, we have proposed to 
make a choice between signals obtained by the nonlinear 
model considering the superposition of one and two or 
two and three modes, respectively. As confirmed by the 
ICA analysis we have that the best performance is asso-
ciated with the modes simulated by using three nonlinear 
systems linearly superimposed. Finally, in Table 5 we 
detail the results obtained subjecting the listeners to 
make a preference between real recorded notes and that 
 
Table 2. AB-preference test between the linear and non- 
linear oscillators based models. 

Mixture 1 mode 2 modes 3 modes 

Linear 23% 14% 7% 

Non-Linear 77% 86% 93 

 
Table 3. AB-preference test of the nonlinear oscillator vary- 
ing the number of modes: comparison by using 1 and 2 
modes.  

Model Non-linear 

1 mode 31% 

2 modes 69% 

 
Table 4. AB-preference test of the nonlinear oscillator vary- 
ing the number of modes: comparison by using 2 and 3 
modes. 

Model Non-Linear 

2 modes 29% 

3 modes 71% 

Table 5. AB-preference test between recording notes and 
that simulated by the non-linear oscillator with three modes. 

 Comparison 

recorded 56% 

simulated 44% 

 
simulated by the nonlinear oscillator with three modes. In 
this case the results show that the proposed model is a 
good candidate to appropriately reproduce an organ pipe 
waveform note. 

7.3. Hardware Schematization 

The proposed model permits to obtain a realistic pipe 
waveform with features very similar to the source pipe 
(included the attack phase). In other words, it is possible 
to give an hardware schematization, i.e., design a suitable 
integrate circuit, observing that the circuit in Figure 7 
can be developed in terms of logical functions adopting 
the scheme of Figure 9 by using the MatlabR Simulink. 
From the given scheme we see that the main operations 
are addition (and substraction) and integration. These 
operations could be obtained by using an operational 
amplifier. An operational amplifier is a voltage and cur-
rent amplifier obtained by using transistors. The circuit 
based on transistors could be more compact than the 
valve based one but it is knows that the valve could give 
a better fidelity. 

8. Conclusions 

In this paper we have analyzed acoustic signals emitted 
by organ pipes. At a first elementary approximation the 
generative model of sound in musical instruments seems 
to be linear. But the analysis and models so produced 
appear suitable only until the physical processes are in-
vestigated in a little more detail. Indeed, the whole sys-
tem that constitutes a musical instrument is nonlinear. 

By using ICA, relevant features of single tones have 
been extracted from real data (three nonlinear modes). 
This analysis suggests to use an additive model to syn-
thesize the pipe sounds. The decomposition of the notes 
and of the chords into independent components provides 
sufficient information to model the waveform envelope 
together with the transient attack. This permits to have a 
better quality sound than that obtained by using simple 
additive methods based on linear harmonic oscillators or 
that obtained by using spectral analysis of the sound. 

We have introduced a simple and suitable analogical 
model, able to reproduce the registered waveform and 
sound in listening. The model provides simulated signals 
highly correlated with the original one. Furthermore, the 
quality of the sound, in the listening, is improved, giving 
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Figure 9. Andronov oscillator obtained by using simulink. 
 
the full tone of the original note compared with the me-
tallic sound, due to the additive synthesis that uses har-
monic oscillators. In the next future the authors will fo-
cus their attention on the physical realization of the organ 
pipe system and to apply the analysis and synthesis ap-
proach to other musical instruments. 
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