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Abstract 
For the unification of gravitation with electromagnetism, weak and strong interactions, we use a 
unique and very simple framework, the Clifford algebra of space ( )Cl M3 2= � . We enlarge our 
previous wave equation to the general case, including all leptons, quarks and antiparticles of the 
first generation. The wave equation is a generalization of the Dirac equation with a compulsory 
non-linear mass term. This equation is form invariant under the Cl3

∗  group of the invertible ele-
ments in the space algebra. The form invariance is fully compatible with the ( ) ( ) ( )U SU SU1 2 3× ×  
gauge invariance of the standard model. The wave equations of the different particles come by La-
grange equations from a Lagrangian density and this Lagrangian density is the sum of the real 
parts of the wave equations. Both form invariance and gauge invariance are exact symmetries, not 
only partial or broken symmetries. Inertia is already present in the ( )U 1  part of the gauge group 
and the inertial chiral potential vector simplifies weak interactions. Relativistic quantum physics 
is then a naturally yet unified theory, including all interactions. 
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1. Introduction 
The aim of this work is to construct with the same logic and mathematical rigour of General Relativity (GR), a 
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quantum wave of all fermions of one generation in a well-defined framework: the wave is a function of space 
and time into 8

3Cl  where 3Cl  is the Clifford algebra of space. We extend the relativistic constraints and re-
place the ( )2,SL �  group by the greater group ( )*

3 2,Cl GL= �  and we use only true representations and ex-
act calculations. The Lagrangian density has a double link with the wave equations, both cause and conse-
quence. This is new and gives both the limits and the physical reason of the existence of a Lagrangian formal-
ism. We present here the fermionic part of the wave equations. The wave equations have mass terms, and they 
are invariant both under *

3Cl  and under precisely the ( ) ( ) ( )1 2 3U SU SU× ×  gauge group of the Standard 
Model of Quantum Physics (SM). This gauge symmetry is a local and exact one. Complicated calculations of 
the second quantization are not used. Spontaneously broken symmetry is useless. Nevertheless we get many re-
sults of the SM, with less free parameters, which is better. Mass terms of our wave equations allow us to study 
inertia and gravitation directly from the wave equations. The inertial part of the gravitation generates eight po-
tential space-time vectors. Only seven of these eight terms are present in the Christoffel symbols used in diffe-
rential geometry. The eighth, the chiral one, is yet in the ( )1U  gauge and explains the complexity of weak in-
teractions. Using this chiral inertial potential vector, we simplify the electro-weak gauge. We study here the 
fermionic part of the SM. This SM uses also twelve bosons whose components are built from the tensorial den-
sities available from the spinor wave. They will be detailed in another article. 

After Maxwell’s electromagnetism, the discovery of electromagnetic wave and the understanding of the elec-
tromagnetic properties of light, electromagnetic laws became relativistic covariant laws [1]. The electromagnetic 
field became an anti-symmetric tensor and the Maxwell’s laws were invariant under a greater group than the in-
variance group of mechanics. In 1915, Einstein was able to include the gravitation in the same frame. His theory 
of gravitation (GR) [2] [3] is extremely precise, and gravitational waves are now experimentally observed. Next 
Einstein tried to reunite electromagnetism and gravitation into a unique field theory [4]. 

From relativistic ideas de Broglie found the wave associated to the movement of any particle [5]. Only a few 
months after his dissertation, Schrödinger found a non-relativistic wave equation for his wave. This wave equa-
tion explained the quantization of energy levels and started quantum mechanics. At the same time, the spin 1/2 
of the electron was discovered. Pauli gave a non-relativistic wave equation accounting for the spin 1/2. This eq-
uation was the starting point used by Dirac to get his wave equation [6]. The Dirac equation is such a success 
that now again it is an important item of the SM. Only the Dirac equation actually explained the true number of 
energy levels, the true energy levels and quantum numbers of the hydrogen atom [7]. Nevertheless if the Dirac 
equation was, a long time ago, explained in many books from Ref. [8] to [9], then quantum mechanics even 
forgot to teach this part of the quantum theory [10]. First the Dirac wave was the wave of only one electron 
while the Schrödinger equation accounted for systems of electrons. Next the problem of negative energies was 
not solved by the Dirac equation, the charge conjugation did not account for negative energies in the framework 
of the first quantization, only the second. With this second quantization the electromagnetic field became a field 
of operators creating and annihilating photons, with bras and kets in Hilbert linear spaces. This field followed a 
Hamiltonian dynamics with a Schrödinger equation and its unique time variable [11]. Therefore, even if quan-
tum fields incorporated the electromagnetic field and should be compatible with GR, the methods of the second 
quantization, with path integrals and Feynman graphs, were not sufficient to incorporate GR. Several problems 
arose1, often not well exposed, either presenting the Dirac equation from a Hamiltonian dynamics2, either for-
getting that the matrices of ( )2,SL �  replacing the Lorentz transformations were not unitary [11], either with 
wrong calculations.3 The result was an unsolved problem: the union of GR and SM. Nowadays quantum me-
chanics is understood as a gauge theory using a ( ) ( ) ( )1 2 3U SU SU× ×  gauge group [14]. The electron is a 
member of the “first generation” of fundamental fermions. This first generation is replicated into a second and a 

 

 

1The non-relativistic wave of a system of n electrons is a function on the �  field of 3n + 1 variables, the 3n coordinates of each particle, 
and a unique time. The number of particles is changing with creations and annihilations; therefore it is impossible to know precisely what a 
quantum state is. Nevertheless it is necessary to be able to compute integration on these indefinite linear spaces. The Dirac wave is a func-
tion on 4�  not on � . 
2In Ref. [12] the first part of the book presents canonical quantization, Green functions, path integrals and S-matrix from the non-relativistic 
quantum theory. The author writes (page 162) “the Dirac equation may be thought of as a relativistic generalization of the Schrödinger equa-
tion”, which is false because the four µγ  cannot be all Hermitian matrices. So he even does not know that the unitary operators needed on 
page 147 cannot exist. 
3The matrix 0γ  written page 7 in Ref. [13] is different from the definition given in (A.13) page 390. This book had four editions, all with 
the same error. 
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third one with increasing mass. A Lagrangian density gives the wave equations, both for fermions and gauge 
bosons. Each generation has a separate Lagrangian density [12]. After the great success of the Weinberg-Salam 
theory [15] unifying electromagnetism and weak interactions with a ( ) ( )1 2U SU×  gauge group [16], great 
unified theories [17] tried to extend this unification to include strong interactions. These theories predicted the 
disintegration of the proton, but none disintegration was observed. Numerous and complicated attempts with 
quantum groups, strings, branes and many supplementary dimensions, supergravity, loop quantum gravity, were 
developed. All these attempts were based on the methods of the second quantization and consequently were fi-
nally based upon the non-relativistic Schrödinger equation. None of these attempts were able to incorporate GR 
in a renormalizable way.  

We began our work with the Dirac equation of the electron [6]. All calculations are there made with mathe-
matical rigour [7] and with very accurate experimental results. Another reason of this work is the study of the fi-
nite representations of the Lorentz proper group [18]: relativistic quantum mechanics uses not the Lorentz group 
but another one, in a way which is not a consequence of the principles of the theory. 

2. Waves and Wave Equations 
Since 1928 the relativistic invariance of the Dirac theory used the previous Pauli matrices for the spin of the 
electron: the space-time variable ( )0 1 2 3, , ,x x x x x=  was replaced by 

0 3 1 2
0 0

1 2 0 3 , .
x x x ix

x x x x ct
x ix x x

 + −
= + = = 

+ − 

�                           (2.1) 

This is equivalent to say that the three Pauli matrices: 

1 2 3

0 1 0 1 0
; ; ,

1 0 0 0 1
i

i
σ σ σ

−     
= = =     −     

                        (2.2) 

form a orthogonal oriented basis in space. We shall put arrows on vectors in space, so any vector reads 
1 2 3

1 2 3.j
jv v v v vσ σ σ σ= = + +

�                              (2.3) 

Contrary to the Clifford community [19]-[22] we use the matrix representation generated by the Pauli matric-
es. First the geometric algebra of space 3Cl  and ( )2M �  are isomorphic algebras on the real field, the sum 
and the product of matrices are familiar in quantum physics. This matrix representation identifies complex 
numbers and scalar matrices in the Pauli algebra. With this identification we write the x of (2.1) as x xµ

µσ= , 
we consider ( )0 1 2 3, , ,σ σ σ σ  as a basis in space-time and we use the Einstein’s convention of summation on up 
and down indexes, with Latin indexes in space and Greek indexes in space-time. Any element z in the Clifford 
algebra of space 3Cl  is a sum of a real part x, a vector part v� , an axial-vector part iw�  and a pseudo-scalar 
part iy  and we need (a detailed course on Clifford Algebra is available in the first chapter of [23]-[26]). 

†

ˆ; ,

; .

z x v iw iy z x v iw iy
z z x v iw iy z x v iw iy
= + + + = − + −

= = + − − = − − +

� � � �

� � � ��
                         (2.4) 

The application ˆz z�  is the main automorphism of 3Cl . The reverse is also the adjoint (transposed conju-
gate matrix), so †z z z=��  is the reversion. The third conjugation, z z�  is the product of the two previous 
ones and we shall need: 

� ( )† †ˆ ; ; det .z z z AB B A MM MM M= = = = =                       (2.5) 

Space-time is then made of the auto-adjoint part of the space algebra. We use: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 20 0 2 0 1 2 3ˆ ˆ; ; det .x x x x x x x xx x x x x x x x x= = − = = = ⋅ = − = − − −
� �†  

The main reason to the use of the geometric algebra 3Cl  is the ability to read all relativistic quantum physics 
in this algebra: The fermion wave is a function of space and time into 8

3Cl : 

( ) ( )1 2 8
3, , , ; .n nx x Clφ φ φ φ φ φ= = ∈� �                          (2.6) 
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It is made of eight waves, functions of space-time with value in 3Cl  which is a 8-dimensional linear space 
on the real field. The link between 3Cl  and the complex formalism is simple only if we use the left and right 
Weyl spinors nη  and , 1, 2,3, 4,n nξ =  by letting: 

( )

( )

* *
*1 2 2

2* *
2 1 1

* *
*1 2 2

2* *
2 1 1

ˆ ˆ2 2 ; ,

ˆ ˆ ˆ2 2 ; .

