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Abstract 
Within the optimal production and hedging decision framework, Lien compares the exponential 
utility function with its second order approximation under the normality distribution assumption. 
In this paper, we first extend the result further by comparing the exponential utility function with 
a 2n-order approximation for any integer n. We then propose an approach with illustration to find 
the smallest n that provides a good approximation. 
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1. Introduction 
Using polynomials to approximate the expected utility function is one of the important issues in finance (see, for 
example, Feldstein [1], Samuelson [2], Levy and Markowitz [3], Pulley [4], Kroll, Levy, and Markowitz [5], and 
Hlawitschka [6]). Although there are many alternative techniques, it is more efficient to use a polynomial to ap-
proximate the utility function. To demonstrate the differences in optimal production and hedging decisions, Lien 
[7] compares the exponential utility function with its second order approximation under the normality distribu-
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tion assumption. In this paper, we consider a higher order approximation and demonstrate the uniform conver-
gence. We then provide a method to obtain the smallest n with good approximation result. 

2. The Model 
Suppose that, at time 0, a producer intends to produce q units of a commodity that are planned to be sold at time 
1. The production cost is c(q) and there is no production risk. we assume that the price, p , of the commodity at 
time 1 is a random variable following a normal distribution such that ( )2~ , .p pp N µ σ  In addition, there is a 
corresponding futures contract for the commodity that matures at time 1. The price of the futures contract is b at 
time 0. To hedge against the price risk, the producer sells h units of the futures contract at time 0. Let π  denote 
the profit for the producer at time 1, we have 

( ) ( )q h h qp b cπ = − + −  .                               (2.1) 

We further assume that the hedger has an exponential utility function u(.) such that 
( ) ( )exp for 0u k kπ π= − − >  .                             (2.2) 

where k is the Arrow-Pratt risk aversion coefficient. Consequently, 

( ) ( ) ( )22 21exp exp
2 pE u k k q hππ µ σ = − − −     

 ,                      (2.3) 

where ( ) ( )p q h bh c qπµ µ= − + − . 
It is well known in the literature that the firm’s optimal production decision *q  depends neither on the risk 

attitude of the firm nor on the underlying price distribution (i.e., the so-called separation theorem). Specifically, 
the optimal production decision *q  is determined by ( )* .b c q′=  Moreover, when pb µ= , the optimal fu-
tures position will be equal to the optimal production decision *q ; that is, the firm should completely eliminate 
its price risk exposure by adopting a full-hedge. To explore the effect of a polynomial approximation of the ex-
ponential utility function, we follow Lien [7] and allow pb µ≠ . We first discuss the second-order approxima-
tion in the next section. 

3. Second-Order Approximation 
Following Tsiang [8] and Gilbert et al. [9], Lien [7] considers the following second-order approximation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 2
2

1
2

au u u uπ π π π ππ µ µ π µ µ π µ= + − + −   ,                  (3.1) 

where ( )iu  is the thi  derivative of the utility function u. Under the exponential utility function, 

( ) ( ) ( )22 2
2

1exp 1
2

a
pE u k k q hππ µ σ   = − − + −    

 .                     (3.2) 

Let ( )2,q h  and ( )0,q h  denote the optimal production level and futures positions that maximize ( )2
aE u π    

and ( )E u π    in (3.2) and (2.3), respectively. Lien [7] shows that if pb µ> , then 0 2q h h< <  and if pb µ< , 
then 0 2q h h> > . In other words, the deviation between the optimal production level and the optimal futures 
position under the second-order approximation is always smaller than that under the original exponential utility 
function. 

4. 2n-Order Approximation 
While it is common to use second-order approximation (see, for example, Pulley [4]), we ask in this paper 
whether one could include higher order terms from the Taylor expansion to improve the approximation. We first 
extend Lien [7]’s results to fourth-order approximation and replace the utility function ( )2

au π  in (3.1) by the 
following fourth-order approximation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
4

3 4

1
2

1 1 .
3! 4!

au u u u

u u

π π π π π

π π π π

π µ µ π µ µ π µ

µ π µ µ π µ

′ ′′= + − + −

′′′ ′′′+ − + −
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Consequently, 

( ) ( ) ( ) ( )2 42 2 4
4

1 1exp 1
2 4!

a
p pE u k k q h k q h Kππ µ σ   = − − + − + −    

  

where 
4

p pK E π µ = −  . For the normal distribution, we have 43p pK σ= . Therefore, we have 

( ) ( ) ( ) ( )2 42 2 4 4
4

1 1exp 1 .
2 8

a
p pE u k k q h k q hππ µ σ σ   = − − + − + −    

  

Let ( )4,q h  be the optimal production level and futures position combination that maximizes ( )4
aE u π   . 

