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Abstract 
In this article, to improve the doubly robust estimator, the nonlinear regression models with 
missing responses are studied. Based on the covariate balancing propensity score (CBPS), estima-
tors for the regression coefficients and the population mean are obtained. It is proved that the 
proposed estimators are asymptotically normal. In simulation studies, the proposed estimators 
show improved performance relative to usual augmented inverse probability weighted estima-
tors. 
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1. Introduction 
Consider the nonlinear regression model:  

( ), ,i i iY f X β ε= +                                       (1) 

where iY  is a scalar response variate, iX  is a 1d ×  vector of covariate, β  is a 1p×  vector of unknown 
regression parameter, ( )f ⋅  is a known function, and it is nonlinear with respect to β , iε  is a random 
statistical error with [ ]| 0i iE Xε = . In general, d is different from p. The model has been studied by many 
authors, such as Jennrich [1], Wu [2], Crainceanu and Ruppert [3] and so on. 

Missing data is frequently encountered in statistical studies, and ignoring it could lead to biased estimation 
and misleading conclusions. Inverse probability weighting (Horvitz and Thompson [4]) and imputation are two 
main methods for dealing with missing data. Since Scharfstein et al. [5] noted that the augmented inverse 
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probability weighted (AIPW) estimator in Robins et al. [6] was double-robust, authors have proposed many 
estimators with the double-robust property, see Tan [7], Kang and Schafer [8], Cao et al. [9]. The estimator is 
doubly robust in the sense that consistent estimation can be obtained if either the outcome regression model or 
the propensity score model is correctly specified. The AIPW estimators have been advocated for routine use 
(Bang and Robins [10]). For model (1), in the absence of missing data, the weighted least squares estimator of  
β  can be obtained by minimizing the objective function ( )( )2

1 ,n
i ii Y f X β

=
−∑ . In the presence of missing  

data, the above-mentioned method can not be used directly, so we make use of AIPW method to consider the 
model (1). 

Throughout this paper, we assume that X’s are observed completely, Y is missing at random (Rubin [11]). 
Thus, the data actually observed are independent and identically distributed ( ) ( ), , 1, ,i i i iY X i nδ δ =  , where 

1iδ =  indicates that iY  is observed and 0iδ =  indicates that iY  is missing. The missing at random (MAR) 
assumption implies that δ  and Y are conditionally independent given X, that is,  
( ) ( ) ( )1| , 1 |P X Y P X Xδ δ π= = = ≡ . This probability is called the propensity score (Rosenbaum and Rubin 

[12]). 
If ( ) T,i if X Xβ β= , model (1) is just the classical linear model. The linear models with missing data have 

been studied in existing papers, such as Wang and Rao ([13] [14]), Xue [15], Qin and Lei [16] and so on. The 
inverse probability weighted imputation methods of Xue [15] and other papers are based on the nonparametric 
estimators of the propensity score model. However, it is difficult to obtain the nonparametric estimators because 
of the “curse of dimensionality”, and as mentioned in the Kang and Schafer [8], the AIPW estimators can be 
severely biased when both models are misspecified. In addition, there is little work done for model (1) with 
missing responses. 

In this paper, we construct estimators for β  and µ  of model (1), based on the covariate balancing 
propensity score (CBPS) method proposed by Imai and Ratkovic [17]. As mentioned in Imai and Ratkovic [18], 
the weights based on CBPS are robust in the sense that they improve covariate balance even when propensity 
score model is misspecified. Our estimator has the following merits: 1) it avoids the “curse of dimensionality”; 
2) it avoids selecting the optimal bandwidth; 3) it improves performance of the AIPW estimators in terms of 
bias, standard deviation (SD) and mean-squared error (MSE), even when both outcome regression model and 
propensity score model are misspecified. 

The rest of this paper is organized as follows. In Section 2, based on the CBPS and the AIPW methods, the 
estimators for the regression parameter β  and the population mean µ  are proposed, and the asymptotic 
properties of the estimators are investigated. In Section 3, simulation studies are carried out to assess the 
performance of the proposed method. In Section 4, concluding remarks are made. In Appendix, the proofs of the 
main results are given. 