n n n
n n n n n

n n n

n n n
n n n n n

n n n

i

i

ξ η η
φ ξ η η σ η

ξ η η

η ξ ξ
φ η ξ ξ σ ξ

η ξ ξ

   − −
= = = − =   

   
   − −

= = = − =   
   

                 (2.7) 

For 5,6,7,8,n =  we let: 

( )

( )

* *
*1 2 2

2* *
2 1 1

* *
*1 2 2

2* *
2 1 1

ˆ ˆ2 2 ; ,

ˆ ˆ2 2 ; .

n n n
n n n n n

n n n

n n n
n n n n n

n n n

i

i

ξ η η
φ ξ η η σ η

ξ η η

η ξ ξ
φ η ξ ξ σ ξ

η ξ ξ

   − −
= = = − =   

   
   − −

= = = − =   
   

�

                 (2.8) 

Our non-linear wave equation of the electron, which has the Dirac equation as linear approximation when the 
Yvon-Takabayasi angle is small or negligible, reads [23]-[35]: 

( ) ( )1 1 1 1 1
21 21 2 1

ˆ ˆ 0; ; ; det .qA m µ
µφ φ σ φ φ ρ σ σ σ σ ρ φ∇ + + = ∇ = ∂ = =             (2.9) 

where 0
0 0, , 1 , , 1, 2,3.j

jq e c m m c jσ σ σ σ= = = = = − =� �  This equation is invariant under any transfor-
mation D defined by an element M of the Lie group *

3Cl  (group of invertible elements of 3Cl ): 

( ) † ; ; ,x D x MxM x x D x
x

µ ν ν µ
µ µ µµσ ∂′ ′ ′ ′= = = ∂ = =

′∂
                 (2.10) 

( ) ( ) ( ) ( ), 1, 2,3, 4; , 5,6,7,8.n n n nx M x n x M x nφ φ φ φ′ ′ ′ ′= = = =� �              (2.11) 

ˆ ˆ; ; ;M M qA Mq A Mµ
µσ′ ′ ′ ′ ′∇ = ∇ ∇ = ∂ =                         (2.12) 

ˆ; , 1, ,8.n n n nM M nξ ξ η η′ ′ == = �                          (2.13) 

Relations (2.13) are the reason of the existence and the definition of “left” and “right” waves in quantum 
physics. Right waves transform with a left multiplication by M while left waves transform by a multiplication by
M̂ . Therefore nξ  and ˆnη  are right waves while nη  and ˆnξ  are left waves. Only one M term is present in 
(2.11) when two M terms are present in (2.10) and (2.12): consequently the wave turns with the θ  angle when 
the space turns with the 2θ  angle. The invariant form of the Dirac equation, which is the linear approximation 
of (2.9) reads: 

( ) ( )1 1 1 1 1
21

ˆ ˆ e 0; det e ,i iqA m β βφ φ σ φ φ ρ φ ρ−∇ + + = =                   (2.14) 

where β  is the Yvon-Takabayasi angle. Our wave equation, in the invariant form, appears then as a simplifi-
cation of the Dirac equation. 

Equations (2.10)-(2.13) have no geometric reason to be restricted to ( )det 1M = . The main change that we 
propose replaces this condition by the less restrictive condition ( )det 0M ≠ . We then enlarge ( )2,SL �  to 

( )2,GL �  which is also the multiplicative group *
3Cl  in the 3Cl  geometric algebra. This is significant be-

cause geometry is linked to gravitation in GR. First reason: this change is possible and astonishing! For any in-
vertible M Equations (2.10) - (2.13) are satisfied, so the restriction ( )det 1M =  is unnecessary. Next the repre-
sentations used in the case of spin 1/2 particles are now correctly used. The quantum theory associated to each 
Lorentz transformation R an element ( )M M R=  but there are two M for one R and only for particular R 
(“bi-valued” representations). Now to any M we associate one ( )R R M=  and :f M R�  is a true mathe-
matical function. Moreover for the gravitation we shall need below the four kinds of representations of 

( )2,GL �  while ( )2,SL �  has only two kinds of representations. Finally this important change is validated by 
all new results that we get from this hypothesis. Considering all M elements with ( )det 0r M= ≠  and noting 

( )*
3 2,Cl GL= �  the set of these elements, we let: 
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( ) 2det e ; e ; : .i iM r M r M R x x MxMθ θ= = =� †                      (2.15) 

and the R transformation satisfies: 
2 2e e .i ix MxM r Mx r M rMxM rxθ θ−′ = = = =† † †                     (2.16) 

Then ( ) ( )D x rR x=  and D is a “Lorentz dilation” made of the Lorentz transformation R conserving space 
orientation and time orientation (this is not a trivial result, relations (2.12) like ( ) 4det D rν

µ =  and 0
0 0D >  are 

proved in Ref. [23] p. 115-118) and of the homothety :h x rx�  with ratio ( )detr M= . We explained pre-
viously how theses dilations constitute a 7-dimensional Lie group [32] and how all laws of electromagnetism, 
quantum wave of the electron included, are invariant not only under the ( )2,SL �  group found in 1928 from 
the Dirac theory, necessary to account for the spin 1/2, but under the ( ) *

32,GL Cl=�  group. Since the study of 
the Lie groups [36] used in quantum physics is based on the properties of the ( ),GL n �  groups, and since *

3Cl  
is exactly one of them, we conserve the matrix representations of this group, Clebsh-Gordan or Racah coeffi-
cients and so on. The first difference is the four kinds of matrix representations that we use now with 

ˆ, , ,n n n nφ φ φ φ� . This has no incidence on spin representations because x x= � . Main difference: we now know 
from where come the representations of ( )2SU  which is a subgroup of *

3Cl . Wave Equations (2.9) and (2.14) 
are invariant under *

3Cl  because: 

( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ

det det det det .

M M

qA Mq A M q A

M M r

φ φ φ φ φ φ

φ φ φ φ φ φ

ρ φ φ φ ρ

′ ′ ′ ′∇ = ∇ = ∇

′ ′ ′ ′ ′ ′= =

′ ′= = = =

                    (2.17) 

Then, if we suppose m m r′=  we get: 

( ) ( )1 1 1 1 1 1 1 1
21 21

;
ˆ ˆ ˆ ˆ0 .

m m r m

qA m q A m

ρ ρ ρ

φ φ σ φ φ ρ φ φ σ φ φ ρ

′ ′ ′= =

′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ + + = ∇ + +
            (2.18) 

And we are allowed to say that this equation is “form invariant” since it has exactly the same form in the 
primed and non-primed basis. We explained how the variation of the mass term is linked to the E hν=  rela-
tion, then to the existence of the Planck constant [26]. This enlarged invariance has another unexpected conse-
quence: if we compute in the basis ( )1 2 3 1 2 31, , , , , , ,i i i iσ σ σ σ σ σ  of 3Cl  the eight numeric equations equivalent 
to (2.9) or (2.14) the real part (first term of the basis, 1) is 0= , where   is the Lagrangian density allowing 
us to get the wave Equation (2.9) or (2.14) by means of variation calculus. Therefore a double link exists be-
tween wave equation and Lagrangian formalism. We prove below that this double link is conserved in the gen-
eral case. Another one of the eight numeric equations is simple, the equation corresponding to the 3iσ  term 
which reads: 

1 10; .J J Jµ µ
µ µσ φ φ∂ = = = †                              (2.19) 

This J current is the conservative probability current, 0J  being the probability density. We shall see in the 
next section how this is generalized for the whole wave. 

3. Weak and Strong Interactions 
We studied strong and weak interactions with Clifford algebras having two fictitious supplementary dimensions 
[25] [37]-[41] of space. Since space-time has one dimension more than space, we passed from three to six di-
mensions. This induces three doubling of the dimension of the algebra, and we get the same number of variables 
if we replace 3Cl  by 8

3Cl . The general wave that we consider is a function of space and time into 
( )1 2 8, , ,φ φ φ φ= �  with j j jR Lφ = +  where R is the right part and L is the left part of the wave. The states of 

color of the quark d that we named , ,r g bd d d  are associated to 2 3,φ φ  and 4φ . The states of color of the 
quark u that we named , ,r g bu u u  are associated to 5 6 7, ,φ φ φ� � � . Similarly we let for the neutrino: 8φ φ= �n . We 
remark that this conserves the 1 + 3 + 3 + 1 structure of the algebra of space. Moreover we now consider these 
states of color like complete waves, with a left and a right part. This is then a generalization of our previous 
works. We use now: 
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1 8 2 5

8 1 5 2

3 6 4 7

6 3 7 4

ˆ ˆ
,

ˆ ˆ

l r

g b

φ φ φ φ

φ φ φ φ
φ φ φ φ

φ φ φ φ

 
 

Ψ Ψ   Ψ = =   Ψ Ψ   
 
 

� �

� �                          (3.1) 

with the Weyl representation: 

20
0 2

2

4 2
4 5 0123

4 2

00 1 0
; , 1, 2,3; ;

00 0 1

0 0  00
; ; ; .

0 0 0  0
µ

µ
µ

σ
γ γ γ γ

σ

γ
γ

γ

    
= = = − = = =     −     

−      
= = = = =        −     

jj
j

j

I
j I

I

I I
L L L

I I
ii

i
ii

            (3.2) 

Consequently the cΨ  waves, , , ,c l r g b=  have value in the Clifford algebra of space-time 1,3Cl  and the 
global wave Ψ  has value in the Clifford algebra of an extended space-time 1,5Cl , with two more dimensions 
of space which are fictitious and not present in the dynamics of the wave. Main interest of this writing, this al-
lows an equal treatment of the eight nφ  that we need. The lΨ  part of the wave is the lepton part, made of the 

1φ  wave of the electron and the 8φ�  wave of the neutrino which is also the wave of the Lochak’s magnetic 
monopole [26] [42]-[44]. The wave equation reads: 

( ) 0120 ;

.b g

r l

D L

m
χ χ

ρ
χ χ

= Ψ +

 
=  

 

M

M
                                  (3.3) 

The covariant derivative reads: 

( ) ( ) ( ) ( ) ( )31 2
0 ,

2 2 2
j k

j k
gg gD BP W P GΨ = ∂ Ψ + Ψ + Ψ + Γ Ψi                 (3.4) 

with 
0

0, 1, 2,3; ; ;j j j
jW L W j D L D L L L Lµ µ

µ µ= = = = = −                    (3.5) 

for 1, 2,3.j =  We use two projectors P±  satisfying 

( ) ( )21 0123
1 ;
2

.P L L± Ψ = Ψ ± Ψ =i i                             (3.6) 

Three operators act on the quark sector like on the lepton sector: 