The resulting first-order condition is: 

( ) ( ) ( ) ( ) ( )2 4 32 2 4 4 2 3 4
4 4 4 4

1 1 11 0.
2 8 2p p p p pb k q h k q h k q h k q hµ σ σ σ σ − + − + − + − + − =  

 

For 2h  that maximizes ( )2
aE u π   , we have the following: 

( ) ( ) ( )22 2 2
2 2

11 0.
2p p pb k q h k q hµ σ σ − + − + − =  

 

From the above equation, 

( )

( )

2
2

22 2
2

.11
2

p
p

p

k q h
b

k q h

σ
µ

σ

− −
− =

+ −
                               (4.1) 

Define ( ) ( ) ( ) ( ) ( ) ( )2 4 32 2 4 4 2 3 41 1 11
2 8 2p p p p pb k q h k q h k q h k qM hh µ σ σ σ σ − + − + − + − + −  

=  and incor-  

porate Equation (4.1) into the formula of M(h), we get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

4 34 4 3 4
2 2 2

3 23 4
2

22 2
3 23 4

2 22 2
2

1 1
8 2

1 1
2 4

41 .
2 4 2

p p p

p
p

p
p

p

M h b k q h k q h

k b q h
k q h

k q h
k q h

k q h

µ σ σ

µ
σ

σ
σ

σ

= − − + −

 − −
 = − +
  

+ −
= − ×

+ −

 

Thus, ( ) ( )2 2 .sign M h sign q h= −    Furthermore, Equation (4.1) implies that, when pb µ> , we have 
2q h< , and henceforth ( )2 0M h < . On the other hand, by definition, ( )4 0M h =  and we obtain the following 

proposition. 
Proposition 4.1. Consider a one-period production and futures hedging framework. Given that the producer is 

endowed with an the exponential utility function and the spot price in the future is normally distributed, 
1) if pb µ> , then 2 4h h> , 
2)if pb µ< , then 2 4h h< . 
We now turn to the general case. Consider the 2n-th order approximation of the exponential utility function u 

in (2.2): 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2 22

2
1 1 .
2 2 !

na
nu u u u u

nπ π π π π π ππ µ µ π µ µ π µ µ π µ′ ′′= + − + − + + −   
       (4.2) 

Upon taking the expectation, we get 

( ) ( ) ( ) ( ) ( )2 22 2 2
2 2

1 1exp 1 ,
2 2 !

na n
n p nE u k k q h k q h M

nππ µ σ
 

  = − − + − + + −  
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where ( )2
2

n
n pE pM µ−=  . Under the normal distribution assumption, ( ) 2

2 2 1 !! .n
n pM n σ= −  Therefore, 

( ) ( ) ( ) ( ) ( )2 22 2 2 2
2

1 1exp 1 ,
2 2 !!

na n n
n p pE u k k q h k q h

nππ µ σ σ
 

  = − − + − + + −  
 


  

Let ( )2, nq h  be the optimal production level and futures position combination that maximizes ( )2
a
nE u π   . 

The corresponding first order condition is: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 22 2 2 2
2 2

2 12 2 1 2
2 2

1 11
2 2 !!

1 0.
2 !!

nn n
p p p

nn n
p p

V h b k q h n k q h n
n

k q h n k q h n
n

µ σ σ

σ σ−−

 
= − + − + + − 

 

+ − + + − =





 

For 2 2nh − , the following condition holds: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 22 2 2 2 2 2
2 2 2 2

2 32 2 3 2 2
2 2 2 2

1 11
2 2 2 !!

1 0.
2 4 !!

nn n
p n p n p

nn n
n p n p

b k q h k q h
n

k q h k q h
n

µ σ σ

σ σ

−− −
− −

−− −
− −

 
− + − + + − − 

+ − + + − =
−





 

From the above equation, we obtain 

( ) ( )
( ) ( ) ( )

2 2 3 2 3 2 2
2 2 2 2

2 2 22 2 2 2 2 2
2 2 2 2

1 ( )
2 4 !!

1 11
2 2 2 !!

n n n
n p n p

p
nn n

n p n p

k q h k q h
n

b
k q h k q h

n

σ σ
µ

σ σ

− − −
− −

−− −
− −

− + + −
−

− = −
+ − + + −

−





. 