2. Construction of Estimators 
The most popular choice of ( )Xπ  is a logistic regression function (Qin and Zhang [19]). We make the same 
choice and posit a logistic regression model for ( )Xπ   

( )
( )
( )

T

T

exp
,

1 exp

X
X

X

α
π

α
=

+
                                     (2) 

where α ∈Θ  is d-dimensional unknown column vector parameter. 

2.1. CBPS-Based Estimator for the Propensity Score 
Based on ( ) ( ), 1, ,i iX i nδ =  , people can obtain the estimator α̂  by maximizing the log-likelihood function:  

( ){ } ( ) ( ){ }
1

log , 1 log 1 , .
n

i i i i
i

L X Xδ π α δ π α
=

 = + − − ∑                        (3) 

Assuming that ( ),Xπ α  is twice continuously differentiable with respect to α , so maximizing the (3) 
implies the first-order condition  

( ) ( ) ( )( ) ( )
( ) ( )( )1

, ,1 , , 0, , , ,
, 1 ,

n
i i i

i i i i
i i i

X X
s X s X

n X X
δ π α π α

δ α δ α
π α π α=

′−
= =

−∑                   (4) 
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where ( ) ( ) T, ,i iX Xπ α π α α′ = ∂ ∂ . However, the main drawback of this standard method is that the 
propensity score model ( )Xπ  may be misspecified, yielding biased estimators for the interesting parameters, 
such as β  and µ . To overcome the drawback, we borrow the following ideas of Imai and Ratkovic [17]. 
Similar to arguments present by Imai and Ratkovic [17], we operationalize the covariate balancing property by 
using inverse propensity score weighting  

( )
( )

( )
1

0.
, 1 ,

i ii i

i i

XXE
X X

δδ
π α π α
 − − = −  

                                (5) 

Equation (5) ensures that the first moment of each covariate is banlanced and the weights based on CBPS are 
robust even when propensity score model is misspecified. The key idea behind the CBPS is that propensity score 
model determines the missing mechanism and covariate balancing weights, see Imai and Ratkovic [17]. The 
sample analogue of the covariate balancing moment condition given in Equation (5) is  

( ) ( ) ( )
( ) ( )( )1

,1 , , 0, , , .
, 1 ,

n
i i

i i i i i
i i i

X
w X X w X

n X X
δ π α

δ α δ α
π α π α=

−
= =

−∑                 (6) 

According to Imai and Ratkovic [17], the CBPS is said to be just identified when the number of moment 
conditions equals that of parameters. If we use the covariate balancing conditions given in Equation (6) alone, 
the CBPS is just-identified. If we combine Equation (6) with the score condition given in Equation (4), then the 
CBPS is overidentified because the number of moment conditions exceeds that of parameters. 

Combining Equation (6) with the score condition given in Equation (4), we obtain the following equation:  

( ) ( ) ( ) ( )
( )1

, ,1 , , 0, , , ,
, ,

n
i i

i i i i
i i i i

s X
U U X U X

w X Xn
δ α

α δ α δ α
δ α=

 
= = =   

 
∑                 (7) 

Let α̂  be the solution to the Equation (7). For the overidentified CBPS, the GMM (Hansen [20]) estimator 
α̂  can be obtained by minimizing the following equation with respect to α  for some positive-semidefinite 
symmetric weight matrix W:  

( ) ( ) ( )T, , .i iQ X U WUδ α α α=                                (8) 

It is easy to show that, under some regularity conditions, α̂  is a consistent estimator of 0α , the true value of 
α . For the just-identified CBPS, we borrow the ideas of Imai and Ratkovic [17] and still minimize Equation (8) 
without the score condition to find α̂ . 

Theorem 1. Suppose that , 1, ,iX i n=   be a set of independent and identically distributed random vectors, 
under the Assumptions (A1)-(A3) in the Appendix, then 0ˆ Pα α→  and ( )1 2

0ˆ pO nα α −− = , where α̂  
minimizes Equation (8).  