( ) ( ) ( )1 2 335 0125 0132; ; .P P L P P L P P L+ + += Ψ = Ψ = Ψ                    (3.7) 

The fourth operator acts differently on the lepton wave and on the quark sector: 

( )
( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0
0

0 0

0 21 21 30

0 21 21 30

;

1 ;
2

1 1 1 , , , .
3 3 2

l r

g b

l l l l l l

c c c c c c

P P
P

P P

P P

P P c r g b

γ γ γ

γ γ γ

−

−

 Ψ Ψ
 Ψ =
 Ψ Ψ 

Ψ = Ψ + Ψ = Ψ + Ψ + Ψ

Ψ = − Ψ + Ψ = − Ψ + Ψ + Ψ =

i i i

i i i

            (3.8) 

The value −1/3 is compulsory [45] [46] and gives the four correct values of the charges of quarks and anti-  

quarks [25] [47]. To simplify notations we use now , , ,l r g b  instead , , ,l r g bΨ Ψ Ψ Ψ . So we have 
l r
g b

 
Ψ =  

 
  

and 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 4 4 01235 01235 2 5 4 01234 01235

3 4 01253

5 01234 6 01253

7 4

0 01 1; ;
0 02 2

0 0
; ;

0 0

0 0 0
; ;

0

0 0

g g
L L L L L L L L

r r

r b
P P P P L P

g r

b
L P P L

r b g

P L
b

+ − − + −

− −

−

−   
Γ Ψ = Ψ + Ψ = Γ Ψ = Ψ − Ψ =   

   
   

Γ Ψ = Ψ − Ψ = Γ Ψ = Ψ =   −   
−   

Γ Ψ = Ψ = Γ Ψ = Ψ =   
   

Γ Ψ = − Ψ =
−

i
i

i
i

i
i

( ) ( )8 012345 012345

01 1; .
23 3
r

P L L P
g g b

− −   
Γ Ψ = Ψ + Ψ =   −   i

    (3.9) 

Since the left up term of each matrix ( )jΓ Ψ  is zero, the wave equation splits into a lepton part and a quark 
part. 

3.1. The Lepton Wave 
Only the ( ) ( )1 2U SU×  part of the gauge group acts on electron + neutrino. The physical translation is: leptons 
do not strongly interact; they have only electromagnetic and weak interactions. This is fully satisfied in experi-
ments. Since it is independent on the energy scale, two consequences result: strict conservation of the baryonic 
number, general failure of great unified theories. The wave equation acts separately in a lepton part and a quark 
part: 

( )

( )

012

012

0 0 0
0 ; ;

0 0 0

0
0 ; ; .

0

ll l

l

rb gc c c c

g br

D L m

D L m

ρ
χ

χ χ
ρχ χ

χ

Ψ   
= Ψ + Ψ =   

  
Ψ  

= Ψ + = Ψ =    Ψ Ψ   

                (3.10) 

We study first the lepton part of the wave equation. The lepton sector of the standard model, for the first gen-
eration, accounts for the electron, the positron, the left neutrino and the right anti-neutrino. We note the wave 

eψ  of the electron and the wave nψ  of the neutrino as 
1 8

1 1
1 8

2 2

; ; ; ; 1,8.
j j

j j
e n j j j

ξ ηξ ξ
ψ ψ ξ η

ξ ηη η
      

= = = = =      
       

                  (3.11) 

Like previously jξ  are right waves and jη  are left waves. The SM uses a charge conjugation which, up an 
electric phase, lets for the positron wave pψ  and for the anti-neutrino wave aψ : 

* *
2 2; ,p e a ni iψ γ ψ ψ γ ψ= =                                 (3.12) 

where we use the matrix representation of Weyl matrices (3.2) which gives: 

0
.ˆ 0

µ
µγ

∇ 
∂ = ∂ =   ∇ 

                                  (3.13) 

We use (2.7), 1
eφ φ=  and 8

nφ φ= � . The link (3.12) of the SM between the wave of the particle and the wave 
of its anti-particle simply reads: 

1 8
1 1 1 1

ˆ ˆ ˆ ˆ ˆ; .p e a nφ φ σ φ σ φ φ σ φ σ= = = =                             (3.14) 

The lepton wave reads: 
1 8

8 1
1 1

.ˆ ˆ ˆ ˆ ˆ
e n e n

l
a p n e

φ φ φ φ φ φ
φ σ φ σ φ φ φ φ

    
Ψ = = =            

�
                        (3.15) 

It is a well-defined function of space and time with value into the space-time algebra 1,3Cl . Separating ,eξ   

eη  and nη  the Weinberg-Salam model uses projectors ( )5
1 1
2

γ± , which read with our choice (3.2) of Dirac  
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matrices: 

( ) ( ) 2
5 5

2

0 0 0 01 11 ; 1 .
0 0 0 02 2L R

I
I

ξ ξ ξ
γ ψ ψ γ ψ ψ

η η η
         

− = = = + = = =         
         

          (3.16) 

Then for particles left waves are η  waves and right waves are ξ  waves. This is *
3Cl  invariant, conse-

quently relativistic invariant. With space algebra the separation between left and right waves uses: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 8 8
3 3

1 1* 1
2 3

8 8* 8
2 3

1 0 1 01 12 0 1 ; 2 0 1 ;
0 0 0 02 2

0 0 1ˆ2 0 2 0 1 ;
0 1 2

0 0 1ˆ2 0 2 0 1 .
0 1 2

e e n n

e e

n n

R R

L i

L i

ξ φ φ σ ξ φ φ σ

σ η η φ φ σ

σ η η φ φ σ

   
= = = + = = = +   

   
 

= − = = = − 
 
 

= − = = = − 
 

�

�

     (3.17) 

To get the gauge group of the Weinberg-Salam theory we let (see [26] 6.1): 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

21 0123

0 21 30 21 1 0 012 3

2 3 123 3 3 30

1 ;
2

1 1 1; ;
2 2 2

1 1 .
2 2

;

P

P P P P

P P P P

γ γ

γ γ γ γ γ γ

γ γ γ γ

±

− +

+ +

Ψ = Ψ ± Ψ =

Ψ = Ψ + Ψ + Ψ = Ψ + Ψ Ψ = Ψ + Ψ = Ψ

Ψ = Ψ − Ψ = Ψ Ψ = −Ψ + Ψ = Ψ −

i i

i i i i i

i i i i

    (3.18) 

We explained there how the covariant derivative of the Weinberg-Salam model used: 

1 2 ,
2

j
j

YD ig B ig T Wµ µ µ µ= ∂ − −                              (3.19) 

with 
2

j
jT

τ
=  for a doublet of left-handed particles and 0jT =  for a singlet of right-handed particle. Y was the  

weak hypercharge, 1, 2L RY Y= − = −  for the electron. The transposition into Clifford algebra used four space- 
time vectors named “potentials”: 

0 0
; ; ; ;ˆ ˆ0 0

0
; ,

ˆ 0

j
j j j j

j

D B
D D D B B B

D B

W
W W W

W

µ µ µ µ
µ µ µ µ

µ µ
µ µ

σ γ σ γ

σ γ

   
= = = = = =      

   
 

= = =   
 

D B

W

             (3.20) 

which express the covariant derivative in a unique term: 

( )1 2 31 2
0 1 2 3 .

2 2
g gP P P P= ∂ + + + +D B W W W                        (3.21) 

For the calculation of the covariant derivative we use the Socroun’s method incorporating the jg  constants 
into the potentials [48]. The k

jh  potentials simplify the calculation of the ( )3SU  group by using three 
( )2SU  subgroups. We let: 

8
1 1 2 2 3 3 33 3 31 2
1 1 1 3

8
1 6 2 7 3 3 33 3 3
2 2 2 1

8
1 4 2 5 3 33 3 3
3 3 3 2

b ; w , 1, 2,3; ; ; ,
2 2 2 2 2 3

; ; ;
2 2 2 3

; ; 2 .
2 2 2 3

j j g g gg g GB W j h G h G h h G

g g g Gh G h G h h G

g g g Gh G h G h h

 
= = = = = − = + 

 
 

= = − = − + 
 
 

= = − − = − 
 

        (3.22) 
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A detailed calculation was made in [26] 6.1. We have previously supposed that 1φ  and 8φ  have the same 
behaviour under the dilation R induced by M. We need here another behaviour: 8 8Mφ φ �� . We got, with the 
replacement of 8φ  by 8φ� , the replacement of ∇  by ∇ = ∇�  and the replacement of D by D D≠� : 

� ( ) ( )
( ) ( )

8 8 1 1 1 8 8 3 8 1 2 1

1 1 3 1 1 2 8

ˆ ˆ ˆ; 2 b b; ;w w w

ˆ ˆ ˆb w w w .

DR R DR R i R DL L i L i i L

DL L i L i i L

= ∇ = ∇ + = ∇ + − + − +

= ∇ + + − +

� � � �
          (3.23) 

This system is equivalent to: 
� ( ) ( )

( ) ( )

8 8 1 1 1 8 8 8 3 1 1 2

1 1 3 1 1 2 8

ˆ ˆ ˆ ˆ ˆ ˆ ˆ; 2 b b w w w ;

ˆ ˆ ˆb .

;

w w w

R D R DR R i R L D L iL iL i

DL L i L i i L

= ∇ = ∇ + = ∇ − − + +

= ∇ + + − +
           (3.24) 

These derivatives are exactly equivalent to those of the Weinberg-Salam model. Equation (3.10) reads 

( ) 012 0,l lmγ ρχΨ + =D                                  (3.25) 

where lχ  is a term (below) depending on lΨ . The Weinberg-Salam model does not use 8R  and for elec-
tro-weak interactions we can cancel this right wave of the neutrino. But when some neutrinos are observed they 
are able to change into neutrinos of other generations. These changes are studied by using both right and left 
waves. It is the same if we study the Lochak’s magnetic monopole. If the 8φ  wave is used we get many relati-
vistic invariants, unknown in the Dirac theory where only 1a  was used: 

( ) ( )
( ) ( )
( ) ( )

1 1* 1 1* 1 1 8* 1* 8* 1* 1 8 8 1
1 1 1 2 2 2 1 2 2 1

1 8* 1 8* 8 1 8 1* 8 1* 1 8
3 1 1 2 2 4 1 1 2 2

1 8 1 8 1 8 8 1 8 8* 8 8* 8 8
5 1 2 2 1 6 1 1 2 2

ˆ ˆ2 2 ; 2 2 2

2 2 ; 2 2

ˆ

;

ˆ2 2 2 ; 2

;

.2

a a

a a

a a

ξ η ξ η η ξ η η η η η η η η

ξ η ξ η η ξ ξ η ξ η η ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ η ξ η η ξ

= + = = − = = −

= + = = + =

= − = = − = + =

† † †

† †

† † †

            (3.26) 

When the wave of quarks is zero we also have: 

� � ( )

( )

6 1 22 * * 1 1 * 8 * 8 * 8 * 8
1 1 2 1 3 4 5 12

1 2 1

* 8 8 * 1 * 1 * 1 * 1
2 6 2 1 3 4 5 1

1; , ,

.

j

j j l
j

M M
a a M a L R a L a L a R a R

M M

M a L R a L a R a L a R

ρ χ σ σ
ρ

σ σ

=

=

 
= = = + + + + +  

 

= + − + + −

∑ � � � �

� �
       (3.27) 

The lepton wave Equation (3.25) is equivalent to the system: 

� ( )

( )

( ) ( )

( ) ( ) ( )

1 1 1 8 8
1 3 5 1

8 8 1 1
6 4 5 1

1 3 1 1 2 8 * 1 * 8 * 8
1 2 1 4

8 3 8 1 2 1 * 8 * 1 * 1
6 2 1 3

ˆ ˆ ˆ0 2 b .