After substituting this equation into the formula of ( )V h , we get: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2 2 12 2 2 1 2
2 2 2 2 2 2

2 1 2 22 1 2
2 2

2 2 22 2 2 2 2 2
2 2 2 2

2 12 1 2
2 2

2

1 1
2 !! 2 2 !!

1 1
2 2 !! 2

22 1
2 2 !!1

2 2 !! 2

n nn n n n
n p n p n p

n p nn n
n p

nn n
n p n p

nn n
n p

V h b k q h k q h
n n

k b q h
k q h

n n

n n k q h k q h
n

k q h
n n nk q

µ σ σ

µ
σ

σ σ
σ

−−
− − −

− −−
−

−− −
− −

−−
−

= − − + −
−

 − −
 = − +

−   

+ − − + + −
−

= − ×
− + −



( ) ( ) ( )2 2 22 2 2 2 2
2 2 2 2

.2
2 2 !!

nn n
n p n p

nh k q h
n

σ σ−− −
− −+ + −

−


 

Thus, ( ) ( )2 2 2 2n nsign V h sign q h− −  = −  . Furthermore, Equation (4.3) implies that, when pb µ> , 2 2nq h −< ,  
which in turn leads to ( )2 2 0nV h − < . By definition, ( )2 0nV h = . We conclude that 2 2 2n nh h− >  when pb µ> . 
Similarly, it can be shown that, when pb µ< , 2 2 2n nh h− < .The results are summarized in the following proposi-
tion: 

Proposition 4.2. Consider a one-period production and futures hedging framework. Given that the producer 
is endowed with an the exponential utility function and the spot price in the future is normally distributed, 

1) if pb µ> , then 2 4 2nh h h> > > , and 
2) if pb µ< , then 2 4 2nh h h< < < . 

5. True Optimal Futures Positions 
In this section we compare the optimal futures position under the 2n-order approximation with the true optimal 
position under the true expected utility function: 

( ) ( ) ( )22 21exp exp .
2 pE u k k q hππ µ σ = − − −     
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Let ( )0,q h  denote the combination of the optimal production level and the futures position that maximizes 
( )E u π   . In this case, the objective function can be simplified to ( ) 21 2 kπ πµ σ−  and the resulting first-order 

condition is 

( ) ( ) 2 0.p pb k q hµ σ− + − =  

From the previous section, we rewrite ( )V h  as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22 2 2 2

2 22 2 2 2 2

2 22 2 2 2 2

22 2

1 11
2 2 !!

11
2 2 !!

11
2 2 !!

1 .
2 !!

nn n
p p p

nn n
p p

nn n
p p p

nn n
p p

V h b k q h k q h
n

k q h k q h
n

b k q h k q h
n

b k q h
n

µ σ σ

σ σ

µ σ σ

µ σ

−− −

−− −

 
= − + − + + − 

 
 

+ − + + − − 
 

 = − + − + + −   − 

+ − −







 

Thus, 

( ) ( ) ( ) ( )22 2
0 0

1 ,
2 !!

nn n
p pV h b k q h

n
µ σ= − −  

implying the sign of ( )0V h  is the same as the sign of ( )pb µ− . As a result, when pb µ> , ( )0 0V h > . By 
definition, ( )2 0nV h = , and we conclude that 0 2nh h<  when pb µ> . Similarly, it can be shown that when 

pb µ< , 0 2nh h> . These results are summarized in the following proposition. 
Proposition 5.1. Consider a one-period production and futures hedging framework. Given that the producer 

is endowed with an the exponential utility function and the spot price in the future is normally distributed, we 
have 

1) if pb µ> , then 2 4 0h h h> > > , and 
2) if pb µ< , then 2 4 0h h h< < < . 

6. Choosing the Approximation Order 
We now propose an approach to find the smallest n that will provide a good approximation. Since it is well 
known that ( )2 !! 2 !,nn n=  the 2n-order approximation can be rewritten as follows: 

( ) ( ) ( ) ( )2 22 2 2 2
2

1 1exp 1
2 !2

na n n
n p pnE u k k q h k q h

nππ µ σ σ   = − − + − + + −    


  

Let ,n →∞  

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22 2 2 2
2

22 2

1 1lim exp lim 1
2 !2

1exp exp .
2

na n n
n p pnn n

p

E u k k q h k q h
n

k k q h E u

π

π

π µ σ σ

µ σ π

→∞ →∞

   = − − + − + + −    
 = − − − =     






 