2.2. Estimator for the Regression Parameter 
To make use of AIPW method, we borrow the idea of Seber and Wild [21] and define the least squares estimator 
of β  based on complete-case data by solving the following estimating equation:  

( ) ( )( )
1

, 0,
n

i i i i
i

F Y f Xδ β β
=

− =∑                                (9) 

where ( ) ( ),i iF f Xβ β β= ∂ ∂ . There is no closed form of β̂ , but it can be obtained by the following iterative 
equation:  

( ) ( ) ( ) 11 T T , 0,1,t t F WF F W tβ β ε
−−= + =                           (10) 

where ( ) ( )T
1 1, , , diag , , ,n nF F F W δ δ= =   ( ) ( )( )T

1 1, , , , ,n nY f X Y f Xε β β= − −
 and ,F ε  are eval-  

uated at ( )1tβ − . If ( ) ( )1t t cβ β −− ≤ , where c is a prespecified tolerance and ⋅  denotes the 2L  norm, then  

we stop the above iterative algorithm and obtain the least squares estimator of β , denoted by ˆ
cβ . 

Although the implementation of the complete case method is simple, it may result in misleading conclusion 
by simply excluding the missing data. In this section, we introduce an AIPW method based on CBPS to deal 
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with the problems of complete case method. 

Denote 
( ) ( ) ( )ˆ1 ,

, ,
i i

i i i c
i i

Y Y f X
X X
δ δ β

π α π α
 

= + −  
 



, From Equation (1), we have ( ) ( )| ,i i iE Y X f X β=


  

under the MAR condition. Hence  

( ), ,i i iY f X β η= +


                                  (11) 

where iη ’s satisfy ( )| 0i iE Xη = . Formula (11) is a full data model without missing data. So similar to 
Equation (10), we can obtain an estimator ˆ

Iβ  of β  by iterative equation  
( ) ( ) ( ) 11 T T , 0,1, ,t t F F F e tβ β

−−= + =   where ( ) ( )( )T

1 1
ˆ ˆ, , , ,n ne Y f X Y f Xβ β= − −  with  

( ) ( ) ( )ˆˆ 1 ,
ˆ ˆ, ,

i i
i i i c

i i

Y Y f X
X X
δ δ β

π α π α
 

= + −  
 

 and α̂  is obtained by CBPS method. 

The following Theorem 2 gives the asymptotic normality of ˆ
Iβ .  

Theorem 2. Suppose that Assumptions (A1)-(A4) in the Appendix hold. Then we have  

( ) ( )ˆ 0, ,D
In N Bβ β− →  

where 1 1B − −= Σ ΩΣ , T
i iE F F Σ =    and ( ) 1 T 2

i iE X F Fπ ε− Ω =    with ( )= ,Y f Xε β− . 

To apply Theorem 2 to construct the confidence region of β , we use 1 1ˆ ˆˆ ˆB − −= Σ ΩΣ  to consistently estimate 
B. where Σ̂  and Ω̂  are defined by  

( ) ( ) ( ) ( ) ( ) ( )21T T T

1 1

1 1ˆ ˆ ˆ ˆ ˆˆˆ ˆand , .
n n

i I i I i i I i I i i I
i i

F F X F F Y X
n n

β β π α β β β−

= =

Σ = Ω = −∑ ∑


 

Therefore, we have  

( ) ( )1 2 ˆˆ 0,D
I pB n N Iβ β− − →                               (12) 

and  

( ) ( )T 1 2ˆ ˆˆ .D
I I pnBβ β β β χ−− − →                              (13) 

We can construct the confidence interval of β  using (12) and (13). 

2.3. Estimator for the Response Mean 
It is of interest to estimate the mean of Y, say µ , when there are missing data in the responses. We here make 
use of the method of Xue [15] to construct the estimators of µ . Let  

( ) ( ) ( )* 1 , .
, ,

i i i
i i

i i

YY f X
X X
δ δ β

π α π α
 

= + −  
 

 

Under the MAR condition, we have ( )*
iE Y µ=  if µ  is the true parameter. Then the proposed estimator is  

( ) ( ) ( )
1

1 ˆˆ 1 , .
ˆ ˆ, ,

n
i i i

i c
i i i

Y f X
n X X

δ δµ β
π α π α=

  
= + −      

∑                      (14) 

In the following theorem, we state the asymptotic properties of µ̂ .  
Theorem 3. Under the assumptions (A1)-(A4) in the Appendix, we have  