ˆ ˆ0 .

ˆ ˆ0 (b w ) w w .

ˆ0 b w w w .

σ
ρ

σ
ρ

σ
ρ

σ
ρ

= ∇ + + + −

= ∇ + + +

= ∇ + + − + + + +

= ∇ + − − − + − +

�

�

� �

� �

mR i R i a L a L a R

mR i a L a L a R

mL i L i i L i a R a L a R

mL i L i i L i a R a L a R

              (3.28) 

3.2. Double Link with the Lagrangian Density 
For comparing the previous equations with the usual complex matrix formalism, we associate to 1 8 1, ˆ,R R L�  and 

8L  the Weyl spinors jξ  and jη  and we get: 

( ) ( )

( ) ( )

1 1
1 1 1 1 1 1

8 8
8 8 8 8 8 8

ˆ2 0 ; 2 ; 2 0 ; 2 ;
0 0

ˆ2 0 ; 2 ; 2 0 ; 2 .
0 0

ξ η
ξ η

ξ η
ξ η

   
= = = =   

   
   

= = = =   
   

�

� �

R R L L

R R L L

† †

† †
              (3.29) 
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Equations (3.28) are equivalent to: 

� ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 8 8
1 3 5

8 8 1 1
6 4 5

1 3 1 1 2 8 * 1 * 8 * 8
1 2 4

8 3 8 1 2 1 * 8 * 1 * 1
6 2 3

ˆˆ0 2 b .

ˆˆ0 .

ˆ0 b w w w .

ˆ0 b w w w .

mi i a a a

mi a a a

mi i i i a a a

mi i i i a a a

ξ ξ η η ξ
ρ

ξ η η ξ
ρ

η η η ξ η ξ
ρ

η η η ξ η ξ
ρ

= ∇ + + + −

= ∇ + + +

= ∇ + + − + + + +

= ∇ + − − − + − +

              (3.30) 

Like with the linear Dirac mass term, the covariant derivatives of left spinors are linked by the mass term to 
right ones and the covariant derivatives of right spinors are linked by the mass term to left ones. But we now 
have ja  terms which also change with a gauge transformation [26], compensating exactly the difference be-
tween left and right spinors: these equations are both invariant under *

3Cl  (therefore relativistic invariant) and 
gauge invariant under the ( ) ( )1 2U SU×  gauge group generated by the four nP . The form invariance under 

*
3Cl  is proved in [26] B.4.1 and gauge invariance is proved in B.4.2 to B.4.4. 
Now we multiply on the left side the second relation (3.28) by 8iR− : 

( )8 8 8 8 8 1 8 1
6 4 5 1

ˆ ˆ0 .miR R a R L a R L a R R σ
ρ

= − ∇ + + +�                       (3.31) 

With the left η  and right ξ  spinors this equation reads: 

( ) ( )8 8 * * * 3
6 6 4 4 5 5

1ˆ0 2 .
2

mi a a a a a a σξ ξ
ρ

+ 
= − ∇ + + + 
 

†                      (3.32) 

We name j
Rδ  the real part of ( )† ˆ2 j jiξ ξ− ∇ : 

( )† †ˆ ˆ .j j j j j
R i iµ µ

µ µδ ξ σ ξ ξ σ ξ= − ∂ + ∂                             (3.33) 

This gives: 

( )† 1 1 1 1 1 1 1

8 8 8 8 8 8 8

ˆ ˆ ˆ2 ;; ;

ˆ ˆ; .

j j j j
R R R R R

R R R

i i D D R R D D

D R R D D

µ µ µ µ
µ µ

µ µ µ
µ

ξ ξ δ σ ξ σ ξ

σ ξ σ ξ

− ∇ = − ∂ = = =

= = =

�

�

†

†
              (3.34) 

Then (3.32) is equivalent to: 

( )8 8 * * *
6 6 4 4 5 50 .R R

mi D a a a a a aµ
µδ

ρ
= − ∂ + + +                          (3.35) 

This complex equation is equivalent to the real system: 

( ) ( )8 * * * 8
6 6 4 4 5 50 ; 0 .R R

m a a a a a a D
µ

µδ
ρ

= + + + = ∂                        (3.36) 

We remark that we get not four numeric equations but only two for the four variables of the 8R  spinor wave. 
This will be the same for the other spinor waves. We see this first with 1R . We multiply on the left the first eq-
uation (3.28) by 1iR− † : 

� ( )1 1 1 1 1 1 1 8 1 8
1 3 5 1

ˆ ˆ0 2 b .miR R R R a R L a R L a R R σ
ρ

= − ∇ + + + −� � � � �                    (3.37) 

With the left η  and right ξ  spinors this equation reads: 

( ) � ( )1 1 1 1 * * * 3
1 1 3 3 5 5

1ˆ0 2 4 b .
2

mi a a a a a a σξ ξ ξ ξ
ρ

+ 
= − ∇ + + + + 
 

† †                  (3.38) 

This equation is equivalent to: 
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� ( )1 1 1 1 * * *
1 1 3 3 5 50 4 b .R R

mi D a a a a a aµ
µδ ξ ξ

ρ
= − ∂ + + + +†                     (3.39) 

This complex equation is equivalent to the real system: 

( ) ( ) ( )1 1 * * * 1
1 1 3 3 5 50 4b ; 0 ,R R R

mD a a a a a a D
µ µ

µ µδ
ρ

= + + + + = ∂                  (3.40) 

because ( ) † ˆj j j
RD

µ µξ σ ξ= . Next we multiply on the left the third Equation (3.28) by 1iL− : 

( ) ( ) ( )1 1 1 3 1 1 1 2 8 1 * 1 * 8 * 8
1 2 1 4

ˆ ˆb w w w 0.miL L L L L i L L a R a L a Rσ
ρ

− ∇ + + − + + + + =� �          (3.41) 

We let: 

( ) ( ) ( )
( )

† 1 1 1 8 8 8

†

;; ; ;

2 ; 2 ; .;

j j j j j jk jk
L L L

jk j k jk jk kj jk jk kj jk jk jk
L L L L

i i D L L D L L L L

L D L L d iL iL L D id

µ

µ

µ µ

δ η η η η σ

η σ η

= − ∇ + ∇ = = =

= = + = − = −

� �†

           (3.42) 

We get: 

( ) ( ) ( )1 1 1 8 8 83 31 1ˆ ˆb b ; ; b b .
2 2

j j j
L L LL L D D L L D

µ µ µµ
µ µ

σ ση σ η+ +
= = =†             (3.43) 

With the left η  and right ξ  spinors (3.41) reads: 

( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 1 2 18 * * * 3
1 1 2 2 4 4

10 2 2 b w 2 w w .
2L

mi D i L a a a a a a
µ µ

µ µ µ µ
ση η

ρ
 
 


+
= − ∇ + + − + + + +


†    (3.44) 

This equation is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 1 2 18 * * *
1 1 2 2 4 40 2 2 b w 2 w w .L

mi D i L a a a a a a
µ µ

µ µ µ µη η
ρ

= − ∇ + + − + + + +†       (3.45) 

Separating the real and the imaginary part we get the equivalent system: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 3 1 1 18 2 18 * * *
1 1 2 2 4 4

1 2 18 1 18

0 2 b w w w ;

0 w w .

L L L L

L L L

mD D d a a a a a a

D D d

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ

δ
ρ

 
 

= + + − + + + +

= ∂



 
+  

−
        (3.46) 

We multiply on the left the last Equation (3.28) by 8̂iL− : 

( ) ( ) ( )8 8 3 8 1 2 1 * 8 * 1 * 1
6 2 1 3

ˆ ˆ0 b w w w .miL L L i L a R a L a Rσ
ρ

 
= − ∇ + − − − + − + 

 
�            (3.47) 

With the left η  and right ξ  spinors (3.47) reads: 

( ) ( ) ( ) ( ) ( ) ( )8 8 3 8 1 2 81 * * * 3
6 6 2 2 3 3

10 2 2 b w 2 w w .
2L

mi D i L a a a a a a
µ µ

µ µ µ µ
ση η

ρ
 
 


+
= − ∇ + − − − + + +


†    (3.48) 

This equation is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )8 8 3 8 1 2 81 * * *
6 6 2 2 3 30 2 2 b w 2 w w .L

mi D i L a a a a a a
µ µ

µ µ µ µη η
ρ

= − ∇ + − − − + + +†       (3.49) 

Separating the real and the imaginary part we get the equivalent system: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

8 3 8 1 18 2 18 * * *
6 6 2 2 3 3

8 2 18 1 18

0 2 b w w w .

0 w w .

L L L L

L L L

mD D d a a a a a a

D D d

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ

δ
ρ

 
 

= + − − + + + +

= ∂



 
−  

−
       (3.50) 
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Adding and subtracting the second Equations (3.46) and (3.50) we get: 

( )
( ) ( ) ( )

1 8

1 8 2 18 1 18

0

0

;

2 w w .