Thus, 2 0h h→ . Upon applying the Cauchy convergence principle, we have the following theorem. 
Theorem 6.1. Let π  defined in (2.1) be the profit at time 1 and q be the optimal production level and sup-

pose that 0h  and 2nh  are the optimal futures positions that maximize ( )E u π    and ( )2
a
nE u π    in which 

u and 2
a
nu  are defined in (2.2) and (4.2), respectively. We have 

1) if pb µ> , then 2 4 2 0nh h h h> > > > , and 
2) if pb µ< , then 2 4 2 0nh h h h< < < < , 
3) 2 0nh h→  for any n →∞ , and 
4) for any 0α > , there exists N such that for all n N> , ( )2 2 1n nh h α−− < . 
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Thus, to obtain a good approximation for ( )E u π   , one may apply part (d) of Theorem 6.1. First, we  
choose the level of tolerance, 0α > , and then compute 2nh  and ( )2 1nh −  to derive ( )2 2 1n nh h −− . We then se-

lect the smallest n to satisfy the condition, ( )2 2 1n nh h α−− < . 

7. Illustration 
Below we present an example to illustrate Theorem 6.1. Consider ( )~ 1,1p N , ( ) ( )expu π π= − −  . That is, we  

assume 1p kπµ σ= = = . Consequently, ( )b c q′=  and ( ) ( )12
0 1.p ph q k b q bσ µ

−
= − − = + −  Note that 2h   

is the solution to the following equation: 

( ) ( ) ( )22 2 211 0,
2p p pb k q h k q hµ σ σ − + − + − =  

 

which can be rewritten as: 

( ) ( ) ( )211 1 0,
2

b q h q h − + − + − =  
 

Solving the above quadratic equation, we have 

( )2

2

1 1 2 1
.

1
b

q h
b

− ± − −
− =

−
 

Now, we let 1.5 1 pb µ= > = , then  

2 2 2.q h− = − ±  

The second order condition requires 

( ) ( )21 1 0.b q h− − − − <  

Thus,  

2 2 2q h− = − +  

and 2 0 1.5 2 0.05.h h− = − >  
If we assume 0.5 1 pb µ= < = , then  

2 2 2.q h− = ±  

According to the second order condition, we obtain 

2 2 2.q h− = −  

Thus, 0 2 1.5 2 0.05h h− = − > . In both cases, 0 2 0.05h h− > . 
By using the “solve” function in MATLAB, we find 4 0.5036q h− = −  for 1.5b =  and 4 0.5036q h− =  for 

0.5b = . In both cases, 0 4 0.05h h− < . If we require 3
0 2 10nh h −− < , the smallest n is 3. That is, 3

0 6 10h h −− < . 
For the cases with general pµ , pσ , k and b, we compile MATLAB codes to find the smallest n such that  

0 2nh h α− <  and/or ( )2 2 1 .n nh h α−− <  The codes are available on request from the authors. 

8. Concluding Remarks 
In this paper, we analyze a one-period production and hedging decision problem where the producer is endowed 
with an exponential utility function. Our findings are summarized as follows. First, it is well-known that a nor-
mal distribution coupled with an exponential expected utility produces a mean-variance (MV) approach. Mean-
while, a quadratic approximation also leads to a mean-variance approach. Our first finding is that the two ap-
proaches lead to different results (see Lien [7]). Second, since there are only two parameters for a normal distri-
bution, any 2n-order approximation yields a mean-variance model. It is interesting to compare the differences 
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among the results from the exponential expected utility, the quadratic approximation and the 2n-order approxi-
mation. We show that, when expanding to the higher order, there is a monotonic convergence. The difference 
between the result from the quadratic approximation and that from the exponential expected utility is the great-
est and shrinks as the approximation order increases. In addition, it is possible to extend the second-order ap-
proximation to the 2n-order approximation with a smallest value of n such that the result from the 2n-order ap-
proximation is sufficiently close to that from the exponential expected utility. 

Lastly, Hlawitschka [6] argues that the usefulness of Taylor series approximations is a strictly empirical issue 
unrelated to the convergence properties of the infinite series, and, most importantly, that even for a convergent 
series adding more terms does not necessarily improve the quality of the approximation. We note that our find-
ing suggests the argument from Hlawitschka [6] may not be correct because in our case adding more terms does 
improve the quality of the approximation and actually when the number of terms increases, the approximation 
converges to the true value. 
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