( ) ( )ˆ 0, ,Dn N Vµ µ− →  

where ( )
( ) ( ){ }

2

var ,
X

V E f X
X

σ
β

π
  = + 
  

 with ( ) [ ]2 var |X Xσ ε= . 
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Borrowing the method of Xue [15], we can obtain the following consistent estimator of V:  

( )2

1

1ˆ ˆ ˆ ,
n

i
i

V Y
n

µ
=

= −∑  

where  

( ) ( ) ( )ˆˆ 1 , .
ˆ ˆ, ,

i i i
i i c

i i

YY f X
X X
δ δ β

π α π α
 

= + −  
 

 

By Theorem 3, the normal approximation based confidence interval of µ  with confidence level 1 α−  is  

1 2
ˆˆ z V nαµ −± . 

3. Simulation Examples 
We conducted simulation studies to examine the performance of the proposed estimation methods. The 
simulated data are generated from the model ( )TexpY X β ε= +  with ( )T1, 2,1β = . The components of 

( )T
1 2 3, ,X X X X=  are generated from the uniform distribution ( )0,1U  respectively and ε  is generated 

from the standard normal distribution, δ  is generated from Bernoulli with true propensity score model 
( ) ( ){ }1 2 31 1 exp 0.1 0.3 0.25X X X Xπ = + − − + . 
When both models are misspecified or either of them is misspecified, we adopt the same way as Kang and 

Schafer [8] to examine whether our method can improve the empirical performance of doubly robust estimators  

or not. Similar to Kang and Schafer [8], only the ( ) ( ){ } ( ){ }3*
1 2 1 1 3exp 2 , 1 exp 10, 25 0.6X X X X X X= + + +   

are observed. If Y is expressed as ( )*Texp X β ε+  or propensity score model is expressed as ( )*Xπ , the 
model is misspecified. As in the original study, we conduct simulations for population mean µ  under four 
scenarios: 

1) both outcome and propensity score models are correctly specified; 
2) only the propensity score model is correct; 
3) only the outcome model is correct; 
4) both outcome and propensity score models are correctly misspecified. 
Due to the regression parameter β  is in the outcome regression model, we only conduct simulations for β  

under (1) and (3) scenarios. For each scenario, we conduct 1000 simulations and calculate the bias, standard 
deviation (SD) and mean-squared error (MSE) for β  and µ . The results of our simulations are presented in 
Tables 1-3. For a given scenario, we examine the performance of estimators on the basis of four different 
propensity score methods: 

 
Table 1. Relative performance of the estimators for regression parameter based on different propensity score estimation 
methods when both models are correct.                                                                                         

β n 
GLM CBPS1 CBPS2 TRUE 

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE 

β1 

80 0.0010 0.0500 0.0025 −0.0002 0.0469 0.0022 0.0000 0.0481 0.0023 0.0001 0.0480 0.0023 

100 0.0011 0.0450 0.0020 0.0004 0.0439 0.0019 0.0003 0.0434 0.0019 0.0013 0.0428 0.0018 

120 0.0009 0.0405 0.0016 0.0013 0.0382 0.0015 −0.0017 0.0392 0.0015 −0.0005 0.0374 0.0014 

β2 

80 −0.0015 0.0509 0.0026 −0.0008 0.0476 0.0023 0.0001 0.0498 0.0025 0.0001 0.0495 0.0024 

100 0.0003 0.0449 0.0020 −0.0007 0.0420 0.0018 −0.0007 0.0430 0.0019 −0.0004 0.0422 0.0018 

120 0.0001 0.0381 0.0014 −0.0017 0.0376 0.0014 0.0008 0.0391 0.0015 0.0022 0.0376 0.0014 

β3 

80 −0.0007 0.0500 0.0025 0.0010 0.0485 0.0024 0.0001 0.0505 0.0025 0.0000 0.0502 0.0025 

100 −0.0007 0.0425 0.0018 0.0005 0.0426 0.0018 −0.0003 0.0430 0.0018 −0.0010 0.0418 0.0017 