L L

L L L L

D D

D D D d

µ

µ

µ µ µ

µ µ µ

= ∂ +

= ∂ − +  
  

−
                      (3.51) 

The lepton part of the Lagrangian density is the sum of the real parts in (3.36), (3.40), (3.46), (3.50): 

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

8 * * * 1 1 * * *
6 6 4 4 5 5 1 1 3 3 5 5

1 3 1 1 18 2 18 * * *
1 1 2 2 4 4

8 3 8 1 18 2 18 *
6 6 2

1 10 4b
2 2

1 2 b w 2 w w
2

1 2 b w 2 w w
2

µ

µ

µ µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

δ δ
ρ ρ

δ
ρ

δ
ρ

   
= = + + + + + + + +   

   
  + + + − + + + +    

+ + − − + + + 
  

l R R R

L L L L

L L L L

m ma a a a a a D a a a a a a

mD D d a a a a a a

mD D d a a a a



( )* *
2 3 3 . 
+ 

 
a a

      (3.52) 

This gives: 

( )

( ) ( )

1 8 1 8 1 1 8

1 18 2 18 3 8 1 * * * * * *
1 1 2 2 3 3 4 4 5 5 6 6

10 b 2
2

w w w .

µ µ µ
µ

µ µ µ µ
µ µ µ

δ δ δ δ

ρ

 = = + + + + + + 

− + + − + + + + + 
  +

l R R L L R L L

L L L L

D D D

mD d D D a a a a a a a a a a a a


        (3.53) 

Since * * * * * * 2
1 1 2 2 3 3 4 4 5 5 6 6a a a a a a a a a a a a ρ+ + + + + =  we get: 

( ) ( )(
( ) ( ) )

( )
( ) ( ) ( )

1 1 1 1 8 8 8 8

1 1 1 8 8 8
1 8

1 1 1 1 8 8

1 2 1 8 1 2 8 1 3 1 1 8 8

ˆ ˆ ˆ ˆ0
2

ˆb 2

w w w w w .

l
i

m

i i

µ µ µ µ
µ µ µ µ

µ µ µ µ
µ µ µ µ

µ µ µ
µ

µ µ µ µ
µ µ µ µ µ

ξ σ ξ ξ σ ξ ξ σ ξ ξ σ ξ

η σ η η σ η η σ η η σ η

ρ ξ σ ξ η σ η η σ η

η σ η η σ η η σ η η σ η

= = − ∂ + ∂ − ∂ + ∂

− ∂ + ∂ − ∂ + ∂

+ + + +

 − + + − + − + 

 † †

† †

† † †

†

†

†

†

†

† †

†

       (3.54) 

Now we derive the wave equations resulting from the Lagrange equations. The Lagrange equation: 

( )1 1µ
µξ ξ

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

                                (3.55) 

gives 

� ( )1 1 1 8 8
1 3 5

ˆˆ0 2b ,mi a a aξ ξ η η ξ
ρ

= − ∇ + + + −                        (3.56) 

which is the first Equation (3.30), equivalent to the first Equation (3.28). Similarly deriving with 1η †  we get 
the third Equation (3.30), equivalent to the third Equation (3.28). Next the Lagrange equation 

( )8 8µ
µξ ξ

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

                               (3.57) 

gives 

( )8 1 1 8
4 5 6

ˆˆ0 ,mi a a aξ η ξ η
ρ

= − ∇ + + +                          (3.58) 

which is equivalent to the second Equation (3.28). The Lagrange equation 
( )8 8µ

µη η

 ∂ ∂ = ∂
 ∂ ∂ ∂ 

 
† †

 gives the  
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last Equation (3.28). This establishes the double link between wave equations and Lagrangian density. The link 
from Lagrangian density to wave equations was known from the beginning of quantum mechanics. The link 
from wave equations to Lagrangian density is the true reason of the existence of a Lagrangian mechanism. This 
link is much stronger than the first one on the physical point of view, because the old link supposes an integra-
tion by parts and a cancellation of terms. The possibility of this cancellation is dubious in the case of propagat-
ing waves (like gravitational waves). 

3.3. Double Link with the Lagrangian Density (Quark Case) 

Noting 
( ) ( )

� ( ) � ( )

33

3 3
, 0,1, 2,3

ˆ
 

n nn n
j j

j n n n n
j j

P P
P j

P P

φ φφ φ

φ φ φ φ

++

+ +

    = =       

��

�
 and 2,3, 4n =  we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
0 1 2 3

3 3 3 3 3 3 3
0 1 2 3

2 ; ; ;
3 3

4 ; ;
3

;

.
3

;

n n n n n n n n n

n n n n n n n n n

i iP R L P iL P L P iL

i iP R L P iL P L P iL

φ φ φ φ

φ φ φ φ

+ +

+ + + + + + +

= + = = = −

= − + = = − =

� �

� � � �� � �
         (3.59) 

We note mod 3 : 3 3, 4 1n n= = =  and 5 2= . The covariant derivative reads, with 2,3, 4n = : 

� ( ) ( ) ( )
� ( ) ( ) ( )

( )

1 2 1 1 2 2 3 3
1 1 1 1 1 1

3 3 3 1 2 3 1 1 2 3 2 3 3 3
1 1 1 1 1 1

1 2 3 3

2 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ b ,
3

4 ˆ ˆ ˆ ˆ ˆ ˆb ,
3

ˆ ˆ ˆ ˆb w w w
3

n n n n n n
n n n n n n

n n n n n n
n n n n n n

n n n n n

iDR R R i h ih R i h ih R i h h R

iDR R R i h ih R i h ih R i h h R

iDL L L i i L L

+ +
− − + + − +

+ + + + + + + +
− − + + − +

+

= ∇ + + + + − + −

= ∇ − + + + − + −

= − ∇ − + −

� � � � � �

( )
( ) ( )

( ) ( )
( ) ( )

1 2 1
1 1

1 2 2 3 3
1 1 1 1

3 3 3 1 2 3 3 1 2 3 1
1 1

1 2 3 2 3 3 3
1 1 1 1

ˆ

ˆ ˆ ,

ˆb w w w
3

.

n
n n

n n
n n n n

n n n n n n
n n

n n
n n n n

i h ih L

i h ih L i h h L

iDL L L i i L L i h ih L

i h ih L i h h L

+
− −

+
+ + − +

+ + + + + +
− −

+ + +
+ + − +

− +

− − − −

= ∇ − − − + −




 +

− − −




−


� �

     (3.60) 

When lΨ  is zero the 2ρ  term is a sum of 66 terms (relativistic invariants): 

( )
7 *2 *

2 , ,
2; ,

n
pq pq n n n n n n

n n n n n
n n p q

d d s s d R L L Rρ η ξ
=

=

= + = + =∑ ∑ †                  (3.61) 

where in 2,3, 4,5,pq
ns n =  23,34, 42,56,67,75,52,53,54,62,63,64,72,73,74pq =  and: 

2 3 4 5
ˆ ˆˆ ˆ2 2 ; 2 ; 2 ; 2 2 .pq p q q p pq q p pq p q pq p q q ps s s sη η η η η ξ η ξ ξ ξ ξ ξ= = − = = = = −† † † † † †          (3.62) 

And when the Ψ  wave is complete, with both lepton and quarks terms we have: 

( )
6 7 *2 * *

1 2 , ,
.

n n
pq pq

n n n n n n
n n n p q

a a d d s sρ
= =

= =

= + +∑ ∑ ∑                           (3.63) 

This is a sum of 72 terms, all positive. 

3.4. The Quark Wave 
Like in the lepton case the Lagrangian density is doubly linked to wave equations in the quark case. The La-
grangian density reads: 

( ) ( ) ( ) ( )
� ( ) �

7
† † † †

2

7†† 3 3
1 2 3 4 5 6 7

2,3,4 2 2,3,4

ˆ ˆ
2

2 4 1b b b ,
3 3 3

n
n n n n n n n n

q
n

n
n n n n n n n n n n n n n

n n n

im µ µ µ µ
µ µ µ µρ η σ η η σ η ξ σ ξ ξ σ ξ

ξ ξ ξ ξ η η

=

=

=
+ +

= = =

= + − ∂ + ∂ − ∂ + ∂

 + − − + + + + + + +

 


 



  

∑

∑ ∑ ∑



      †

   (3.64) 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 3 1 2 3 3 2 3 3 3 3
1

†1 1 1 1 1 1 1 1
2 1 1 1 1

†2 1 2 1 2 1 1 1
3 1 1 1 1

w w w w w w ;

ˆ ˆ ;

ˆ ˆ ;

n n n n n n n n n n n n n

n n n n n n n n n
n n n n

n n n n n n n n n
n n n n

i

h h h h

i h h h h

η η η η η η η η η η η η

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η η η

+ + + + + +

+ + + +
− − − −

+ + + +
− − − −

= − + − − + −

 = + − −  
 = − + − +  







† † † †† †

† † † †

† †
†

†

†

†

( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

3 1 3 1 3 1 3 1
4 1 1 1 1

† †3 3 3 31 3 1 1 3 1 1 3 1 1 3 1
5 1 1 1 1

†3 3 32 3 1 2 3 1 2
6 1 1 1

ˆ ˆ ;

ˆ ˆ ;

ˆ ˆ

n n n n n n n n n
n n n n

n n n nn n n n n
n n n n

n n nn n n
n n n

h h h h

h h h h

i h h h

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η

+ + + +
− − − −

+ + + ++ + + + + + + +
− − − −

+ + ++ + + +
− − −

 = − − +  
 = + − −  

= − + −







† †

† † † †

†

† †

† † ( ) ( )( )
( ) ( ) ( ) ( )

†33 1 1 3 1
1

3 33 3 3 1 3 3 1 3 3 3 1 3 3 1
7 1 1 1 1

ˆ ˆ .

;nn n
n

n nn n n n n n n
n n n n

h

h h h h

η η

ξ ξ ξ ξ η η η η

++ + + +
−

+ ++ + + + + + + + + +
− − − −

 +  
 = − − +  


† †

†

† †

       (3.65) 

We can derive from this Lagrangian density the wave equations: 

2 1 1 1 1 2 2 2 2
5 1 3 5 1 4

5 5 6 6 7 7 5 5 6 6 7 7
5 1 5 1 5 1 4 4 4

ˆ ˆ 0, 2,3, 4.
ˆ ˆ ˆ ˆ ˆˆ

.

n n
R

n n nn n nn n n n n n n n
R n

n n n n n n

iDR m n

d L s R s L s R s L

s R s R s R s L s L s L

ρχ

ρ χ σ σ

σ σ σ

+ + + + + + + +

− + = =

= − + + +

+ + + + + +

                (3.66) 

3 3

2 3 3 3 3 1 3 1 3 3 1 3 1 3 23 3 2 3 2 3 3 2
3 5 1 3 5 1 4

3 2 2 3 3 3 3 4 4 3 2 2 3 3 3 3 4 4
5 1 5 1 5 1 3 3 3

0, 2,3, 4.