120 −0.0022 0.0368 0.0014 0.0009 0.0364 0.0013 0.0011 0.0387 0.0015 −0.0016 0.0392 0.0015 
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Table 2. Relative performance of the estimators for regression parameter based on different propensity score estimation 
methods when only outcome model is correct.                                                                                                                 

β n 
GLM CBPS1 CBPS2 TRUE 

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE 

β1 

80 0.0007 0.0502 0.0025 −0.0012 0.0490 0.0024 −0.0006 0.0492 0.0024 −0.0011 0.0485 0.0023 

100 0.0029 0.0422 0.0018 0.0003 0.0435 0.0018 −0.0016 0.0429 0.0018 −0.0013 0.0430 0.0019 

120 −0.0019 0.0398 0.0016 0.0005 0.0390 0.0015 0.0000 0.0383 0.0015 0.0004 0.0389 0.0015 

β2 

80 −0.0002 0.0504 0.0025 0.0004 0.0504 0.0025 0.0002 0.0494 0.0024 0.0004 0.0498 0.0025 

100 −0.0025 0.0442 0.0020 −0.0007 0.0430 0.0018 −0.0018 0.0428 0.0018 −0.0019 0.0433 0.0019 

120 0.0002 0.0395 0.0016 0.0008 0.0389 0.0015 −0.0007 0.0382 0.0015 −0.0012 0.0405 0.0016 

β3 

80 −0.0017 0.0477 0.0023 0.0006 0.0482 0.0023 −0.0001 0.0502 0.0025 0.0004 0.0476 0.0023 

100 −0.0014 0.0437 0.0019 −0.0004 0.0429 0.0018 0.0023 0.0421 0.0018 0.0023 0.0427 0.0018 

120 0.0008 0.0392 0.0015 −0.0012 0.0410 0.0016 0.0004 0.0374 0.0014 0.0005 0.0407 0.0017 

 
Table 3. Relative performance of the doubly robust estimators based on different propensity score estimation methods for 
mean under the four different scenarios.                                                                                  

Sce n 
GLM CBPS1 CBPS2 TRUE 

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE 

(1) 200 0.0040 0.5336 0.2845 0.0104 0.4931 0.2430 0.0134 0.5014 0.2513 0.0132 0.5012 0.2511 

 500 0.0081 0.3197 0.1022 −0.0059 0.3162 0.0999 0.0060 0.3119 0.0972 −0.0133 0.3181 0.1013 

(2) 200 0.0016 0.5623 0.3158 0.0423 0.5595 0.3145 0.0500 0.5361 0.2896 −0.0169 0.6446 0.4154 

 500 0.0100 0.3497 0.1227 0.0390 0.3433 0.1193 0.0258 0.3438 0.1188 0.0066 0.4190 0.1754 

(3) 200 0.0012 0.5167 0.2667 0.0094 0.4886 0.2386 0.0103 0.4931 0.2430 −0.0166 0.5110 0.2612 

 500 −0.0118 0.3118 0.0973 0.0106 0.3106 0.0965 −0.0149 0.3074 0.0946 0.0122 0.3158 0.0998 

(4) 200 −0.0084 0.5694 0.3239 0.0584 0.5597 0.3163 0.0385 0.5568 0.3112 0.0182 0.6418 0.4119 

 500 −0.0104 0.3553 0.1262 0.0352 0.3472 0.1217 0.0553 0.3483 0.1243 −0.0130 0.4003 0.1602 

Remark: 1) Both models are correct; 2) Only propensity score model is correct; 3) Only outcome model is correct; 4) Both models are incorrect. 
 
a) usual GLM method; 
b) the just-identified CBPS estimation with the covariate balancing moment conditions and without the score 

condition (CBPS1); 
c) the overidentified CBPS estimation with both the covariate balancing and score conditions (CBPS2); 
d) The true propensity score model which we do not need to estimate (TRUE). 
From Table 1 and Table 2, we can see that SD and MSE of our estimators for β  decrease as n increases. 

Whether the propensity score model is specified correctly or not, the proposed estimators based on CBPS have 
smaller SD and MSE than the usual GLM estimators mostly. The CBPS with or without the score condition can 
substantially improve the performance of usual estimator. Compared with estimators based on true propensity 
score model, our proposed estimators perform as well as them in the terms of SD and MSE. Table 3 shows that, 
under the four scenarios, the SD and MSE of our proposed estimators remain lower than the usual GLM 
estimators. Similar to Imai and Ratkovic [17], the final scenario illustrates the most important point made by 
Kang and Schafer [8] that doubly robust estimator can deteriorate when both the outcome and the propensity 
models are misspecified. Under this scenario, the doubly robust estimators based on usual GLM have a 
significant amount of bias and variance. However, the CBPS can improve the performance of doubly robust 
estimators. In a word, we obtain the same conclusion as Imai and Ratkovic [17] that the CBPS can yield robust 
estimators of population mean, even when both the outcome and propensity score models are misspecified. 
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4. Concluding Remarks 
We have proposed an improved estimation method for the parameters of interest in the nonlinear regression 
model with missing responses. The estimators based on CBPS and AIPW method have the following merits: 1) 
They avoid the “curse of dimensionality” and avoid selecting the optimal bandwidth; 2) When either the 
outcome regression model or the propensity score model is correctly specified, the proposed estimators perform 
as well as estimators based on true propensity model in the terms of SD and MSE; 3) When both outcome 
regression and propensity score models are misspecified, as mentioned in Section 1, the usual AIPW estimator 
can be severely biased, but our method improves the performance of them and obtains an improved estimator for 
population mean. The simulation shows that the proposed method is feasible. Furthermore, with appropriately 
modification, the proposed method can be extended to other models with missing responses. The exhaustive 
procedure will be presented in our future work. 
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Appendix: Proofs of the Main Results  

Throughout, let 0α  be the true value of α , and ( )1 22
, jkj kA a= ∑  be the Euclidean norm for a matrix  

jkA a =   . Firstly we make the following assumptions. 
(A1) For all X’s, ( ) ( )T,X Xπ α α= Φ  is a known, differentiable function from ℜ  to (0,1) for all α’s in a 

neighborhood of 0α . 
(A2) ( )iE X  and ( )iE w Xβ    exist and the matrix ( )T

i iE X X  is of full rank. 
(A3) 1) W is positive semi-definite and ( ), 0WE U X α =    only if 0α α= . 2) 0α ∈Θ , which is compact.  

3) ( ) 2
1 0,E Xπ α  < ∞  

 and 2
iE X  < ∞  , where ( ) ( )1 , ,X Xπ α π α α= ∂ ∂ . 

(A4) ( )2sup |x E X xε = < ∞  and ( )2E X < ∞ . 
To complete the proofs of Theorems 1-3, the following lemma is needed. If there is a function ( )0Q θ  such 

that 1) ( )0Q θ  is uniquely minimized at 0θ ; 2) Θ  is compact; 3) ( )0Q θ  is continuous; 4) ( )ˆ
nQ θ  con- 

verges uniformly in probability to ( )0Q θ , then 0
ˆ Pθ θ→ , where θ̂  minimizes ( )ˆ

nQ θ  subject to θ ∈Θ . 
Lemma 1. is the fundamental consistency result for extremum estimators. Its proof can be found in Newey 

and McFadden [22], and we omit it here. 
Proof of Theorem 1. Similar to Theorem 2.6 in Newey and McFadden [22], the proof of 0ˆ Pα α→  is 

proceed by verifying the conditions of Lemma 1. Under assumption (A2), (A3) and Lemma 2.3 in Newey and 
McFadden (1994), we know that conditions 1) and 2) hold in Lemma 1. Let  
( ) ( ) ( ) ( )0, ; , ; , , ;a X T U X T U E U X Tα α α α= =    , Under assumption (A1) and by Lemma 2.4 in Newey and  

McFadden (1994), we have ( ) ( )0sup 0PU Uα α α∈Θ − →  and ( )0U α  is continuous. Thus, condition 3 in  
Lemma 1 holds by ( ) ( ) ( )T

0 0 0Q U WUα α α=  continuous. By Θ  is compact, ( )0U α  is bounded on Θ , and 
by the Cauchy-Schwartz inequalities, ( ) ( )0sup 0PQ Qα α α∈Θ − → , and condition 4) in Lemma 1 holds. 
According to Theorem 3.2 in Newey and McFadden [22], we can obtain that ( )1 2