ˆ ˆ ˆ ˆ ˆ ˆ .

n n
R

n n n n n n n n n n n n n n
R n

n n n n n n

iDR m n

d L s R s L s R s L

s R s R s R s L s L s L

ρχ

ρ χ σ σ

σ σ σ

+ +

+ + + + + + + + + + + + + + + + + + + + + +
+

+ + + + + +

− + = =

= − + + +

− − − + + +

�

       (3.67) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

* * * *2 * 1 1 1 1 2 2 2 2
2 1 4 2 1 3

* * * * * *5 5 6 6 7 7 5 5 6 6 7 7
2 1 2 1 2 1 3 3 3

ˆ 0, 2,3, 4.

.

n n
L

n n n n n n n n n n n n n n
L n

n n n n n n

iDL m n

d R s L s R s L s R

s L s L s L s R s R s R

ρχ

ρ χ σ σ

σ σ σ

+ + + + + + + +

− + = =

= + + − +

− − − + + +� � � � � �

         (3.68) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 3

* * * *2 3 * 3 3 3 1 3 1 3 3 1 3 1 3 2 3 3 2 3 2 3 3 2
3 2 1 4 2 1 3

* * * * * *3 2 2 3 3 3 3 4 4 3 2 2 3 3 3 3 4 4
2 1 2 1 2 1 4 4 4

0, 2,3, 4.

.

n n
L

n n n n n n n n n n n n n n
L n

n n n n n n

iDL m n

d R s L s R s L s R

s L s L s L s R s R s R

ρχ

ρ χ σ σ

σ σ σ

+ +

+ + + + + + + + + + + + + + + + + + + + + +
+

+ + + + + +

− + = =

= + + − +

+ + + + + +

� �

� � � � ��   (3.69) 

To get the Lagrangian density from these wave equations we multiply (3.66) on the left by , 2,3, 4nR n =�  
and (3.67) by 3 , 2,3, 4.nR n+ =  We let: 

† ˆ ; ,;jk k j jk jk kj jk jk kj
R RR D R R d iR iRµ µ µ µ µ µ µ µξ σ ξ= = + = − +                    (3.70) 

and we get: 

� �3 3 3 33 31 1ˆ ˆb 2 b ; b 2 b , , 2,3, 4.
2 2

n k n k n k n kR R R R n kµ µ
µ µ

σ σξ σ ξ ξ σ ξ+ + + ++ +
= = =� �† †            (3.71) 

Then (3.66) gives: 

( ) ( ) ( )

( )

1 2 1 1 2 2 3 2
1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 22 1 1 2 2 5 6 7 5 6 7 3
5 3 5 4 5 5 5 4 4 4

20 b
3

1 .
2

n n n n n n n n
R R R n n n n n n R

n n n n n n n n n n n n n n
n

i D D h ih R h ih R h h D

m d s s s s s s s s s s

µ µ µ µ µ
µ µ µ µ µ µ µ µδ

σ
ρ

+ +
− − + + − +

+ + + +

= − ∂ + + + + − + −






+

+ + + + + + + + + + +
  (3.72) 

Like in the lepton case, the particular form of this wave equation allows us to get an equivalent system with 
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only two numeric equations: 

( ) ( )

( )
3 2 1 1 2 1 1 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 22 1 1 2 2 5 6 7 5 6 7
5 3 5 4 5 5 5 4 4 4

2 10 b
3 2

| .

n n n n n n n n n n n
R R n n R n R n R n R n R

n n n n n n n n n n n n n n
n

D h h D h D h d h D h d

m d s s s s s s s s s s

µ µ µ µ µ µ
µ µ µ µ µ µ µδ

ρ

+ + + +
− + − − + +

+ + + +

= + + − + − + −

+ + + + + + + + + + +
    (3.73) 

1 1 2 1 1 2 2 2
1 1 1 1 .n n n n n n n n n

R n R n R n R n RD h d h D h d h Dµ µ µ µ µ
µ µ µ µ µ

+ + + +
− − + +∂ = + + −                    (3.74) 

By adding and using qp pqd d= −  we get: 

( )2 3 4 0.R R RD D Dµ µ µ
µ +∂ =+                                 (3.75) 

Only the sum of the three currents generated by the three colors of the d quark is a conservative space-time 
vector. Similarly for the u quark, with colour states 3 , 2,3, 4,n nφ + =�  we get: 

( )
( ) ( )

(

3 3 3 1 2 3 1 3
1 1

1 2 3 2 3 3 2 3
1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 5 3 5 4

2 2 2 2 23 2 3 3 3 4 3 2 3 3
5 5 5 3 3 3

40 b
3

n n n n n
R R R n n

n n n
n n n n R

n n n n n n n n
n

n n n n n

i D D h ih R

h ih R h h D

m d s s s s

s s s s s s

µ µ µ
µ µ µ µ

µ µ
µ µ µ µ

δ

ρ

+ + + + + +
− −

+ + + +
+ + − +

+ + + + + + + + + + + +
+

+ + + + +

= − ∂ − + +

+ − + −

+ + + + +

+ + + + + + )23 4 31 .
2

n σ+ +


               (3.76) 

Next the particular form of this wave equation allows us to get an equivalent system with only two numeric 
equations: 

( )

(
)

3 3 3 2 3
1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 5 3 5 4

2 2 2 2 2 23 2 3 3 3 4 3 2 3 3 3 4
5 5 5 3 3 3

1 3 1 3 2 1 1 3 2 3
1 1 1 1

40 b
3

1
2

n n n
R R n n R

n n n n n n n n
n

n n n n n n

n n n n n n
n R n R n R n

D h h D

m d s s s s

s s s s s s

h D h d h D h

µ µ
µ µ µ

µ µ µ
µ µ µ µ

δ

ρ

+ + +
− +

+ + + + + + + + + + + +
+

+ + + + + +

+ + + + + + +
− − + +

= − + −

+ + + + +

+ + + + + +

+ − + −( )2 3 2 3 .n n
Rd µ+ + +

              (3.77) 

3 1 3 1 3 2 3 1 3 1 3 2 3 2 3 2 3
1 1 1 1 .n n n n n n n n n

R n R n R n R n RD h d h D h d h Dµ µ µ µ µ
µ µ µ µ µ

+ + + + + + + + + + + + +
− − + +∂ = + + −             (3.78) 

And we also get 

( )5 6 7 0.R R RD D Dµ µ µ
µ +∂ =+                                 (3.79) 

For the left waves, we multiply (3.68) on the left by , 2,3, 4nL n =  or (3.69) by 3̂ , 2,3, 4nL n+ =  and we get, 
with: 

3 3 3; ; ,n n n n n n pq p q
L LD L L D L L L µ µη σ η+ + += = =� � †                        (3.80) 

( ) ( )

( ) ( ) ( )

(
)

† 1 2 3

1 2 1 1 2 2 3 3
1 1 1 1 1 1

2 2 2 22 1 1 2 2
2 4 2 3

2 2 2 2 2 25 6 7 5 6 7 3
2 2 2 3 3 3

b0 2 w 2 w w
3

2 2

1 .
2

n n n n n
L

n n n n n
n n n n n n L

n n n n n n n n
n

n n n n n n

i D i L

h ih L h ih L h h D

m d s s s s

s s s s s s

µ µ

µ
µ

µ µ µ

µ µ µ

η η

ρ
σ

+

+ +
− − + + − +

+ + + +

 = − ∇ + − + − + 
 

−



+ − − − −

+ + + + +

+




+ + + + + + 

             (3.81) 
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Here also this wave equation is equivalent to a system of only two numeric equations: 

( ) ( )

( ) (
)

3 3 1 3 2 3
1 1

221 1 2 1 1 2 2 2 1
1 1 1 1 2

2 2 2 2 2 2 2 2 21 2 2 5 6 7 5 6 7
4 2 3 2 2 2 3 3 3

b0 w w w
3

.

w

n n n n n n n
L L n n L L L

n n n n n n n n n n
n L n L n L n L n

n n n n n n n n n n n n

n
L

D h h D D d

mh D h d h D h d d s

s s s s s s s s s

D

µ µ µ µ
µ µµ

µ

µ µ µ µ µ µ µ µ

µ
µ

δ

ρ

+ +
− +

+ + + + +
− − + +

+ + +

 = + − + − − − + 
 

− + − + + +

+ + + + + + + + +

∂ = 1 3 2 3 1 1 2 1 1 2 2 2
1 1 1 1w .n n n n n n n n n n n n

L L n L n L n L n Ld D h d h D h d h Dµ µ µ µ µ µ µ µ µ µ
µ µ

+ + + + + +
− − + +− + − + +

         (3.82) 

Finally for the left waves of the u quark we have: 

( ) ( )

( ) ( ) ( )

(

3 3 3 1 2 3

1 2 3 3 1 1 2 3 3 2 3 3 3
1 1 1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 32
3 2 4 2 3

2

2 23 2 3 3 3
2 2 2

b0 2 w 2 w w
3

2 2

n n n n n
L

n n n n n
n n n n n n L

n n n n n n n n
n

n n

i D i L

h ih L h ih L h h D

m d s s s s

s s s

µ µ

µ
µ

µ µ µ

µ µ µ

η η

ρ

+ + + +

+ + + + + + +
− − + + − +

+ + + + + + + + + + + +
+

+ + +

 = − ∇ − + − − 
 

− + − − − −

+ + + + +

+ +



+




†

)2 2 2 24 3 2 3 3 3 4 3
4 4 4

1
2

n n n ns s s σ+ + + 


+
+ + +

          (3.83) 

Here also this wave equation is equivalent to a system of only two numeric equations: 

( ) ( )

( )

(

3 3 3 3 3 1 3 2 3
1 1

1 3 3 1 2 3 3 1 1 3 3 2 2 3 3 2
1 1 1 1

2 2 2 22 3 3 1 3 3 1 3 2 3 3 2 3
3 2 4 2 3

3
2

b0 w w w
3

n n n n n n n
L L n n L L L

n n n n n n n n
n L n L n L n L

n n n n n n n n
n

n

D h h D D d

h D h d h D h d

m d s s s s

s

µ µ µ µ
µ µµ

µ

µ µ µ µ µ µ µ µ

δ

ρ

+ + + + +
− +

+ + + + + + + + + + + +
− − + +

+ + + + + + + + + + + +
+

+

 = − + − − − − 
 

− + − +

+ + + + +

+ )2 2 2 2 2 22 3 3 3 4 3 2 3 3 3 4
2 2 4 4 4

3 1 3 2 3 1 1 2 1 1 3 3 2 2 3 3 2
1 1 1 1

| .

w w .

n n n n n

n n n n n n n n n n n n n
L L L n L n L n L n L

s s s s s

D d D h d h D h d h Dµ µ µ µ µ µ µ µ µ µ µ
µ µ µ

+ + + + +

+ + + + + + + + + + +
− − + +

+ + + + +

∂ = − − + − + +

     (3.84) 

For the left waves of quarks only one sum gives a conservative space-time vector, because the weak gauge 
links the waves of the u and d quarks: 

7

2
0.

n
n
L

n
D µ

µ

=

=

 ∂ = 
 
∑                                      (3.85) 

This means that a conservative probability current does not exist for an isolated coloured quark, and this is 
well known, since it is impossible to observe such isolated states. 

The Lagrangian density 2 q  is the sum on 2,3, 4  of the sum of Equations (3.73), (3.77), (3.82) and (3.84). 
All mass terms are gotten twice and the sum of all squares is exactly 22ρ . The Lagrangian density for all ob-
jects of the first generation is the sum l q= +   . Since 2ρ  is the sum of the lepton part and the quark part, 
it is sufficient to add the 16 equations, 4 from the lepton case, 12 from the quark case, to get the simplification 
by 2ρ  in the mass term. This achieves the general proof of the double link between wave equations and La-
grangian density. 

3.5. Lessons of This Calculation 
The previous calculation proves that the use of 1,3Cl  and 1,5Cl  algebras is unnecessary. The 3Cl  algebra is 
then the unique framework allowing us to describe all interactions of quantum physics, if we use also this 
framework to describe gravitation. In this framework we are also able to establish the double link between wave 
equations and Lagrangian density. The existence of a Lagrangian principle is then compulsory; it is not the con-
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sequence of a meta-physical prescription but a mere consequence of the physical laws of quantum physics. The 
necessity of a physical reason for the Lagrangian formalism was explored by L. de Broglie, his idea was the sta-
tionary action of the particle as a limit case of the growing entropy in thermodynamics [49]. We may now con-
sider the quantum wave equations themselves as a necessary consequence of the geometry of the space-time: the 
form of the mass term results from the constraints of the invariance under *

3Cl  and from the gauge group which 
is the greatest possible group compatible with the 3Cl  algebra. 

The existence of the double link has other consequences that we shall develop in the second part of this work 
on the boson part of the SM: only the fermion wave is linked to a Lagrangian density which is made of the wave 
equations and is then necessary. The dynamics of the boson part must then be a consequence of the dynamics of 
the fermion wave. The SM considers the dynamics of boson waves as a consequence of the Lagrangian density, 
but the relations between potentials and fields are not deduced, they are postulated independently of the laws 
giving the dynamics of the fields. 

We previously got this double link, first in the wave of the electron [33], next for electro-weak and strong in-
teractions [25] [26], but we did not see the reduction of the number of the numeric equations. The reason was 
the rebuilding of the wave equation on the Dirac form from the Lagrangian density, the 1φ  wave of the electron 
incorporating both left and right waves, while the Lagrangian density separates the left and right parts of the 
wave. It is very easy, in this rebuilding, to use the main automorphism ˆz z�  equivalent to the P transforma-
tion of quantum physics. But this transformation is not a symmetry of quantum physics, because it is not a 
symmetry of weak interactions. All our wave equations have a ( )31 2σ+  factor which becomes ( )31 2σ−  
when we use the main automorphism, losing the possibility of factorization. 

Moreover the 16 equations containing RDµ
µ∂  and LDµ

µ∂  are consequence of the Lagrangian formalism 
which is a consequence of the 16 other equations. This was first seen by Boudet [50] in the frame of the linear 
Dirac theory of the electron. Our study proves that it is general: the numeric equations equivalent to the wave 
equations of the “matter” (spinor waves) may be split into two parts: a dynamical part containing rotational-like 
terms, and a conservative part containing divergence-like terms, and the conservative part is a consequence of 
the dynamical equations. 

The building of the wave equations from the Lagrangian density uses ( )31 2σ+  but this process could also 
use ( )11 2σ+  or ( )21 2σ+ . This may be the origin of the existence of three and only three generations of 
fundamental fermions with same dynamics.  

Finally the synthesis of all interactions in a unified frame is the simple question: how these dynamical quan-
tum equations are linked to GR? 

4. Inertia and Gravitation 
In [26] Ch.9 we considered an element M not restricted to be constant in space-time. In the vicinity of a point x 
where ( )0 1M =  we use: 

( )

( )

( )

( )

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 b
2

1 b
2

ˆ 1 b
2

1 b ,
2

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

dxM p f l a h i g i b i i

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

= + + + + + + + +

= + + + + − − − −

= + − − − + + + −

= + − − − − − − +

�
             (4.1) 

where b  is the chiral potential 1b 2g B= . We get 

( ) ( ) ( ) ( )

( ) ( )

( )

1

1 1
1 2 3 1 2 3

1
1 2 3 1 2 3

det 1 b ; det 1 b ;

det 1 b ,
2

ˆ 1 b .
2

MM M dx p i M dx p i

dxM M M p f l a h i g i b i i

dxM p f l a h i g i b i i

µ µ
µ µ µ µ

µ

µ µ µ µ µ µ µ µ

µ

µ µ µ µ µ µ µ µ

σ σ σ σ σ σ

σ σ σ σ σ σ

−

− −

−

= = + + = − +

= = + − + + + + + + −

= + − + + + − − − +

       (4.2) 
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The dilation D defined from M in (2.10) gives: 

( )
( )
( )
( )

0 0 0 1 2 3

1 1 0 1 2 3

2 2 0 1 2 3

3 3 0 1 2 3

x x p x f x l x a x dx

x x f x p x b x g x dx

x x l x b x p x h x dx

x x a x g x h x p x dx

µ
µ µ µ µ

µ
µ µ µ µ

µ
µ µ µ µ

µ
µ µ µ µ

′ = + + + +

′ = + + + −

′ = + − + +

′ = + + − +

                        (4.3) 

Christoffel’s symbols α
βγΓ  being defined as 

,x x x dxα α α β γ
βγ′ = + Γ                                  (4.4) 

we then get 
0 1 2 3
0 1 2 3

1 0 2 0 3 0
0 1 0 2 0 3

2 3 3 1 1 2
3 2 1 3 2 1

; ;

; ;

p

f l a

h g b

µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ

Γ = Γ = Γ = Γ =

Γ = Γ = Γ = Γ = Γ = Γ =

Γ = −Γ = Γ = −Γ = Γ = −Γ =

                   (4.5) 

Since D is a dilation, product in any order of a Lorentz transformation and an homothety, the Christoffel’s 
symbols have this particular form and we get not 64 but only 28 4 7= ×  functions: the four bµ  present in 
(4.1) are not in the geometry, because the kernel of the group homomorphism M D�  is the ( )1U  group 
generated by i [23] [47]. Since the Christoffel’s symbols are not symmetric, a torsion exists, like in any geome-
try able to account for spin 1/2. Vectors transforming as (4.4) are the contravariant ones. Now for covariant 
vectors we have 

ˆ ,M Mµ µ
µ µσ σ ′∇ = ∂ = ∂                                 (4.6) 

with the same µσ . This is an important difference with all preceding attempts, using always variable µγ . This 
gives 

( )1 1ˆ .M M dxν ν ν µ ρ
ν ν ν νµ ρσ σ σ− −′ ′∇ = ∂ = ∂ = ∂ − Γ ∂                      (4.7) 

Therefore we get for covariant vectors the usual transformation: 

.dxµ ρ
ν ν νµ ρ′∂ = ∂ − Γ ∂                                   (4.8) 

This relation allows the covariant derivative to be commutative with contractions. It leads the covariant deriv-
ative back to partial derivative for scalars. The connection (4.5) is new, because all preceding attempts have 
used variable µγ , while we use constant µσ . The relativistic transformation of the Dirac ψ  wave uses a  

4 4×  matrix 
0
ˆ0

M
N

M
 

=   
 

 and transforms ( )xψ  into ( ) ( )x N xψ ψ′ ′ = , the Dirac equation satisfies, if  

( ) ( ) ( )1det 1: 0 ,M iqA im N iqA imµ µ
µ µ µ µγ ψ γ ψ−  ′ ′ ′= = ∂ + +  +  + = ∂  and we may remark that the µγ  ma-  

trices are not changed in the frame of x′ . Then why could they change as soon as the theory uses curvilinear 
coordinates? Actually the first Dirac theory used the transformation (2.10) and constant matrices, as soon as 
1928. 

A non vanishing torsion was used previously by A. Einstein [4] to unify gravitation and electromagnetism. 
Since his attempt was studied at the very early times of quantum mechanics he evidently did not start from the 
Dirac wave, which was invented 3 years later. We next get 

( ) �( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ     

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .

ˆ ˆD ,

M M M M M M M M M

M M M M M M

µ µ
µ µ µ

µ µ µ
µ µ µ

φ φ φ σ φ φ σ φ φ

φσ φ φσ φ φσ φ φ φ φ φ

φ φ φ φ

− − − −

− − −

 ′ ′ ′∇ = ∂ = ∂ + ∂ 
 = ∂ + ∂ = − ∂ + ∇ = ∇ − ∇ 

′ ′ ′∇ =

 
       (4.9) 

with 
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( ) ( )1
1 2 3 1 2 3

1ˆ ˆD b .
2

M M p f l a h i g i b i iµ
µ µ µ µ µ µ µ µ µσ σ σ σ σ σ σ−  = ∇ − ∇ = ∂ + − − − + + + −  

     (4.10) 

This introduces 8 space-time vectors that we name “potentials of inertia”: 

( )

0 1 2 3
0 0 0 0

2 3 1
3 1 2

1 2 3 1 2 3

; ; ;

; ; b b

1D .
2

;

; ;

b

p p f f l l a a

h h g g b b

p f l a hi gi bi i

µ µ µ µ µ µ µ µ
µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ
µ µ µ µ µ µ µ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ

= = Γ = = Γ = = Γ = = Γ

= = Γ = = Γ = = Γ =

= ∇ + − − − + + + −

         (4.11) 

In space algebra we need also 

( ) ( )1
1 2 3 1 2 3

ˆ ˆD ,
1D b .
2

M M p f l a i h i g i b i

φ φ φ φ

σ σ σ σ σ σ−

′ ′ ′∇ =

= ∇ − ∇ = ∇ + − − − + + + +

� �

� � � �
           (4.12) 

Now we look at the simple case (negligible gravitation) where all terms , , , , , ,p f l a h g bµ µ µ µ µ µ µ  are zero, but 
not bµ . We then get simply: 

0; ; D b; D b.
2 2
i ix xα µ µ

βγ ′Γ = = = ∇ − = ∇ +� �                         (4.13) 

Without the neutrino and quarks wave, we have 8 8 3 1̂ 0R L W L= = =  and 1 eia βρ= , where β  is the Yvon- 
Takabayasi angle. We then get 

�1 1 1
1

1 1 * 1
1

ˆ ˆ0 2 b ,

ˆ ˆ0 b .

mR i R i a L

mL i L i a R

ρ

ρ

= ∇ + +

= ∇ + +
                               (4.14) 

Using the main automorphism on the first Equation (4.14) we get 

1 1 * 1
1

ˆ ˆ2 b 0.
ρ

∇ − − =
mR i R i a L                                (4.15) 

The wave equation of the electron alone is then equivalent to the system: 
1 1 1

1 1 1

ˆ ˆ2 b e ,
ˆ ˆb e .

i

i

R i R im L

L i L im R

β

β

−

−

∇ = +

∇ = − −
                                (4.16) 

This system reads: 

1 1 1 1

1 1 1 1

3ˆ ˆ ˆb b e ,
2 2

3ˆ ˆ ˆb b e .
2 2

i

i

i iR R R im L

i iL L L im R

β

β

−

−

∇ = + +

∇ = − −
                            (4.17) 

If we have: 

1
3 3 b,
4 2

qA g B= =                                   (4.18) 

using 
1 1 1 1 1 1

3 3 12 3
ˆ ˆ ˆ; ; ,R L L R iφ σ φ σ σ σ= − = − =                         (4.19) 

we get: 

1 1 1
12 12

1 1 1
21

1 1 1 1
21

ˆ ˆ0 b ,
2

ˆ ˆ0 D ,
ˆ ˆ0 D .

i

i

i qA me

qA me

qA m

β

β

φ φ σ φ σ

φ σ φ φ

φ φ σ φ φ ρ

−

−

 = ∇ − + + 
 

= + +

= + +

                        (4.20) 
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which is our wave Equation (2.9) of the electron alone, with the only change of ∇  into D . The complication 
of the two parts of the electron wave with different eigenvalues of the weak hypercharge simply comes from the 
strange fact that the chiral potential b  is both a gauge potential and a potential of inertia. The introduction of 
the inertial potential b  into the Dirac equation gives the weak hypercharge. This means that the Dirac wave is 
yet a unitary electromagnetic-gravitational wave.  

Now we consider the neutrino wave where 8φ�  replaces 8φ . This means that, when , 1, 2,3, 4n nφ =  sees 
the Clifford algebra of space with the basis ( )1 2 3, ,σ σ σ  as a direct oriented basis, , 5,6,7,8n nφ =  sees the 
same algebra reversed, or with the same basis ( )1 2 3, ,σ σ σ  as an inverse basis. These waves satisfy: 

( ) ( )ˆ ˆ; D ; D b.
2

n n iMφ φ φ φ φ φ′ ′ ′ ′= ∇ = ∇ = ∇ = −� � �                      (4.21) 

Without quark and electron waves, we have 1 1 3 8 0R L W L= = =  and 6 eia βρ= , we then get 
8 8

8 8 8

0 e ,

0 b e .

i

i

R im L
L i L im R

β

β−

= ∇ +

= ∇ + +

�

� �
                              (4.22) 

Using the main automorphism on the first Equation (4.22) we get the system: 
8 8

8 8 8

e ,

b e .

i

i

R im L
L i L im R

β

β

−

−

∇ =

∇ = − −

� �

� �
                              (4.23) 

This gives: 

8 8

8 8 8

D b e ,
2

D b b e ,
2

i

i

i R im L

i L i L im R

β

β

−

−

 − = 
 
 − = − − 
 

� �

� �
                          (4.24) 

Adding we get: 

( )

8 8 8
3 3

8 8 8
12

b0 D e ,
2

bˆ ˆ0 D e ,
2

i

i

i m i

m

β

β

φ φ σ φ σ

σ φ φ φ

−= + +

= + +

��
                           (4.25) 

which is a Dirac-like wave equation in inverse order. Next if we consider the cd  wave alone we have n
dcφ φ=  

while if we consider the cu  wave alone we have 3 n
ucφ φ += �  and we get: 

�

�3 3 3 3 3 3

2ˆ ˆ ˆ ˆ0 b e 0 b e ,
3 3
40 b e 0 b e

;

.
3 3

;

n n i n n n i n

n n i n n n i n

i iR R im L L L im R

i iR R im L L L im R

β β

β β

−

+ + + + + − +

= ∇ + + = ∇ − +

= ∇ − + = ∇ − +� � � �
             (4.26) 

This gives: 

3 3 3 3

3 3 3 3

ˆ ˆ ˆ0 b b e ,
2 6

ˆ ˆ ˆ0 b b e ,
2 6

50 b b e ,
2 6

50 b b e .
2 6

n n n i n

n n n i n

n n n i n

n n n i n

i iR R R im L

i iL L L im R

i iR R R im L

i iL L L im R

β

β

β

β

−

−

+ + + − +

+ + + − +

= ∇ − − −

= ∇ − + +

= ∇ + + −

= ∇ + − +

� �

� �

                      (4.27) 

And the wave equations become: 

( )
( )

21

3 3 3 3
12

bˆ ˆ0 D ,
6
5ˆ ˆ0 D b .
6

n n n n

n n n n

m

m

φ φ σ φ φ ρ

σ φ φ φ φ ρ+ + + +

= + +

= − +
                        (4.28) 
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which also are Dirac-like wave equations. 
Since a mass term is present in the wave equations we are able to study in an unified way quantum behaviour 

and inertia-gravitation. In a rotating frame [51] the limit speed is not equal to c but varies. The limit speed be-
comes ( ) 01 , ,v c a m m m c a cTπ= + = =�  where T is the period of the rotation of the frame. We also have 

( )01 2v c ν ν= +  where 1 Tν =  is the frequency of rotation of the frame and 0ν  is the frequency of the 
wave. Therefore this effect is very small. 

The inclusion of inertia necessitates the use of two forms of differential operator, acting on the right or on the 
left side. This unified behaviour links the complicated operators of the electro-weak gauge to the unique electric 
gauge. The SM is not only able to incorporate inertia and gravitation. This is already realized since 1928 in the 
Dirac theory. The gravitation is not a very little force, it has the same strength as electromagnetism, but this is 
usually not obvious, because the proper masses of quantum physics are very small in comparison with the 
Planck mass. 

5. Conclusions 
All waves of the fermion part of the SM may be described as functions of space-time in the Clifford algebra of 
space. Contrary to the common expectation, the algebra of space is the framework of the unification of all inte-
ractions, not the algebra of space-time. The global wave is a function of space-time in a 64-dimensional linear 
space isomorphic to 8

3Cl , or to the space of all linear applications (called operators in the SM) from 3Cl  into 
3Cl . In this space multiplications by the left and multiplication by the right place play the same role. Conse-

quently, 32 parameters concern waves similar to the wave of the electron ruled by a Dirac equation. 32 parame-
ters are those of waves similar to the wave of the neutrino, with a reverse Dirac equation. This global wave is 
obtained also as eight waves which are functions ( ) , 1, ,8nx x nφ =� �  of space-time into 3Cl . 

The wave equations result from Lagrange equations calculated from a Lagrangian density and this Lagrangian 
density is exactly the sum of the real part of these wave equations. This gives both the reason and the limit of the 
Lagrangian physics. This limit comes from the fact that only the fermion part of the SM allows us to get a 
double link between wave equations and Lagrangian density. 

The Lorentz group of the restricted relativity is extended to a greater group of invariance. This group has a 
geometric origin, since it is the *

3Cl  group of the invertible elements of the algebra constructed from the 3-di- 
mensional space. The invariance under this greater group rules all waves of quantum physics. This group has not 
only two kinds of non-equivalent representations, but four, all necessary for the waves. We must consider not 
only φ  waves but also φ�  waves. The use of the 3Cl  algebra seems paradoxical for a relativistic unified 
model. Nevertheless 3Cl  is the best framework since including both the space-time and the group of invariance 
of the quantum waves. The four kinds of representations of the *

3Cl  group are necessary used, and we must dis-
tinguish ˆ, ,M M M�  and M . Since x x= �  only two kinds of representations are used in space-time algebra. 
Then it is very difficult to account there for chirality and to include both weak interactions and gravitation. No- 
natural differential operator in space-time algebra includes the four ˆD, D, D�  and D  operators. In space-time 
algebra, the orientation of the global space-time is available, not the separate orientations of time and space 
needed in quantum physics. 

We previously studied several particular cases and we obtained several important results: the gauge inva-
riance is exact in the particular case where only the electron has a non-zero right wave [26]. In a second paper, 
we will study this gauge invariance in the general case. We explained in [46] how the additivity of the potential 
terms is equivalent to the Pauli principle. We have less free parameters in comparison with the SM using second 
quantification, because the study of the electron fixes the value of the Weinberg-Salam angle [45]. Consequently 
this fixes the values of the charges of quarks and antiquarks [46]. The proper masses are no more the fundamen-
tal quantities that the theory must account for. These fundamental quantities are actually the mρ  products and 
there is only one proper mass in each generation. 

Old questions may also receive a very different answer: the density of probability is in the non-relativistic 
quantum theory a fundamental quantity; it is the square of the modulus of the wave. This has survived in the Di-
rac theory, because the density of probability becomes 0J , the time component of the e eJ φ φ= �  conservative 
current, and because 2J J ρ⋅ = . This induces the confusion between 0J  and ρ . The generalization of the 
wave breaks this confusion: J is generalized as the contravariant sum of the 16 currents of the Weyl spinors, 
while 2ρ  is the sum of 72 relativistic invariant terms. The density of probability always exists (see [26] Chap-
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ter 9) and the wave is normalized in the stationary case, but this density has none metaphysical property ruling 
all physical laws. The normalization of the wave is only a consequence of the principle of equivalence between 
the inertial mass-energy (sum over the whole space of the density of energy of the wave) and the gravitational 
mass-energy of the particle (linked to the frequency of the de Broglie’s clock). 
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