0ˆ pO nα α −− = . 
Proof of Theorem 2. Denote ( ) ( ) ( )( ),ˆ ,i I i i iF Y f Xη β β β= −



, where ( ) ( ),i iF f Xβ β β= ∂ ∂ . By the 
definition of ˆ

Iβ ,  

( ) ( ) ( ) ( ) ( )
1

T
,

1 1

1 1ˆ ˆ 1
n n

I i i i I P
i i

n F F o
n n

β β β β η β
−

= =

  − = +     
∑ ∑                (15) 

To prove Theorem 2, we will verify the asymptotically normality of ( ),1

1 ˆn
i Iin

η β
=∑ . By direct calculation,  

we have  

( ) ( ) ( ) ( ) ( ) ( )T
, ,

ˆˆ ˆ 1 ,
ˆ,

i
i I i W i i C

i

F F
X
δη β η β β β β β

π α
 

= + − −  
 

                 (16) 

where  

( ) ( ) ( ) ( )( ),ˆ , .
ˆ,

i
i W i i i

i

F Y f X
X
δη β β β

π α
= −                        (17) 

Under MAR assumption, we have 
( ) ( ) ( )T1 0

,
i

i i
i

E F F
X
δ β β

π α

  
− =      

. This combines with Theorem 1  

yields  

( ) ( ) ( ) ( )T

1

1 1 1 .
ˆ,

n
i

i i P
i i

F F o
n X

δ β β
π α=

 
− =  

 
∑                         (18) 

From the Theorem 5 in Wu (1981), we know that ( )1 2ˆ
C PO nβ β −− = . This together with (16) and (18) 

proves that  

( ) ( ) ( ), ,
1 1

1 1ˆ ˆ 1 .
n n

i I i W P
i i

o
n n

η β η β
= =

= +∑ ∑                           (19) 
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By Theorem 1,  

( ) ( ) ( ) ( ),
1 1

1 1ˆ 1 .
,

n n
i

i W i i P
i i i

F o
Xn n
δη β β ε

π α= =

= +∑ ∑  

According to the assumptions given in model (1), we have  

( ) ( ) ( ) ( ) ( )1 T 2cov .
,

i
i i i i

i

F E X F F
X
δ β ε π β β ε

π α
−    = = Ω     

 

Then, it follows from the central limit theorem that  

( ) ( ),
1

1 ˆ 0, .
n

D
i W

i
N

n
η β

=

→ Ω∑  

Therefore, by using (19) and Slutsky theorem, the proof of Theorem 2 is completed. 
Proof of Theorem 3. By direct calculation, we have we have  

( ) 1 2 3ˆ ,n S S Sµ µ− = + +                                 (20) 

where  

( ) ( )( )1
1

1 , ,
,

n
i i

i
i i

S f X
Xn
δ ε β µ

π α=

  = + − 
  

∑  

( ) ( )2
1

1 1 1 ,
ˆ, ,

n

i i
i i i

S
X Xn

δ ε
π α π α=

 
= −  

 
∑  

( ) ( ) ( )T
3

1

1 ˆ1 ,
ˆ,

n
i

i c
i i

S F
Xn
δ β β β

π α=

 
= − −  

 
∑  

By the central theorem, we have ( )1 0,DS N V→ . To prove the asymptotically normality of estimator, we 
need to prove that ( )1 , 2,3, 4k PS o k= = . For 2S ,  

( ) ( )
( ) ( )2 2

1

ˆ, ,1 1 .
,

n
i i i i

i i

X X
S o

Xn

π α π α δ ε
π α=

 − = +∑  

Similar to arguments of Qin and Lei [16], we have ( )2 1PS o= . 
For 3S , Under MAR assumption, we have ( )( ) ( )1 , 0i i iE X Fδ π α β − =  . Therefore, 

( ) ( ) ( )1

1 1 , 1n
i i i Pi X F o

n
δ π α β

=
 − = ∑ . This combines with Theorem 1 and ( )1 2ˆ

C PO nβ β −− =  yields  

( )3 1PS o= . Then the Theorem 3 is proved. 
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